HMC.py revision 12340:a52f6d327259
1# Copyright (c) 2012-2013 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2015 The University of Bologna
14# All rights reserved.
15#
16# Redistribution and use in source and binary forms, with or without
17# modification, are permitted provided that the following conditions are
18# met: redistributions of source code must retain the above copyright
19# notice, this list of conditions and the following disclaimer;
20# redistributions in binary form must reproduce the above copyright
21# notice, this list of conditions and the following disclaimer in the
22# documentation and/or other materials provided with the distribution;
23# neither the name of the copyright holders nor the names of its
24# contributors may be used to endorse or promote products derived from
25# this software without specific prior written permission.
26#
27# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38#
39# Authors: Erfan Azarkhish
40#          Abdul Mutaal Ahmad
41
42# A Simplified model of a complete HMC device. Based on:
43#  [1] http://www.hybridmemorycube.org/specification-download/
44#  [2] High performance AXI-4.0 based interconnect for extensible smart memory
45#      cubes(E. Azarkhish et. al)
46#  [3] Low-Power Hybrid Memory Cubes With Link Power Management and Two-Level
47#      Prefetching (J. Ahn et. al)
48#  [4] Memory-centric system interconnect design with Hybrid Memory Cubes
49#      (G. Kim et. al)
50#  [5] Near Data Processing, Are we there yet? (M. Gokhale)
51#      http://www.cs.utah.edu/wondp/gokhale.pdf
52#  [6] openHMC - A Configurable Open-Source Hybrid Memory Cube Controller
53#      (J. Schmidt)
54#  [7] Hybrid Memory Cube performance characterization on data-centric
55#      workloads (M. Gokhale)
56#
57# This script builds a complete HMC device composed of vault controllers,
58# serial links, the main internal crossbar, and an external hmc controller.
59#
60# - VAULT CONTROLLERS:
61#   Instances of the HMC_2500_1x32 class with their functionality specified in
62#   dram_ctrl.cc
63#
64# - THE MAIN XBAR:
65#   This component is simply an instance of the NoncoherentXBar class, and its
66#   parameters are tuned to [2].
67#
68# - SERIAL LINKS CONTROLLER:
69#   SerialLink is a simple variation of the Bridge class, with the ability to
70#   account for the latency of packet serialization and controller latency. We
71#   assume that the serializer component at the transmitter side does not need
72#   to receive the whole packet to start the serialization. But the
73#   deserializer waits for the complete packet to check its integrity first.
74#
75#   * Bandwidth of the serial links is not modeled in the SerialLink component
76#     itself.
77#
78#   * Latency of serial link controller is composed of SerDes latency + link
79#     controller
80#
81#   * It is inferred from the standard [1] and the literature [3] that serial
82#     links share the same address range and packets can travel over any of
83#     them so a load distribution mechanism is required among them.
84#
85#   -----------------------------------------
86#   | Host/HMC Controller                   |
87#   |        ----------------------         |
88#   |        |  Link Aggregator   |  opt    |
89#   |        ----------------------         |
90#   |        ----------------------         |
91#   |        |  Serial Link + Ser | * 4     |
92#   |        ----------------------         |
93#   |---------------------------------------
94#   -----------------------------------------
95#   | Device
96#   |        ----------------------         |
97#   |        |       Xbar         | * 4     |
98#   |        ----------------------         |
99#   |        ----------------------         |
100#   |        |  Vault Controller  | * 16    |
101#   |        ----------------------         |
102#   |        ----------------------         |
103#   |        |     Memory         |         |
104#   |        ----------------------         |
105#   |---------------------------------------|
106#
107#   In this version we have present 3 different HMC archiecture along with
108#   alongwith their corresponding test script.
109#
110#   same: It has 4 crossbars in HMC memory. All the crossbars are connected
111#   to each other, providing complete memory range. This archicture also covers
112#   the added latency for sending a request to non-local vault(bridge in b/t
113#   crossbars). All the 4 serial links can access complete memory. So each
114#   link can be connected to separate processor.
115#
116#   distributed: It has 4 crossbars inside the HMC. Crossbars are not
117#   connected.Through each crossbar only local vaults can be accessed. But to
118#   support this architecture we need a crossbar between serial links and
119#   processor.
120#
121#   mixed: This is a hybrid architecture. It has 4 crossbars inside the HMC.
122#   2 Crossbars are connected to only local vaults. From other 2 crossbar, a
123#   request can be forwarded to any other vault.
124
125import argparse
126
127import m5
128from m5.objects import *
129from m5.util import *
130
131
132def add_options(parser):
133    # *****************************CROSSBAR PARAMETERS*************************
134    # Flit size of the main interconnect [1]
135    parser.add_argument("--xbar-width", default=32, action="store", type=int,
136                        help="Data width of the main XBar (Bytes)")
137
138    # Clock frequency of the main interconnect [1]
139    # This crossbar, is placed on the logic-based of the HMC and it has its
140    # own voltage and clock domains, different from the DRAM dies or from the
141    # host.
142    parser.add_argument("--xbar-frequency", default='1GHz', type=str,
143                        help="Clock Frequency of the main XBar")
144
145    # Arbitration latency of the HMC XBar [1]
146    parser.add_argument("--xbar-frontend-latency", default=1, action="store",
147                        type=int, help="Arbitration latency of the XBar")
148
149    # Latency to forward a packet via the interconnect [1](two levels of FIFOs
150    # at the input and output of the inteconnect)
151    parser.add_argument("--xbar-forward-latency", default=2, action="store",
152                        type=int, help="Forward latency of the XBar")
153
154    # Latency to forward a response via the interconnect [1](two levels of
155    # FIFOs at the input and output of the inteconnect)
156    parser.add_argument("--xbar-response-latency", default=2, action="store",
157                        type=int, help="Response latency of the XBar")
158
159    # number of cross which connects 16 Vaults to serial link[7]
160    parser.add_argument("--number-mem-crossbar", default=4, action="store",
161                        type=int, help="Number of crossbar in HMC")
162
163    # *****************************SERIAL LINK PARAMETERS**********************
164    # Number of serial links controllers [1]
165    parser.add_argument("--num-links-controllers", default=4, action="store",
166                        type=int, help="Number of serial links")
167
168    # Number of packets (not flits) to store at the request side of the serial
169    #  link. This number should be adjusted to achive required bandwidth
170    parser.add_argument("--link-buffer-size-req", default=10, action="store",
171                        type=int, help="Number of packets to buffer at the\
172                        request side of the serial link")
173
174    # Number of packets (not flits) to store at the response side of the serial
175    #  link. This number should be adjusted to achive required bandwidth
176    parser.add_argument("--link-buffer-size-rsp", default=10, action="store",
177                        type=int, help="Number of packets to buffer at the\
178                        response side of the serial link")
179
180    # Latency of the serial link composed by SER/DES latency (1.6ns [4]) plus
181    # the PCB trace latency (3ns Estimated based on [5])
182    parser.add_argument("--link-latency", default='4.6ns', type=str,
183                        help="Latency of the serial links")
184
185    # Clock frequency of the each serial link(SerDes) [1]
186    parser.add_argument("--link-frequency", default='10GHz', type=str,
187                        help="Clock Frequency of the serial links")
188
189    # Clock frequency of serial link Controller[6]
190    # clk_hmc[Mhz]= num_lanes_per_link * lane_speed [Gbits/s] /
191    # data_path_width * 10^6
192    # clk_hmc[Mhz]= 16 * 10 Gbps / 256 * 10^6 = 625 Mhz
193    parser.add_argument("--link-controller-frequency", default='625MHz',
194                        type=str, help="Clock Frequency of the link\
195                        controller")
196
197    # Latency of the serial link controller to process the packets[1][6]
198    # (ClockDomain = 625 Mhz )
199    # used here for calculations only
200    parser.add_argument("--link-ctrl-latency", default=4, action="store",
201                        type=int, help="The number of cycles required for the\
202                        controller to process the packet")
203
204    # total_ctrl_latency = link_ctrl_latency + link_latency
205    # total_ctrl_latency = 4(Cycles) * 1.6 ns +  4.6 ns
206    parser.add_argument("--total-ctrl-latency", default='11ns', type=str,
207                        help="The latency experienced by every packet\
208                        regardless of size of packet")
209
210    # Number of parallel lanes in each serial link [1]
211    parser.add_argument("--num-lanes-per-link", default=16, action="store",
212                        type=int, help="Number of lanes per each link")
213
214    # Number of serial links [1]
215    parser.add_argument("--num-serial-links", default=4, action="store",
216                        type=int, help="Number of serial links")
217
218    # speed of each lane of serial link - SerDes serial interface 10 Gb/s
219    parser.add_argument("--serial-link-speed", default=10, action="store",
220                        type=int, help="Gbs/s speed of each lane of serial\
221                        link")
222
223    # address range for each of the serial links
224    parser.add_argument("--serial-link-addr-range", default='1GB', type=str,
225                        help="memory range for each of the serial links.\
226                        Default: 1GB")
227
228    # *****************************PERFORMANCE MONITORING*********************
229    # The main monitor behind the HMC Controller
230    parser.add_argument("--enable-global-monitor", action="store_true",
231                        help="The main monitor behind the HMC Controller")
232
233    # The link performance monitors
234    parser.add_argument("--enable-link-monitor", action="store_true",
235                        help="The link monitors")
236
237    # link aggregator enable - put a cross between buffers & links
238    parser.add_argument("--enable-link-aggr", action="store_true", help="The\
239                        crossbar between port and Link Controller")
240
241    parser.add_argument("--enable-buff-div", action="store_true",
242                        help="Memory Range of Buffer is ivided between total\
243                        range")
244
245    # *****************************HMC ARCHITECTURE **************************
246    # Memory chunk for 16 vault - numbers of vault / number of crossbars
247    parser.add_argument("--mem-chunk", default=4, action="store", type=int,
248                        help="Chunk of memory range for each cross bar in\
249                        arch 0")
250
251    # size of req buffer within crossbar, used for modelling extra latency
252    # when the reuqest go to non-local vault
253    parser.add_argument("--xbar-buffer-size-req", default=10, action="store",
254                        type=int, help="Number of packets to buffer at the\
255                        request side of the crossbar")
256
257    # size of response buffer within crossbar, used for modelling extra latency
258    # when the response received from non-local vault
259    parser.add_argument("--xbar-buffer-size-resp", default=10, action="store",
260                        type=int, help="Number of packets to buffer at the\
261                        response side of the crossbar")
262    # HMC device architecture. It affects the HMC host controller as well
263    parser.add_argument("--arch", type=str, choices=["same", "distributed",
264                        "mixed"], default="distributed", help="same: HMC with\
265                        4 links, all with same range.\ndistributed: HMC with\
266                        4 links with distributed range.\nmixed: mixed with\
267                        same and distributed range.\nDefault: distributed")
268    # HMC device - number of vaults
269    parser.add_argument("--hmc-dev-num-vaults", default=16, action="store",
270                        type=int, help="number of independent vaults within\
271                        the HMC device. Note: each vault has a memory\
272                        controller (valut controller)\nDefault: 16")
273    # HMC device - vault capacity or size
274    parser.add_argument("--hmc-dev-vault-size", default='256MB', type=str,
275                        help="vault storage capacity in bytes. Default:\
276                        256MB")
277    parser.add_argument("--mem-type", type=str, choices=["HMC_2500_1x32"],
278                        default="HMC_2500_1x32", help="type of HMC memory to\
279                        use. Default: HMC_2500_1x32")
280    parser.add_argument("--mem-channels", default=1, action="store", type=int,
281                        help="Number of memory channels")
282    parser.add_argument("--mem-ranks", default=1, action="store", type=int,
283                        help="Number of ranks to iterate across")
284    parser.add_argument("--burst-length", default=256, action="store",
285                        type=int, help="burst length in bytes. Note: the\
286                        cache line size will be set to this value.\nDefault:\
287                        256")
288
289
290# configure HMC host controller
291def config_hmc_host_ctrl(opt, system):
292
293    # create HMC host controller
294    system.hmc_host = SubSystem()
295
296    # Create additional crossbar for arch1
297    if opt.arch == "distributed" or opt.arch == "mixed":
298        clk = '100GHz'
299        vd = VoltageDomain(voltage='1V')
300        # Create additional crossbar for arch1
301        system.membus = NoncoherentXBar(width=8)
302        system.membus.badaddr_responder = BadAddr()
303        system.membus.default = Self.badaddr_responder.pio
304        system.membus.width = 8
305        system.membus.frontend_latency = 3
306        system.membus.forward_latency = 4
307        system.membus.response_latency = 2
308        cd = SrcClockDomain(clock=clk, voltage_domain=vd)
309        system.membus.clk_domain = cd
310
311    # create memory ranges for the serial links
312    slar = convert.toMemorySize(opt.serial_link_addr_range)
313    # Memmory ranges of serial link for arch-0. Same as the ranges of vault
314    # controllers (4 vaults to 1 serial link)
315    if opt.arch == "same":
316        ser_ranges = [AddrRange(0, (4*slar)-1) for i in
317                      range(opt.num_serial_links)]
318    # Memmory ranges of serial link for arch-1. Distributed range accross
319    # links
320    if opt.arch == "distributed":
321        ser_ranges = [AddrRange(i*slar, ((i+1)*slar)-1) for i in
322                      range(opt.num_serial_links)]
323    # Memmory ranges of serial link for arch-2 'Mixed' address distribution
324    # over links
325    if opt.arch == "mixed":
326        ser_range0 = AddrRange(0, (1*slar)-1)
327        ser_range1 = AddrRange(1*slar, 2*slar-1)
328        ser_range2 = AddrRange(0, (4*slar)-1)
329        ser_range3 = AddrRange(0, (4*slar)-1)
330        ser_ranges = [ser_range0, ser_range1, ser_range2, ser_range3]
331
332    # Serial link Controller with 16 SerDes links at 10 Gbps with serial link
333    # ranges w.r.t to architecture
334    sl = [SerialLink(ranges=ser_ranges[i],
335                     req_size=opt.link_buffer_size_req,
336                     resp_size=opt.link_buffer_size_rsp,
337                     num_lanes=opt.num_lanes_per_link,
338                     link_speed=opt.serial_link_speed,
339                     delay=opt.total_ctrl_latency) for i in
340          xrange(opt.num_serial_links)]
341    system.hmc_host.seriallink = sl
342
343    # enable global monitor
344    if opt.enable_global_monitor:
345        system.hmc_host.lmonitor = [CommMonitor() for i in
346                                    xrange(opt.num_serial_links)]
347
348    # set the clock frequency for serial link
349    for i in xrange(opt.num_serial_links):
350        clk = opt.link_controller_frequency
351        vd = VoltageDomain(voltage='1V')
352        scd = SrcClockDomain(clock=clk, voltage_domain=vd)
353        system.hmc_host.seriallink[i].clk_domain = scd
354
355    # Connect membus/traffic gen to Serial Link Controller for differrent HMC
356    # architectures
357    hh = system.hmc_host
358    if opt.arch == "distributed":
359        mb = system.membus
360        for i in xrange(opt.num_links_controllers):
361            if opt.enable_global_monitor:
362                mb.master = hh.lmonitor[i].slave
363                hh.lmonitor[i].master = hh.seriallink[i].slave
364            else:
365                mb.master = hh.seriallink[i].slave
366    if opt.arch == "mixed":
367        mb = system.membus
368        if opt.enable_global_monitor:
369            mb.master = hh.lmonitor[0].slave
370            hh.lmonitor[0].master = hh.seriallink[0].slave
371            mb.master = hh.lmonitor[1].slave
372            hh.lmonitor[1].master = hh.seriallink[1].slave
373        else:
374            mb.master = hh.seriallink[0].slave
375            mb.master = hh.seriallink[1].slave
376
377    if opt.arch == "same":
378        for i in xrange(opt.num_links_controllers):
379            if opt.enable_global_monitor:
380                hh.lmonitor[i].master = hh.seriallink[i].slave
381
382    return system
383
384
385# Create an HMC device
386def config_hmc_dev(opt, system, hmc_host):
387
388    # create HMC device
389    system.hmc_dev = SubSystem()
390
391    # create memory ranges for the vault controllers
392    arv = convert.toMemorySize(opt.hmc_dev_vault_size)
393    addr_ranges_vaults = [AddrRange(i*arv, ((i+1)*arv-1)) for i in
394                          range(opt.hmc_dev_num_vaults)]
395    system.mem_ranges = addr_ranges_vaults
396
397    if opt.enable_link_monitor:
398        lm = [CommMonitor() for i in xrange(opt.num_links_controllers)]
399        system.hmc_dev.lmonitor = lm
400
401    # 4 HMC Crossbars located in its logic-base (LoB)
402    xb = [NoncoherentXBar(width=opt.xbar_width,
403                          frontend_latency=opt.xbar_frontend_latency,
404                          forward_latency=opt.xbar_forward_latency,
405                          response_latency=opt.xbar_response_latency) for i in
406          xrange(opt.number_mem_crossbar)]
407    system.hmc_dev.xbar = xb
408
409    for i in xrange(opt.number_mem_crossbar):
410        clk = opt.xbar_frequency
411        vd = VoltageDomain(voltage='1V')
412        scd = SrcClockDomain(clock=clk, voltage_domain=vd)
413        system.hmc_dev.xbar[i].clk_domain = scd
414
415    # Attach 4 serial link to 4 crossbar/s
416    for i in xrange(opt.num_serial_links):
417        if opt.enable_link_monitor:
418            system.hmc_host.seriallink[i].master = \
419                system.hmc_dev.lmonitor[i].slave
420            system.hmc_dev.lmonitor[i].master = system.hmc_dev.xbar[i].slave
421        else:
422            system.hmc_host.seriallink[i].master = system.hmc_dev.xbar[i].slave
423
424    # Connecting xbar with each other for request arriving at the wrong xbar,
425    # then it will be forward to correct xbar. Bridge is used to connect xbars
426    if opt.arch == "same":
427        numx = len(system.hmc_dev.xbar)
428
429        # create a list of buffers
430        system.hmc_dev.buffers = [Bridge(req_size=opt.xbar_buffer_size_req,
431                                         resp_size=opt.xbar_buffer_size_resp)
432                                  for i in xrange(numx*(opt.mem_chunk-1))]
433
434        # Buffer iterator
435        it = iter(range(len(system.hmc_dev.buffers)))
436
437        # necesarry to add system_port to one of the xbar
438        system.system_port = system.hmc_dev.xbar[3].slave
439
440        # iterate over all the crossbars and connect them as required
441        for i in range(numx):
442            for j in range(numx):
443                # connect xbar to all other xbars except itself
444                if i != j:
445                    # get the next index of buffer
446                    index = it.next()
447
448                    # Change the default values for ranges of bridge
449                    system.hmc_dev.buffers[index].ranges = system.mem_ranges[
450                            j * int(opt.mem_chunk):
451                            (j + 1) * int(opt.mem_chunk)]
452
453                    # Connect the bridge between corssbars
454                    system.hmc_dev.xbar[i].master = system.hmc_dev.buffers[
455                            index].slave
456                    system.hmc_dev.buffers[
457                            index].master = system.hmc_dev.xbar[j].slave
458                else:
459                    # Don't connect the xbar to itself
460                    pass
461
462    # Two crossbars are connected to all other crossbars-Other 2 vault
463    # can only direct traffic to it local vaults
464    if opt.arch == "mixed":
465        system.hmc_dev.buffer30 = Bridge(ranges=system.mem_ranges[0:4])
466        system.hmc_dev.xbar[3].master = system.hmc_dev.buffer30.slave
467        system.hmc_dev.buffer30.master = system.hmc_dev.xbar[0].slave
468
469        system.hmc_dev.buffer31 = Bridge(ranges=system.mem_ranges[4:8])
470        system.hmc_dev.xbar[3].master = system.hmc_dev.buffer31.slave
471        system.hmc_dev.buffer31.master = system.hmc_dev.xbar[1].slave
472
473        system.hmc_dev.buffer32 = Bridge(ranges=system.mem_ranges[8:12])
474        system.hmc_dev.xbar[3].master = system.hmc_dev.buffer32.slave
475        system.hmc_dev.buffer32.master = system.hmc_dev.xbar[2].slave
476
477        system.hmc_dev.buffer20 = Bridge(ranges=system.mem_ranges[0:4])
478        system.hmc_dev.xbar[2].master = system.hmc_dev.buffer20.slave
479        system.hmc_dev.buffer20.master = system.hmc_dev.xbar[0].slave
480
481        system.hmc_dev.buffer21 = Bridge(ranges=system.mem_ranges[4:8])
482        system.hmc_dev.xbar[2].master = system.hmc_dev.buffer21.slave
483        system.hmc_dev.buffer21.master = system.hmc_dev.xbar[1].slave
484
485        system.hmc_dev.buffer23 = Bridge(ranges=system.mem_ranges[12:16])
486        system.hmc_dev.xbar[2].master = system.hmc_dev.buffer23.slave
487        system.hmc_dev.buffer23.master = system.hmc_dev.xbar[3].slave
488