Searched hist:2010 (Results 426 - 450 of 929) sorted by relevance

<<11121314151617181920>>

/gem5/src/arch/x86/isa/formats/
H A Dmulti.isadiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/arch/x86/isa/insts/x87/data_transfer_and_conversion/
H A Dload_or_store_floating_point.pydiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/mem/ruby/network/simple/
H A DThrottle.hhdiff 7454:3a3e8e8cce1b Fri Jun 11 02:17:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: get rid of Vector and use STL
add a couple of helper functions to base for deleteing all pointers in
a container and outputting containers to a stream
diff 7055:4e24742201d7 Fri Apr 02 14:20:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: get "using namespace" out of headers
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
diff 7054:7d6862b80049 Wed Mar 31 19:56:00 EDT 2010 Nathan Binkert <nate@binkert.org> style: another ruby style pass
diff 7024:30883414ad10 Mon Mar 22 00:22:00 EDT 2010 Brad Beckmann <Brad.Beckmann@amd.com> ruby: Finally removed bash code cira. 2001ish!
H A DSimpleNetwork.hhdiff 7454:3a3e8e8cce1b Fri Jun 11 02:17:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: get rid of Vector and use STL
add a couple of helper functions to base for deleteing all pointers in
a container and outputting containers to a stream
diff 7055:4e24742201d7 Fri Apr 02 14:20:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: get "using namespace" out of headers
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
diff 7054:7d6862b80049 Wed Mar 31 19:56:00 EDT 2010 Nathan Binkert <nate@binkert.org> style: another ruby style pass
diff 6876:a658c315512c Fri Jan 29 23:29:00 EST 2010 Steve Reinhardt <steve.reinhardt@amd.com> ruby: Convert most Ruby objects to M5 SimObjects.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
/gem5/src/mem/slicc/ast/
H A DFuncDeclAST.pydiff 6999:f226c098c393 Wed Mar 10 19:22:00 EST 2010 Nathan Binkert <nate@binkert.org> slicc: have a central mechanism for creating a code_formatter.
This makes it easier to add global variables like protocol
H A DStallAndWaitStatementAST.py7567:238f99c9f441 Fri Aug 20 14:46:00 EDT 2010 Brad Beckmann <Brad.Beckmann@amd.com> ruby: Stall and wait input messages instead of recycling

This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state. In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages. Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.
/gem5/src/arch/x86/bios/
H A DIntelMP.pydiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
H A Dsmbios.ccdiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/arch/x86/insts/
H A Dmicroldstop.ccdiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/base/
H A Dstr.ccdiff 7494:249f174e6f37 Tue Jul 06 01:57:00 EDT 2010 Steve Reinhardt <steve.reinhardt@amd.com> checkpointing: another small overload fix
On Nate's advice, overload 'char' as well as 'signed char'
and 'unsigned char'.
/gem5/src/arch/x86/isa/insts/general_purpose/control_transfer/
H A Dcall.pydiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/
H A D.hgignorediff 7514:b28e7286990c Tue Jul 27 23:00:00 EDT 2010 Steve Reinhardt <steve.reinhardt@amd.com> .hgignore: added src/doxygen
/gem5/src/arch/x86/isa/microops/
H A Dspecop.isadiff 7682:37c56be05af0 Tue Sep 14 03:31:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> X86: Make the halt microop non-speculative.

Executing this microop makes the CPU halt even if it was misspeculated.
diff 7626:bdd926760470 Mon Aug 23 12:44:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> X86: Get rid of the flagless microop constructor.

This will reduce clutter in the source and hopefully speed up compilation.
diff 7620:3d8a23caa1ef Mon Aug 23 12:44:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> X86: Consolidate extra microop flags into one parameter.

This single parameter replaces the collection of bools that set up various
flavors of microops. A flag parameter also allows other flags to be set like
the serialize before/after flags, etc., without having to change the
constructor.
diff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/arch/arm/isa/formats/
H A Dm5ops.isa7732:a2c660de7787 Mon Nov 08 14:58:00 EST 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: Add support for M5 ops in the ARM ISA
/gem5/src/arch/power/
H A Dutility.ccdiff 7720:65d338a8dba4 Sun Oct 31 03:07:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
diff 7698:e78b6bba67ca Fri Oct 01 18:57:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> Power: Fix compile error from previous push.
diff 7693:f1db1000d957 Fri Oct 01 17:02:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> Debug: Implement getArgument() and function skipping for ARM.

In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.

For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
7506:e76cc0ca16cc Thu Jul 22 13:47:00 EDT 2010 Timothy M. Jones <tjones1@inf.ed.ac.uk> Power: Provide a utility function to copy registers from one thread context
to another in the Power ISA.
/gem5/src/cpu/o3/
H A DFUPool.pydiff 7760:e93e7e0caae1 Mon Nov 15 15:04:00 EST 2010 Giacomo Gabrielli <Giacomo.Gabrielli@arm.com> CPU/ARM: Add SIMD op classes to CPU models and ARM ISA.
/gem5/src/dev/mips/
H A DMalta.pydiff 7709:fc12f4d657f0 Mon Oct 18 02:15:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> MIPS: Get rid of the backdoor device copy/pasted from and only used in Alpha.
/gem5/src/python/m5/util/
H A Dsmartdict.pydiff 6997:5af4976c17e2 Sun Feb 28 22:28:00 EST 2010 Nathan Binkert <nate@binkert.org> SmartDict: Make SmartDict an attrdict
H A Dsorteddict.py7503:37da2c208f5f Wed Jul 21 18:53:00 EDT 2010 Nathan Binkert <nate@binkert.org> python: add a sorted dictionary class
It would be nice if python had a tree class that would do this for real,
but since we don't, we'll just keep a sorted list of keys and update
it on demand.
/gem5/src/arch/arm/
H A Dprocess.ccdiff 7720:65d338a8dba4 Sun Oct 31 03:07:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
diff 7692:8173327c9c65 Fri Oct 01 17:02:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: Clean up use of TBit and JBit.

Rather tha constantly using ULL(1) << PcXBitShift define those directly.
Additionally, add some helper functions to further clean up the code.
diff 7678:f19b6a3a8cec Mon Sep 13 22:26:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.

Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
diff 7640:5286a8a469c5 Wed Aug 25 20:10:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Implement CPACR register and return Undefined Instruction when FP access is disabled.
diff 7532:3f6413fc37a2 Tue Aug 17 08:17:00 EDT 2010 Steve Reinhardt <steve.reinhardt@amd.com> sim: revamp unserialization procedure

Replace direct call to unserialize() on each SimObject with a pair of
calls for better control over initialization in both ckpt and non-ckpt
cases.

If restoring from a checkpoint, loadState(ckpt) is called on each
SimObject. The default implementation simply calls unserialize() if
there is a corresponding checkpoint section, so we get backward
compatibility for existing objects. However, objects can override
loadState() to get other behaviors, e.g., doing other programmed
initializations after unserialize(), or complaining if no checkpoint
section is found. (Note that the default warning for a missing
checkpoint section is now gone.)

If not restoring from a checkpoint, we call the new initState() method
on each SimObject instead. This provides a hook for state
initializations that are only required when *not* restoring from a
checkpoint.

Given this new framework, do some cleanup of LiveProcess subclasses
and X86System, which were (in some cases) emulating initState()
behavior in startup via a local flag or (in other cases) erroneously
doing initializations in startup() that clobbered state loaded earlier
by unserialize().
diff 7441:be2acdfb8bdc Wed Jun 02 01:58:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: Fix SPEC2000 benchmarks in SE mode. With this patch all
Spec2k benchmarks seem to run with atomic or timing mode simple
CPUs. Fixed up some constants, handling of 64 bit arguments,
and marked a few more syscalls ignoreFunc.
diff 7414:0a05aa495903 Wed Jun 02 01:58:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: Fixup native trace support and add some v7/recent stack code
diff 7172:2137885e2088 Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Move the mmap region to where Linux actually has it.
diff 7096:e81026b9dfe0 Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Allow ARM processes to start in Thumb mode.
H A Dinterrupts.ccdiff 7400:f6c9b27c4dbe Wed Jun 02 01:58:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: Implement ARM CPU interrupts
/gem5/src/arch/x86/isa/insts/simd128/floating_point/data_transfer/
H A Dmove.pydiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/arch/arm/insts/
H A Dstatic_inst.ccdiff 7182:7058ec69d069 Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Don't rely on undefined behavior to get arithmetic right shift.
Shifting to the right of a signed value when the MSB is one is technically
undefined behavior, even though in my experience it's done the "right thing"
and sign extended the value. This replaces the arithmetic right shift code in
ARM that uses that coincidence with some code that relies on bit math.
diff 7148:1f8d18f5fe5d Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Replace the interworking branch base class with a special operand.
diff 7145:a71ac505d83b Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Get rid of unnecessary flag calculating functions.
diff 7142:c63c06703d0f Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Implement disassembly for the new data processing classes.
diff 7140:d2f0418e9390 Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Move the modified_imm function from all ARM instructions to just data processing ones.
diff 7122:0c8bb53cdffe Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Add a .w to the disassembly of 32 bit thumb instructions.
This isn't technically correct since the .w should only be added if there are
32 and 16 bit encodings, but always having it always is better than never
having it.
diff 7111:ee902ae075bb Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Replace the "never" condition with the "unconditional" condition.
diff 7109:6670b4ab3abe Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Add a function to decode 32 bit thumb immediate values.
diff 7094:4d878c4a0c2b Wed Jun 02 01:57:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Add a new base class for instructions that can do an interworking branch.
/gem5/src/mem/ruby/system/
H A DDMASequencer.hhdiff 7039:bc0b6ea676b5 Mon Mar 22 21:43:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: style pass
diff 7008:90c097fb76e1 Sun Mar 14 23:58:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: Fix copyrights on files
Mostly files missed during import or screwed up during import
diff 6922:1620cffaa3b6 Fri Jan 29 23:29:00 EST 2010 Brad Beckmann <Brad.Beckmann@amd.com> ruby: Removed static members in RubyPort including hitcallback
Removed static members in RubyPort and removed the ruby request unique id.
diff 6876:a658c315512c Fri Jan 29 23:29:00 EST 2010 Steve Reinhardt <steve.reinhardt@amd.com> ruby: Convert most Ruby objects to M5 SimObjects.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
/gem5/src/mem/slicc/symbols/
H A DType.pydiff 7805:f249937228b5 Thu Dec 23 00:15:00 EST 2010 Nilay Vaish<nilay@cs.wisc.edu> This patch removes the WARN_* and ERROR_* from src/mem/ruby/common/Debug.hh file. These statements have been replaced with warn(), panic() and fatal() defined in src/base/misc.hh
diff 7453:1a5db3dd0f62 Fri Jun 11 02:17:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: get rid of RefCnt and Allocator stuff use base/refcnt.hh

This was somewhat tricky because the RefCnt API was somewhat odd. The
biggest confusion was that the the RefCnt object's constructor that
took a TYPE& cloned the object. I created an explicit virtual clone()
function for things that took advantage of this version of the
constructor. I was conservative and used clone() when I was in doubt
of whether or not it was necessary. I still think that there are
probably too many instances of clone(), but hopefully not too many.

I converted several instances of const MsgPtr & to a simple MsgPtr.
If the function wants to avoid the overhead of creating another
reference, then it should just use a regular pointer instead of a ref
counting ptr.

There were a couple of instances where refcounted objects were created
on the stack. This seems pretty dangerous since if you ever
accidentally make a reference to that object with a ref counting
pointer, bad things are bound to happen.
diff 7055:4e24742201d7 Fri Apr 02 14:20:00 EDT 2010 Nathan Binkert <nate@binkert.org> ruby: get "using namespace" out of headers
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
diff 7007:79413d1ec307 Fri Mar 12 21:42:00 EST 2010 Nathan Binkert <nate@binkert.org> slicc: Change the code generation so that the generated code is easier to read
diff 7002:48a19d52d939 Wed Mar 10 21:33:00 EST 2010 Nathan Binkert <nate@binkert.org> ruby: get rid of std-includes.hh
Do not use "using namespace std;" in headers
Include header files as needed
diff 6999:f226c098c393 Wed Mar 10 19:22:00 EST 2010 Nathan Binkert <nate@binkert.org> slicc: have a central mechanism for creating a code_formatter.
This makes it easier to add global variables like protocol
diff 6882:898047a3672c Fri Jan 29 23:29:00 EST 2010 Brad Beckmann <Brad.Beckmann@amd.com> ruby: Ruby changes required to use the python config system
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
diff 6877:2a1a3d916ca8 Fri Jan 29 23:29:00 EST 2010 Steve Reinhardt <steve.reinhardt@amd.com> ruby: Make SLICC-generated objects SimObjects.
Also add SLICC support for state-machine parameter defaults
(passed through to Python as SimObject Param defaults).
diff 6862:3d308cbd1657 Tue Jan 19 16:48:00 EST 2010 Derek Hower <drh5@cs.wisc.edu> merge

Completed in 127 milliseconds

<<11121314151617181920>>