/* * Copyright (c) 1999-2011 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "base/intmath.hh" #include "base/output.hh" #include "debug/RubyCacheTrace.hh" #include "mem/ruby/common/Address.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/system/System.hh" #include "sim/eventq.hh" #include "sim/simulate.hh" using namespace std; int RubySystem::m_random_seed; bool RubySystem::m_randomization; Tick RubySystem::m_clock; int RubySystem::m_block_size_bytes; int RubySystem::m_block_size_bits; uint64 RubySystem::m_memory_size_bytes; int RubySystem::m_memory_size_bits; Network* RubySystem::m_network_ptr; Profiler* RubySystem::m_profiler_ptr; MemoryVector* RubySystem::m_mem_vec_ptr; RubySystem::RubySystem(const Params *p) : SimObject(p) { if (g_system_ptr != NULL) fatal("Only one RubySystem object currently allowed.\n"); m_random_seed = p->random_seed; srandom(m_random_seed); m_randomization = p->randomization; m_clock = p->clock; m_block_size_bytes = p->block_size_bytes; assert(isPowerOf2(m_block_size_bytes)); m_block_size_bits = floorLog2(m_block_size_bytes); m_memory_size_bytes = p->mem_size; if (m_memory_size_bytes == 0) { m_memory_size_bits = 0; } else { m_memory_size_bits = floorLog2(m_memory_size_bytes); } g_eventQueue_ptr = new RubyEventQueue(p->eventq, m_clock); g_system_ptr = this; if (p->no_mem_vec) { m_mem_vec_ptr = NULL; } else { m_mem_vec_ptr = new MemoryVector; m_mem_vec_ptr->resize(m_memory_size_bytes); } // // Print ruby configuration and stats at exit // RubyExitCallback* rubyExitCB = new RubyExitCallback(p->stats_filename); registerExitCallback(rubyExitCB); m_warmup_enabled = false; m_cooldown_enabled = false; } void RubySystem::init() { m_profiler_ptr->clearStats(); } void RubySystem::registerNetwork(Network* network_ptr) { m_network_ptr = network_ptr; } void RubySystem::registerProfiler(Profiler* profiler_ptr) { m_profiler_ptr = profiler_ptr; } void RubySystem::registerAbstractController(AbstractController* cntrl) { m_abs_cntrl_vec.push_back(cntrl); } void RubySystem::registerSparseMemory(SparseMemory* s) { m_sparse_memory_vector.push_back(s); } RubySystem::~RubySystem() { delete m_network_ptr; delete m_profiler_ptr; if (m_mem_vec_ptr) delete m_mem_vec_ptr; } void RubySystem::printSystemConfig(ostream & out) { out << "RubySystem config:" << endl << " random_seed: " << m_random_seed << endl << " randomization: " << m_randomization << endl << " cycle_period: " << m_clock << endl << " block_size_bytes: " << m_block_size_bytes << endl << " block_size_bits: " << m_block_size_bits << endl << " memory_size_bytes: " << m_memory_size_bytes << endl << " memory_size_bits: " << m_memory_size_bits << endl; } void RubySystem::printConfig(ostream& out) { out << "\n================ Begin RubySystem Configuration Print ================\n\n"; printSystemConfig(out); m_network_ptr->printConfig(out); m_profiler_ptr->printConfig(out); out << "\n================ End RubySystem Configuration Print ================\n\n"; } void RubySystem::printStats(ostream& out) { const time_t T = time(NULL); tm *localTime = localtime(&T); char buf[100]; strftime(buf, 100, "%b/%d/%Y %H:%M:%S", localTime); out << "Real time: " << buf << endl; m_profiler_ptr->printStats(out); m_network_ptr->printStats(out); } void RubySystem::writeCompressedTrace(uint8* raw_data, string filename, uint64 uncompressed_trace_size) { // Create the checkpoint file for the memory string thefile = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open memory trace file '%s'\n", filename); } gzFile compressedMemory = gzdopen(fd, "wb"); if (compressedMemory == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) != uncompressed_trace_size) { fatal("Write failed on memory trace file '%s'\n", filename); } if (gzclose(compressedMemory)) { fatal("Close failed on memory trace file '%s'\n", filename); } delete raw_data; } void RubySystem::serialize(std::ostream &os) { m_cooldown_enabled = true; vector sequencer_map; Sequencer* sequencer_ptr = NULL; int cntrl_id = -1; for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer()); if (sequencer_ptr == NULL) { sequencer_ptr = sequencer_map[cntrl]; cntrl_id = cntrl; } } assert(sequencer_ptr != NULL); for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { if (sequencer_map[cntrl] == NULL) { sequencer_map[cntrl] = sequencer_ptr; } } DPRINTF(RubyCacheTrace, "Recording Cache Trace\n"); // Create the CacheRecorder and record the cache trace m_cache_recorder = new CacheRecorder(NULL, 0, sequencer_map); for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder); } DPRINTF(RubyCacheTrace, "Cache Trace Complete\n"); // save the current tick value Tick curtick_original = curTick(); // save the event queue head Event* eventq_head = eventq->replaceHead(NULL); DPRINTF(RubyCacheTrace, "Recording current tick %ld and event queue\n", curtick_original); // Schedule an event to start cache cooldown DPRINTF(RubyCacheTrace, "Starting cache flush\n"); enqueueRubyEvent(curTick()); simulate(); DPRINTF(RubyCacheTrace, "Cache flush complete\n"); // Restore eventq head eventq_head = eventq->replaceHead(eventq_head); // Restore curTick curTick(curtick_original); uint8* raw_data = NULL; if (m_mem_vec_ptr != NULL) { uint64 memory_trace_size = m_mem_vec_ptr->collatePages(raw_data); string memory_trace_file = name() + ".memory.gz"; writeCompressedTrace(raw_data, memory_trace_file, memory_trace_size); SERIALIZE_SCALAR(memory_trace_file); SERIALIZE_SCALAR(memory_trace_size); } else { for (int i = 0; i < m_sparse_memory_vector.size(); ++i) { m_sparse_memory_vector[i]->recordBlocks(cntrl_id, m_cache_recorder); } } // Aggergate the trace entries together into a single array raw_data = new uint8_t[4096]; uint64 cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data, 4096); string cache_trace_file = name() + ".cache.gz"; writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size); SERIALIZE_SCALAR(cache_trace_file); SERIALIZE_SCALAR(cache_trace_size); m_cooldown_enabled = false; } void RubySystem::readCompressedTrace(string filename, uint8*& raw_data, uint64& uncompressed_trace_size) { // Read the trace file gzFile compressedTrace; // trace file int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Unable to open trace file %s", filename); } compressedTrace = gzdopen(fd, "rb"); if (compressedTrace == NULL) { fatal("Insufficient memory to allocate compression state for %s\n", filename); } raw_data = new uint8_t[uncompressed_trace_size]; if (gzread(compressedTrace, raw_data, uncompressed_trace_size) < uncompressed_trace_size) { fatal("Unable to read complete trace from file %s\n", filename); } if (gzclose(compressedTrace)) { fatal("Failed to close cache trace file '%s'\n", filename); } } void RubySystem::unserialize(Checkpoint *cp, const string §ion) { // // The main purpose for clearing stats in the unserialize process is so // that the profiler can correctly set its start time to the unserialized // value of curTick() // clearStats(); uint8* uncompressed_trace = NULL; if (m_mem_vec_ptr != NULL) { string memory_trace_file; uint64 memory_trace_size = 0; UNSERIALIZE_SCALAR(memory_trace_file); UNSERIALIZE_SCALAR(memory_trace_size); memory_trace_file = cp->cptDir + "/" + memory_trace_file; readCompressedTrace(memory_trace_file, uncompressed_trace, memory_trace_size); m_mem_vec_ptr->populatePages(uncompressed_trace); delete uncompressed_trace; uncompressed_trace = NULL; } string cache_trace_file; uint64 cache_trace_size = 0; UNSERIALIZE_SCALAR(cache_trace_file); UNSERIALIZE_SCALAR(cache_trace_size); cache_trace_file = cp->cptDir + "/" + cache_trace_file; readCompressedTrace(cache_trace_file, uncompressed_trace, cache_trace_size); m_warmup_enabled = true; vector sequencer_map; Sequencer* t = NULL; for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer()); if(t == NULL) t = sequencer_map[cntrl]; } assert(t != NULL); for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { if (sequencer_map[cntrl] == NULL) { sequencer_map[cntrl] = t; } } m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size, sequencer_map); } void RubySystem::startup() { if (m_warmup_enabled) { // save the current tick value Tick curtick_original = curTick(); // save the event queue head Event* eventq_head = eventq->replaceHead(NULL); // set curTick to 0 curTick(0); // Schedule an event to start cache warmup enqueueRubyEvent(curTick()); simulate(); delete m_cache_recorder; m_cache_recorder = NULL; m_warmup_enabled = false; // Restore eventq head eventq_head = eventq->replaceHead(eventq_head); // Restore curTick curTick(curtick_original); } } void RubySystem::RubyEvent::process() { if (ruby_system->m_warmup_enabled) { ruby_system->m_cache_recorder->enqueueNextFetchRequest(); } else if (ruby_system->m_cooldown_enabled) { ruby_system->m_cache_recorder->enqueueNextFlushRequest(); } } void RubySystem::clearStats() const { m_profiler_ptr->clearStats(); m_network_ptr->clearStats(); } #ifdef CHECK_COHERENCE // This code will check for cases if the given cache block is exclusive in // one node and shared in another-- a coherence violation // // To use, the SLICC specification must call sequencer.checkCoherence(address) // when the controller changes to a state with new permissions. Do this // in setState. The SLICC spec must also define methods "isBlockShared" // and "isBlockExclusive" that are specific to that protocol // void RubySystem::checkGlobalCoherenceInvariant(const Address& addr) { #if 0 NodeID exclusive = -1; bool sharedDetected = false; NodeID lastShared = -1; for (int i = 0; i < m_chip_vector.size(); i++) { if (m_chip_vector[i]->isBlockExclusive(addr)) { if (exclusive != -1) { // coherence violation WARN_EXPR(exclusive); WARN_EXPR(m_chip_vector[i]->getID()); WARN_EXPR(addr); WARN_EXPR(g_eventQueue_ptr->getTime()); ERROR_MSG("Coherence Violation Detected -- 2 exclusive chips"); } else if (sharedDetected) { WARN_EXPR(lastShared); WARN_EXPR(m_chip_vector[i]->getID()); WARN_EXPR(addr); WARN_EXPR(g_eventQueue_ptr->getTime()); ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared"); } else { exclusive = m_chip_vector[i]->getID(); } } else if (m_chip_vector[i]->isBlockShared(addr)) { sharedDetected = true; lastShared = m_chip_vector[i]->getID(); if (exclusive != -1) { WARN_EXPR(lastShared); WARN_EXPR(exclusive); WARN_EXPR(addr); WARN_EXPR(g_eventQueue_ptr->getTime()); ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared"); } } } #endif } #endif RubySystem * RubySystemParams::create() { return new RubySystem(this); } /** * virtual process function that is invoked when the callback * queue is executed. */ void RubyExitCallback::process() { std::ostream *os = simout.create(stats_filename); RubySystem::printConfig(*os); *os << endl; RubySystem::printStats(*os); }