#ifndef __REGFILE_HH__ #define __REGFILE_HH__ // @todo: Destructor using namespace std; #include "arch/alpha/isa_traits.hh" #include "cpu/beta_cpu/comm.hh" #include "base/trace.hh" // This really only depends on the ISA, and not the Impl. It might be nicer // to see if I can make it depend on nothing... // Things that are in the ifdef FULL_SYSTEM are pretty dependent on the ISA, // and should go in the AlphaFullCPU. template class PhysRegFile { //Note that most of the definitions of the IntReg, FloatReg, etc. exist //within the Impl/ISA class and not within this PhysRegFile class. //Will need some way to allow stuff like swap_palshadow to access the //correct registers. Might require code changes to swap_palshadow and //other execution contexts. //Will make these registers public for now, but they probably should //be private eventually with some accessor functions. public: typedef typename Impl::ISA ISA; PhysRegFile(unsigned _numPhysicalIntRegs, unsigned _numPhysicalFloatRegs); //Everything below should be pretty well identical to the normal //register file that exists within AlphaISA class. //The duplication is unfortunate but it's better than having //different ways to access certain registers. //Add these in later when everything else is in place // void serialize(std::ostream &os); // void unserialize(Checkpoint *cp, const std::string §ion); uint64_t readIntReg(PhysRegIndex reg_idx) { assert(reg_idx < numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Access to int register %i, has data " "%i\n", int(reg_idx), intRegFile[reg_idx]); return intRegFile[reg_idx]; } float readFloatRegSingle(PhysRegIndex reg_idx) { // Remove the base Float reg dependency. reg_idx = reg_idx - numPhysicalIntRegs; assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Access to float register %i as single, has " "data %8.8f\n", int(reg_idx), (float)floatRegFile[reg_idx].d); return (float)floatRegFile[reg_idx].d; } double readFloatRegDouble(PhysRegIndex reg_idx) { // Remove the base Float reg dependency. reg_idx = reg_idx - numPhysicalIntRegs; assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Access to float register %i as double, has " " data %8.8f\n", int(reg_idx), floatRegFile[reg_idx].d); return floatRegFile[reg_idx].d; } uint64_t readFloatRegInt(PhysRegIndex reg_idx) { // Remove the base Float reg dependency. reg_idx = reg_idx - numPhysicalIntRegs; assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Access to float register %i as int, has data " "%lli\n", int(reg_idx), floatRegFile[reg_idx].q); return floatRegFile[reg_idx].q; } void setIntReg(PhysRegIndex reg_idx, uint64_t val) { assert(reg_idx < numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Setting int register %i to %lli\n", int(reg_idx), val); intRegFile[reg_idx] = val; } void setFloatRegSingle(PhysRegIndex reg_idx, float val) { // Remove the base Float reg dependency. reg_idx = reg_idx - numPhysicalIntRegs; assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Setting float register %i to %8.8f\n", int(reg_idx), val); floatRegFile[reg_idx].d = (double)val; } void setFloatRegDouble(PhysRegIndex reg_idx, double val) { // Remove the base Float reg dependency. reg_idx = reg_idx - numPhysicalIntRegs; assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Setting float register %i to %8.8f\n", int(reg_idx), val); floatRegFile[reg_idx].d = val; } void setFloatRegInt(PhysRegIndex reg_idx, uint64_t val) { // Remove the base Float reg dependency. reg_idx = reg_idx - numPhysicalIntRegs; assert(reg_idx < numPhysicalFloatRegs + numPhysicalIntRegs); DPRINTF(IEW, "RegFile: Setting float register %i to %lli\n", int(reg_idx), val); floatRegFile[reg_idx].q = val; } uint64_t readPC() { return pc; } void setPC(uint64_t val) { pc = val; } void setNextPC(uint64_t val) { npc = val; } //Consider leaving this stuff and below in some implementation specific //file as opposed to the general register file. Or have a derived class. uint64_t readUniq() { return miscRegs.uniq; } void setUniq(uint64_t val) { miscRegs.uniq = val; } uint64_t readFpcr() { return miscRegs.fpcr; } void setFpcr(uint64_t val) { miscRegs.fpcr = val; } #ifdef FULL_SYSTEM uint64_t readIpr(int idx, Fault &fault); Fault setIpr(int idx, uint64_t val); int readIntrFlag() { return intrflag; } void setIntrFlag(int val) { intrflag = val; } #endif // These should be private eventually, but will be public for now // so that I can hack around the initregs issue. public: /** (signed) integer register file. */ IntReg *intRegFile; /** Floating point register file. */ FloatReg *floatRegFile; /** Miscellaneous register file. */ MiscRegFile miscRegs; Addr pc; // program counter Addr npc; // next-cycle program counter private: unsigned numPhysicalIntRegs; unsigned numPhysicalFloatRegs; }; template PhysRegFile::PhysRegFile(unsigned _numPhysicalIntRegs, unsigned _numPhysicalFloatRegs) : numPhysicalIntRegs(_numPhysicalIntRegs), numPhysicalFloatRegs(_numPhysicalFloatRegs) { intRegFile = new IntReg[numPhysicalIntRegs]; floatRegFile = new FloatReg[numPhysicalFloatRegs]; memset(intRegFile, 0, sizeof(*intRegFile)); memset(floatRegFile, 0, sizeof(*floatRegFile)); } #ifdef FULL_SYSTEM //Problem: This code doesn't make sense at the RegFile level because it //needs things such as the itb and dtb. Either put it at the CPU level or //the DynInst level. template uint64_t PhysRegFile::readIpr(int idx, Fault &fault) { uint64_t retval = 0; // return value, default 0 switch (idx) { case ISA::IPR_PALtemp0: case ISA::IPR_PALtemp1: case ISA::IPR_PALtemp2: case ISA::IPR_PALtemp3: case ISA::IPR_PALtemp4: case ISA::IPR_PALtemp5: case ISA::IPR_PALtemp6: case ISA::IPR_PALtemp7: case ISA::IPR_PALtemp8: case ISA::IPR_PALtemp9: case ISA::IPR_PALtemp10: case ISA::IPR_PALtemp11: case ISA::IPR_PALtemp12: case ISA::IPR_PALtemp13: case ISA::IPR_PALtemp14: case ISA::IPR_PALtemp15: case ISA::IPR_PALtemp16: case ISA::IPR_PALtemp17: case ISA::IPR_PALtemp18: case ISA::IPR_PALtemp19: case ISA::IPR_PALtemp20: case ISA::IPR_PALtemp21: case ISA::IPR_PALtemp22: case ISA::IPR_PALtemp23: case ISA::IPR_PAL_BASE: case ISA::IPR_IVPTBR: case ISA::IPR_DC_MODE: case ISA::IPR_MAF_MODE: case ISA::IPR_ISR: case ISA::IPR_EXC_ADDR: case ISA::IPR_IC_PERR_STAT: case ISA::IPR_DC_PERR_STAT: case ISA::IPR_MCSR: case ISA::IPR_ASTRR: case ISA::IPR_ASTER: case ISA::IPR_SIRR: case ISA::IPR_ICSR: case ISA::IPR_ICM: case ISA::IPR_DTB_CM: case ISA::IPR_IPLR: case ISA::IPR_INTID: case ISA::IPR_PMCTR: // no side-effect retval = ipr[idx]; break; case ISA::IPR_CC: retval |= ipr[idx] & ULL(0xffffffff00000000); retval |= curTick & ULL(0x00000000ffffffff); break; case ISA::IPR_VA: // SFX: unlocks interrupt status registers retval = ipr[idx]; if (!misspeculating()) regs.intrlock = false; break; case ISA::IPR_VA_FORM: case ISA::IPR_MM_STAT: case ISA::IPR_IFAULT_VA_FORM: case ISA::IPR_EXC_MASK: case ISA::IPR_EXC_SUM: retval = ipr[idx]; break; case ISA::IPR_DTB_PTE: { ISA::PTE &pte = dtb->index(!misspeculating()); retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32; retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8; retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12; retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1; retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2; retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4; retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57; } break; // write only registers case ISA::IPR_HWINT_CLR: case ISA::IPR_SL_XMIT: case ISA::IPR_DC_FLUSH: case ISA::IPR_IC_FLUSH: case ISA::IPR_ALT_MODE: case ISA::IPR_DTB_IA: case ISA::IPR_DTB_IAP: case ISA::IPR_ITB_IA: case ISA::IPR_ITB_IAP: fault = Unimplemented_Opcode_Fault; break; default: // invalid IPR fault = Unimplemented_Opcode_Fault; break; } return retval; } #ifdef DEBUG // Cause the simulator to break when changing to the following IPL int break_ipl = -1; #endif template Fault PhysRegFile::setIpr(int idx, uint64_t val) { uint64_t old; if (misspeculating()) return No_Fault; switch (idx) { case ISA::IPR_PALtemp0: case ISA::IPR_PALtemp1: case ISA::IPR_PALtemp2: case ISA::IPR_PALtemp3: case ISA::IPR_PALtemp4: case ISA::IPR_PALtemp5: case ISA::IPR_PALtemp6: case ISA::IPR_PALtemp7: case ISA::IPR_PALtemp8: case ISA::IPR_PALtemp9: case ISA::IPR_PALtemp10: case ISA::IPR_PALtemp11: case ISA::IPR_PALtemp12: case ISA::IPR_PALtemp13: case ISA::IPR_PALtemp14: case ISA::IPR_PALtemp15: case ISA::IPR_PALtemp16: case ISA::IPR_PALtemp17: case ISA::IPR_PALtemp18: case ISA::IPR_PALtemp19: case ISA::IPR_PALtemp20: case ISA::IPR_PALtemp21: case ISA::IPR_PALtemp22: case ISA::IPR_PAL_BASE: case ISA::IPR_IC_PERR_STAT: case ISA::IPR_DC_PERR_STAT: case ISA::IPR_PMCTR: // write entire quad w/ no side-effect ipr[idx] = val; break; case ISA::IPR_CC_CTL: // This IPR resets the cycle counter. We assume this only // happens once... let's verify that. assert(ipr[idx] == 0); ipr[idx] = 1; break; case ISA::IPR_CC: // This IPR only writes the upper 64 bits. It's ok to write // all 64 here since we mask out the lower 32 in rpcc (see // isa_desc). ipr[idx] = val; break; case ISA::IPR_PALtemp23: // write entire quad w/ no side-effect old = ipr[idx]; ipr[idx] = val; kernelStats.context(old, val); break; case ISA::IPR_DTB_PTE: // write entire quad w/ no side-effect, tag is forthcoming ipr[idx] = val; break; case ISA::IPR_EXC_ADDR: // second least significant bit in PC is always zero ipr[idx] = val & ~2; break; case ISA::IPR_ASTRR: case ISA::IPR_ASTER: // only write least significant four bits - privilege mask ipr[idx] = val & 0xf; break; case ISA::IPR_IPLR: #ifdef DEBUG if (break_ipl != -1 && break_ipl == (val & 0x1f)) debug_break(); #endif // only write least significant five bits - interrupt level ipr[idx] = val & 0x1f; kernelStats.swpipl(ipr[idx]); break; case ISA::IPR_DTB_CM: kernelStats.mode((val & 0x18) != 0); case ISA::IPR_ICM: // only write two mode bits - processor mode ipr[idx] = val & 0x18; break; case ISA::IPR_ALT_MODE: // only write two mode bits - processor mode ipr[idx] = val & 0x18; break; case ISA::IPR_MCSR: // more here after optimization... ipr[idx] = val; break; case ISA::IPR_SIRR: // only write software interrupt mask ipr[idx] = val & 0x7fff0; break; case ISA::IPR_ICSR: ipr[idx] = val & ULL(0xffffff0300); break; case ISA::IPR_IVPTBR: case ISA::IPR_MVPTBR: ipr[idx] = val & ULL(0xffffffffc0000000); break; case ISA::IPR_DC_TEST_CTL: ipr[idx] = val & 0x1ffb; break; case ISA::IPR_DC_MODE: case ISA::IPR_MAF_MODE: ipr[idx] = val & 0x3f; break; case ISA::IPR_ITB_ASN: ipr[idx] = val & 0x7f0; break; case ISA::IPR_DTB_ASN: ipr[idx] = val & ULL(0xfe00000000000000); break; case ISA::IPR_EXC_SUM: case ISA::IPR_EXC_MASK: // any write to this register clears it ipr[idx] = 0; break; case ISA::IPR_INTID: case ISA::IPR_SL_RCV: case ISA::IPR_MM_STAT: case ISA::IPR_ITB_PTE_TEMP: case ISA::IPR_DTB_PTE_TEMP: // read-only registers return Unimplemented_Opcode_Fault; case ISA::IPR_HWINT_CLR: case ISA::IPR_SL_XMIT: case ISA::IPR_DC_FLUSH: case ISA::IPR_IC_FLUSH: // the following are write only ipr[idx] = val; break; case ISA::IPR_DTB_IA: // really a control write ipr[idx] = 0; dtb->flushAll(); break; case ISA::IPR_DTB_IAP: // really a control write ipr[idx] = 0; dtb->flushProcesses(); break; case ISA::IPR_DTB_IS: // really a control write ipr[idx] = val; dtb->flushAddr(val, DTB_ASN_ASN(ipr[ISA::IPR_DTB_ASN])); break; case ISA::IPR_DTB_TAG: { struct ISA::PTE pte; // FIXME: granularity hints NYI... if (DTB_PTE_GH(ipr[ISA::IPR_DTB_PTE]) != 0) panic("PTE GH field != 0"); // write entire quad ipr[idx] = val; // construct PTE for new entry pte.ppn = DTB_PTE_PPN(ipr[ISA::IPR_DTB_PTE]); pte.xre = DTB_PTE_XRE(ipr[ISA::IPR_DTB_PTE]); pte.xwe = DTB_PTE_XWE(ipr[ISA::IPR_DTB_PTE]); pte.fonr = DTB_PTE_FONR(ipr[ISA::IPR_DTB_PTE]); pte.fonw = DTB_PTE_FONW(ipr[ISA::IPR_DTB_PTE]); pte.asma = DTB_PTE_ASMA(ipr[ISA::IPR_DTB_PTE]); pte.asn = DTB_ASN_ASN(ipr[ISA::IPR_DTB_ASN]); // insert new TAG/PTE value into data TLB dtb->insert(val, pte); } break; case ISA::IPR_ITB_PTE: { struct ISA::PTE pte; // FIXME: granularity hints NYI... if (ITB_PTE_GH(val) != 0) panic("PTE GH field != 0"); // write entire quad ipr[idx] = val; // construct PTE for new entry pte.ppn = ITB_PTE_PPN(val); pte.xre = ITB_PTE_XRE(val); pte.xwe = 0; pte.fonr = ITB_PTE_FONR(val); pte.fonw = ITB_PTE_FONW(val); pte.asma = ITB_PTE_ASMA(val); pte.asn = ITB_ASN_ASN(ipr[ISA::IPR_ITB_ASN]); // insert new TAG/PTE value into data TLB itb->insert(ipr[ISA::IPR_ITB_TAG], pte); } break; case ISA::IPR_ITB_IA: // really a control write ipr[idx] = 0; itb->flushAll(); break; case ISA::IPR_ITB_IAP: // really a control write ipr[idx] = 0; itb->flushProcesses(); break; case ISA::IPR_ITB_IS: // really a control write ipr[idx] = val; itb->flushAddr(val, ITB_ASN_ASN(ipr[ISA::IPR_ITB_ASN])); break; default: // invalid IPR return Unimplemented_Opcode_Fault; } // no error... return No_Fault; } #endif // #ifdef FULL_SYSTEM #endif // __REGFILE_HH__