/* * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __CPU_CHECKER_CPU_HH__ #define __CPU_CHECKER_CPU_HH__ #include #include #include #include "arch/types.hh" #include "base/statistics.hh" #include "config/full_system.hh" #include "cpu/base.hh" #include "cpu/base_dyn_inst.hh" #include "cpu/cpu_exec_context.hh" #include "cpu/pc_event.hh" #include "cpu/static_inst.hh" #include "sim/eventq.hh" // forward declarations #if FULL_SYSTEM class Processor; class AlphaITB; class AlphaDTB; class PhysicalMemory; class RemoteGDB; class GDBListener; #else class Process; #endif // FULL_SYSTEM template class BaseDynInst; class ExecContext; class MemInterface; class Checkpoint; class Request; class Sampler; /** * CheckerCPU class. Dynamically verifies instructions as they are * completed by making sure that the instruction and its results match * the independent execution of the benchmark inside the checker. The * checker verifies instructions in order, regardless of the order in * which instructions complete. There are certain results that can * not be verified, specifically the result of a store conditional or * the values of uncached accesses. In these cases, and with * instructions marked as "IsUnverifiable", the checker assumes that * the value from the main CPU's execution is correct and simply * copies that value. It provides a CheckerExecContext (see * checker/exec_context.hh) that provides hooks for updating the * Checker's state through any ExecContext accesses. This allows the * checker to be able to correctly verify instructions, even with * external accesses to the ExecContext that change state. */ class CheckerCPU : public BaseCPU { protected: typedef TheISA::MachInst MachInst; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegBits FloatRegBits; typedef TheISA::MiscReg MiscReg; public: virtual void init(); struct Params : public BaseCPU::Params { #if FULL_SYSTEM AlphaITB *itb; AlphaDTB *dtb; FunctionalMemory *mem; #else Process *process; #endif bool exitOnError; }; public: CheckerCPU(Params *p); virtual ~CheckerCPU(); void setMemory(MemObject *mem); MemObject *memPtr; #if FULL_SYSTEM void setSystem(System *system); System *systemPtr; #endif public: // execution context CPUExecContext *cpuXC; ExecContext *xcProxy; AlphaITB *itb; AlphaDTB *dtb; #if FULL_SYSTEM Addr dbg_vtophys(Addr addr); #endif union Result { uint64_t integer; float fp; double dbl; }; Result result; // current instruction MachInst machInst; // Refcounted pointer to the one memory request. Request *memReq; StaticInstPtr curStaticInst; // number of simulated instructions Counter numInst; Counter startNumInst; std::queue miscRegIdxs; virtual Counter totalInstructions() const { return numInst - startNumInst; } // number of simulated loads Counter numLoad; Counter startNumLoad; virtual void serialize(std::ostream &os); virtual void unserialize(Checkpoint *cp, const std::string §ion); template Fault read(Addr addr, T &data, unsigned flags); template Fault write(T data, Addr addr, unsigned flags, uint64_t *res); // These functions are only used in CPU models that split // effective address computation from the actual memory access. void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); } Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); } void prefetch(Addr addr, unsigned flags) { // need to do this... } void writeHint(Addr addr, int size, unsigned flags) { // need to do this... } Fault copySrcTranslate(Addr src); Fault copy(Addr dest); // The register accessor methods provide the index of the // instruction's operand (e.g., 0 or 1), not the architectural // register index, to simplify the implementation of register // renaming. We find the architectural register index by indexing // into the instruction's own operand index table. Note that a // raw pointer to the StaticInst is provided instead of a // ref-counted StaticInstPtr to redice overhead. This is fine as // long as these methods don't copy the pointer into any long-term // storage (which is pretty hard to imagine they would have reason // to do). uint64_t readIntReg(const StaticInst *si, int idx) { return cpuXC->readIntReg(si->srcRegIdx(idx)); } FloatReg readFloatReg(const StaticInst *si, int idx, int width) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return cpuXC->readFloatReg(reg_idx, width); } FloatReg readFloatReg(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return cpuXC->readFloatReg(reg_idx); } FloatRegBits readFloatRegBits(const StaticInst *si, int idx, int width) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return cpuXC->readFloatRegBits(reg_idx, width); } FloatRegBits readFloatRegBits(const StaticInst *si, int idx) { int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; return cpuXC->readFloatRegBits(reg_idx); } void setIntReg(const StaticInst *si, int idx, uint64_t val) { cpuXC->setIntReg(si->destRegIdx(idx), val); result.integer = val; } void setFloatReg(const StaticInst *si, int idx, FloatReg val, int width) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; cpuXC->setFloatReg(reg_idx, val, width); switch(width) { case 32: result.fp = val; break; case 64: result.dbl = val; break; }; } void setFloatReg(const StaticInst *si, int idx, FloatReg val) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; cpuXC->setFloatReg(reg_idx, val); result.fp = val; } void setFloatRegBits(const StaticInst *si, int idx, FloatRegBits val, int width) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; cpuXC->setFloatRegBits(reg_idx, val, width); result.integer = val; } void setFloatRegBits(const StaticInst *si, int idx, FloatRegBits val) { int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; cpuXC->setFloatRegBits(reg_idx, val); result.integer = val; } uint64_t readPC() { return cpuXC->readPC(); } uint64_t readNextPC() { return cpuXC->readNextPC(); } void setNextPC(uint64_t val) { cpuXC->setNextPC(val); } MiscReg readMiscReg(int misc_reg) { return cpuXC->readMiscReg(misc_reg); } MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault) { return cpuXC->readMiscRegWithEffect(misc_reg, fault); } Fault setMiscReg(int misc_reg, const MiscReg &val) { result.integer = val; miscRegIdxs.push(misc_reg); return cpuXC->setMiscReg(misc_reg, val); } Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val) { miscRegIdxs.push(misc_reg); return cpuXC->setMiscRegWithEffect(misc_reg, val); } void recordPCChange(uint64_t val) { changedPC = true; } void recordNextPCChange(uint64_t val) { changedNextPC = true; } bool translateInstReq(Request *req); void translateDataWriteReq(Request *req); void translateDataReadReq(Request *req); #if FULL_SYSTEM Fault hwrei() { return cpuXC->hwrei(); } int readIntrFlag() { return cpuXC->readIntrFlag(); } void setIntrFlag(int val) { cpuXC->setIntrFlag(val); } bool inPalMode() { return cpuXC->inPalMode(); } void ev5_trap(Fault fault) { fault->invoke(xcProxy); } bool simPalCheck(int palFunc) { return cpuXC->simPalCheck(palFunc); } #else // Assume that the normal CPU's call to syscall was successful. // The checker's state would have already been updated by the syscall. void syscall(uint64_t callnum) { } #endif void handleError() { if (exitOnError) panic("Checker found error!"); } bool checkFlags(Request *req); ExecContext *xcBase() { return xcProxy; } CPUExecContext *cpuXCBase() { return cpuXC; } Result unverifiedResult; Request *unverifiedReq; bool changedPC; bool willChangePC; uint64_t newPC; bool changedNextPC; bool exitOnError; InstSeqNum youngestSN; }; /** * Templated Checker class. This Checker class is templated on the * DynInstPtr of the instruction type that will be verified. Proper * template instantiations of the Checker must be placed at the bottom * of checker/cpu.cc. */ template class Checker : public CheckerCPU { public: Checker(Params *p) : CheckerCPU(p) { } void switchOut(Sampler *s); void takeOverFrom(BaseCPU *oldCPU); void tick(DynInstPtr &inst); void validateInst(DynInstPtr &inst); void validateExecution(DynInstPtr &inst); void validateState(); std::list instList; typedef typename std::list::iterator InstListIt; void dumpInsts(); }; #endif // __CPU_CHECKER_CPU_HH__