/* * Copyright (c) 2011-2012, 2016-2018 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim */ #ifndef __CPU_O3_THREAD_CONTEXT_HH__ #define __CPU_O3_THREAD_CONTEXT_HH__ #include "config/the_isa.hh" #include "cpu/o3/isa_specific.hh" #include "cpu/thread_context.hh" class EndQuiesceEvent; namespace Kernel { class Statistics; } /** * Derived ThreadContext class for use with the O3CPU. It * provides the interface for any external objects to access a * single thread's state and some general CPU state. Any time * external objects try to update state through this interface, * the CPU will create an event to squash all in-flight * instructions in order to ensure state is maintained correctly. * It must be defined specifically for the O3CPU because * not all architectural state is located within the O3ThreadState * (such as the commit PC, and registers), and specific actions * must be taken when using this interface (such as squashing all * in-flight instructions when doing a write to this interface). */ template class O3ThreadContext : public ThreadContext { public: typedef typename Impl::O3CPU O3CPU; /** Pointer to the CPU. */ O3CPU *cpu; /** Pointer to the thread state that this TC corrseponds to. */ O3ThreadState *thread; /** Returns a pointer to the ITB. */ BaseTLB *getITBPtr() override { return cpu->itb; } /** Returns a pointer to the DTB. */ BaseTLB *getDTBPtr() override { return cpu->dtb; } CheckerCPU *getCheckerCpuPtr() override { return NULL; } TheISA::ISA * getIsaPtr() override { return cpu->isa[thread->threadId()]; } TheISA::Decoder * getDecoderPtr() override { return cpu->fetch.decoder[thread->threadId()]; } /** Returns a pointer to this CPU. */ BaseCPU *getCpuPtr() override { return cpu; } /** Reads this CPU's ID. */ int cpuId() const override { return cpu->cpuId(); } /** Reads this CPU's Socket ID. */ uint32_t socketId() const override { return cpu->socketId(); } ContextID contextId() const override { return thread->contextId(); } void setContextId(ContextID id) override { thread->setContextId(id); } /** Returns this thread's ID number. */ int threadId() const override { return thread->threadId(); } void setThreadId(int id) override { return thread->setThreadId(id); } /** Returns a pointer to the system. */ System *getSystemPtr() override { return cpu->system; } /** Returns a pointer to this thread's kernel statistics. */ ::Kernel::Statistics * getKernelStats() override { return thread->kernelStats; } /** Returns a pointer to this thread's process. */ Process *getProcessPtr() override { return thread->getProcessPtr(); } void setProcessPtr(Process *p) override { thread->setProcessPtr(p); } PortProxy &getPhysProxy() override { return thread->getPhysProxy(); } PortProxy &getVirtProxy() override; void initMemProxies(ThreadContext *tc) override { thread->initMemProxies(tc); } /** Returns this thread's status. */ Status status() const override { return thread->status(); } /** Sets this thread's status. */ void setStatus(Status new_status) override { thread->setStatus(new_status); } /** Set the status to Active. */ void activate() override; /** Set the status to Suspended. */ void suspend() override; /** Set the status to Halted. */ void halt() override; /** Dumps the function profiling information. * @todo: Implement. */ void dumpFuncProfile() override; /** Takes over execution of a thread from another CPU. */ void takeOverFrom(ThreadContext *old_context) override; /** Registers statistics associated with this TC. */ void regStats(const std::string &name) override; /** Reads the last tick that this thread was activated on. */ Tick readLastActivate() override; /** Reads the last tick that this thread was suspended on. */ Tick readLastSuspend() override; /** Clears the function profiling information. */ void profileClear() override; /** Samples the function profiling information. */ void profileSample() override; /** Copies the architectural registers from another TC into this TC. */ void copyArchRegs(ThreadContext *tc) override; /** Resets all architectural registers to 0. */ void clearArchRegs() override; /** Reads an integer register. */ RegVal readReg(RegIndex reg_idx) { return readIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index()); } RegVal readIntReg(RegIndex reg_idx) const override { return readIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index()); } RegVal readFloatReg(RegIndex reg_idx) const override { return readFloatRegFlat(flattenRegId(RegId(FloatRegClass, reg_idx)).index()); } const VecRegContainer & readVecReg(const RegId& id) const override { return readVecRegFlat(flattenRegId(id).index()); } /** * Read vector register operand for modification, hierarchical indexing. */ VecRegContainer & getWritableVecReg(const RegId& id) override { return getWritableVecRegFlat(flattenRegId(id).index()); } /** Vector Register Lane Interfaces. */ /** @{ */ /** Reads source vector 8bit operand. */ ConstVecLane8 readVec8BitLaneReg(const RegId& id) const override { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Reads source vector 16bit operand. */ ConstVecLane16 readVec16BitLaneReg(const RegId& id) const override { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Reads source vector 32bit operand. */ ConstVecLane32 readVec32BitLaneReg(const RegId& id) const override { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Reads source vector 64bit operand. */ ConstVecLane64 readVec64BitLaneReg(const RegId& id) const override { return readVecLaneFlat(flattenRegId(id).index(), id.elemIndex()); } /** Write a lane of the destination vector register. */ void setVecLane(const RegId& reg, const LaneData& val) override { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } void setVecLane(const RegId& reg, const LaneData& val) override { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } void setVecLane(const RegId& reg, const LaneData& val) override { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } void setVecLane(const RegId& reg, const LaneData& val) override { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } /** @} */ const VecElem & readVecElem(const RegId& reg) const override { return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex()); } const VecPredRegContainer & readVecPredReg(const RegId& id) const override { return readVecPredRegFlat(flattenRegId(id).index()); } VecPredRegContainer& getWritableVecPredReg(const RegId& id) override { return getWritableVecPredRegFlat(flattenRegId(id).index()); } RegVal readCCReg(RegIndex reg_idx) const override { return readCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index()); } /** Sets an integer register to a value. */ void setIntReg(RegIndex reg_idx, RegVal val) override { setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val); } void setFloatReg(RegIndex reg_idx, RegVal val) override { setFloatRegFlat(flattenRegId(RegId(FloatRegClass, reg_idx)).index(), val); } void setVecReg(const RegId& reg, const VecRegContainer& val) override { setVecRegFlat(flattenRegId(reg).index(), val); } void setVecElem(const RegId& reg, const VecElem& val) override { setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } void setVecPredReg(const RegId& reg, const VecPredRegContainer& val) override { setVecPredRegFlat(flattenRegId(reg).index(), val); } void setCCReg(RegIndex reg_idx, RegVal val) override { setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val); } /** Reads this thread's PC state. */ TheISA::PCState pcState() const override { return cpu->pcState(thread->threadId()); } /** Sets this thread's PC state. */ void pcState(const TheISA::PCState &val) override; void pcStateNoRecord(const TheISA::PCState &val) override; /** Reads this thread's PC. */ Addr instAddr() const override { return cpu->instAddr(thread->threadId()); } /** Reads this thread's next PC. */ Addr nextInstAddr() const override { return cpu->nextInstAddr(thread->threadId()); } /** Reads this thread's next PC. */ MicroPC microPC() const override { return cpu->microPC(thread->threadId()); } /** Reads a miscellaneous register. */ RegVal readMiscRegNoEffect(RegIndex misc_reg) const override { return cpu->readMiscRegNoEffect(misc_reg, thread->threadId()); } /** Reads a misc. register, including any side-effects the * read might have as defined by the architecture. */ RegVal readMiscReg(RegIndex misc_reg) override { return cpu->readMiscReg(misc_reg, thread->threadId()); } /** Sets a misc. register. */ void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override; /** Sets a misc. register, including any side-effects the * write might have as defined by the architecture. */ void setMiscReg(RegIndex misc_reg, RegVal val) override; RegId flattenRegId(const RegId& regId) const override; /** Returns the number of consecutive store conditional failures. */ // @todo: Figure out where these store cond failures should go. unsigned readStCondFailures() const override { return thread->storeCondFailures; } /** Sets the number of consecutive store conditional failures. */ void setStCondFailures(unsigned sc_failures) override { thread->storeCondFailures = sc_failures; } /** Executes a syscall in SE mode. */ void syscall(int64_t callnum, Fault *fault) override { return cpu->syscall(callnum, thread->threadId(), fault); } /** Reads the funcExeInst counter. */ Counter readFuncExeInst() const override { return thread->funcExeInst; } /** Returns pointer to the quiesce event. */ EndQuiesceEvent * getQuiesceEvent() override { return this->thread->quiesceEvent; } /** check if the cpu is currently in state update mode and squash if not. * This function will return true if a trap is pending or if a fault or * similar is currently writing to the thread context and doesn't want * reset all the state (see noSquashFromTC). */ inline void conditionalSquash() { if (!thread->trapPending && !thread->noSquashFromTC) cpu->squashFromTC(thread->threadId()); } RegVal readIntRegFlat(RegIndex idx) const override; void setIntRegFlat(RegIndex idx, RegVal val) override; RegVal readFloatRegFlat(RegIndex idx) const override; void setFloatRegFlat(RegIndex idx, RegVal val) override; const VecRegContainer& readVecRegFlat(RegIndex idx) const override; /** Read vector register operand for modification, flat indexing. */ VecRegContainer& getWritableVecRegFlat(RegIndex idx) override; void setVecRegFlat(RegIndex idx, const VecRegContainer& val) override; template VecLaneT readVecLaneFlat(RegIndex idx, int lId) const { return cpu->template readArchVecLane(idx, lId, thread->threadId()); } template void setVecLaneFlat(int idx, int lId, const LD& val) { cpu->template setArchVecLane(idx, lId, thread->threadId(), val); } const VecElem &readVecElemFlat(RegIndex idx, const ElemIndex& elemIndex) const override; void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx, const VecElem& val) override; const VecPredRegContainer& readVecPredRegFlat(RegIndex idx) const override; VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) override; void setVecPredRegFlat(RegIndex idx, const VecPredRegContainer& val) override; RegVal readCCRegFlat(RegIndex idx) const override; void setCCRegFlat(RegIndex idx, RegVal val) override; }; #endif