/* * Copyright (c) 2011, 2013, 2016-2018 ARM Limited * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2004-2006 The Regents of The University of Michigan * Copyright (c) 2009 The University of Edinburgh * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Kevin Lim * Timothy M. Jones */ #ifndef __CPU_BASE_DYN_INST_HH__ #define __CPU_BASE_DYN_INST_HH__ #include #include #include #include #include #include "arch/generic/tlb.hh" #include "arch/utility.hh" #include "base/trace.hh" #include "config/the_isa.hh" #include "cpu/checker/cpu.hh" #include "cpu/exec_context.hh" #include "cpu/exetrace.hh" #include "cpu/inst_res.hh" #include "cpu/inst_seq.hh" #include "cpu/op_class.hh" #include "cpu/static_inst.hh" #include "cpu/translation.hh" #include "mem/packet.hh" #include "mem/request.hh" #include "sim/byteswap.hh" #include "sim/system.hh" /** * @file * Defines a dynamic instruction context. */ template class BaseDynInst : public ExecContext, public RefCounted { public: // Typedef for the CPU. typedef typename Impl::CPUType ImplCPU; typedef typename ImplCPU::ImplState ImplState; using VecRegContainer = TheISA::VecRegContainer; using LSQRequestPtr = typename Impl::CPUPol::LSQ::LSQRequest*; using LQIterator = typename Impl::CPUPol::LSQUnit::LQIterator; using SQIterator = typename Impl::CPUPol::LSQUnit::SQIterator; // The DynInstPtr type. typedef typename Impl::DynInstPtr DynInstPtr; typedef RefCountingPtr > BaseDynInstPtr; // The list of instructions iterator type. typedef typename std::list::iterator ListIt; enum { MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs }; protected: enum Status { IqEntry, /// Instruction is in the IQ RobEntry, /// Instruction is in the ROB LsqEntry, /// Instruction is in the LSQ Completed, /// Instruction has completed ResultReady, /// Instruction has its result CanIssue, /// Instruction can issue and execute Issued, /// Instruction has issued Executed, /// Instruction has executed CanCommit, /// Instruction can commit AtCommit, /// Instruction has reached commit Committed, /// Instruction has committed Squashed, /// Instruction is squashed SquashedInIQ, /// Instruction is squashed in the IQ SquashedInLSQ, /// Instruction is squashed in the LSQ SquashedInROB, /// Instruction is squashed in the ROB RecoverInst, /// Is a recover instruction BlockingInst, /// Is a blocking instruction ThreadsyncWait, /// Is a thread synchronization instruction SerializeBefore, /// Needs to serialize on /// instructions ahead of it SerializeAfter, /// Needs to serialize instructions behind it SerializeHandled, /// Serialization has been handled NumStatus }; enum Flags { NotAnInst, TranslationStarted, TranslationCompleted, PossibleLoadViolation, HitExternalSnoop, EffAddrValid, RecordResult, Predicate, MemAccPredicate, PredTaken, IsStrictlyOrdered, ReqMade, MemOpDone, MaxFlags }; public: /** The sequence number of the instruction. */ InstSeqNum seqNum; /** The StaticInst used by this BaseDynInst. */ const StaticInstPtr staticInst; /** Pointer to the Impl's CPU object. */ ImplCPU *cpu; BaseCPU *getCpuPtr() { return cpu; } /** Pointer to the thread state. */ ImplState *thread; /** The kind of fault this instruction has generated. */ Fault fault; /** InstRecord that tracks this instructions. */ Trace::InstRecord *traceData; protected: /** The result of the instruction; assumes an instruction can have many * destination registers. */ std::queue instResult; /** PC state for this instruction. */ TheISA::PCState pc; /* An amalgamation of a lot of boolean values into one */ std::bitset instFlags; /** The status of this BaseDynInst. Several bits can be set. */ std::bitset status; /** Whether or not the source register is ready. * @todo: Not sure this should be here vs the derived class. */ std::bitset _readySrcRegIdx; public: /** The thread this instruction is from. */ ThreadID threadNumber; /** Iterator pointing to this BaseDynInst in the list of all insts. */ ListIt instListIt; ////////////////////// Branch Data /////////////// /** Predicted PC state after this instruction. */ TheISA::PCState predPC; /** The Macroop if one exists */ const StaticInstPtr macroop; /** How many source registers are ready. */ uint8_t readyRegs; public: /////////////////////// Load Store Data ////////////////////// /** The effective virtual address (lds & stores only). */ Addr effAddr; /** The effective physical address. */ Addr physEffAddr; /** The memory request flags (from translation). */ unsigned memReqFlags; /** data address space ID, for loads & stores. */ short asid; /** The size of the request */ uint8_t effSize; /** Pointer to the data for the memory access. */ uint8_t *memData; /** Load queue index. */ int16_t lqIdx; LQIterator lqIt; /** Store queue index. */ int16_t sqIdx; SQIterator sqIt; /////////////////////// TLB Miss ////////////////////// /** * Saved memory request (needed when the DTB address translation is * delayed due to a hw page table walk). */ LSQRequestPtr savedReq; /////////////////////// Checker ////////////////////// // Need a copy of main request pointer to verify on writes. RequestPtr reqToVerify; protected: /** Flattened register index of the destination registers of this * instruction. */ std::array _flatDestRegIdx; /** Physical register index of the destination registers of this * instruction. */ std::array _destRegIdx; /** Physical register index of the source registers of this * instruction. */ std::array _srcRegIdx; /** Physical register index of the previous producers of the * architected destinations. */ std::array _prevDestRegIdx; public: /** Records changes to result? */ void recordResult(bool f) { instFlags[RecordResult] = f; } /** Is the effective virtual address valid. */ bool effAddrValid() const { return instFlags[EffAddrValid]; } void effAddrValid(bool b) { instFlags[EffAddrValid] = b; } /** Whether or not the memory operation is done. */ bool memOpDone() const { return instFlags[MemOpDone]; } void memOpDone(bool f) { instFlags[MemOpDone] = f; } bool notAnInst() const { return instFlags[NotAnInst]; } void setNotAnInst() { instFlags[NotAnInst] = true; } //////////////////////////////////////////// // // INSTRUCTION EXECUTION // //////////////////////////////////////////// void demapPage(Addr vaddr, uint64_t asn) { cpu->demapPage(vaddr, asn); } void demapInstPage(Addr vaddr, uint64_t asn) { cpu->demapPage(vaddr, asn); } void demapDataPage(Addr vaddr, uint64_t asn) { cpu->demapPage(vaddr, asn); } Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags, const std::vector& byteEnable = std::vector()); Fault writeMem(uint8_t *data, unsigned size, Addr addr, Request::Flags flags, uint64_t *res, const std::vector& byteEnable = std::vector()); Fault initiateMemAMO(Addr addr, unsigned size, Request::Flags flags, AtomicOpFunctor *amo_op); /** True if the DTB address translation has started. */ bool translationStarted() const { return instFlags[TranslationStarted]; } void translationStarted(bool f) { instFlags[TranslationStarted] = f; } /** True if the DTB address translation has completed. */ bool translationCompleted() const { return instFlags[TranslationCompleted]; } void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; } /** True if this address was found to match a previous load and they issued * out of order. If that happend, then it's only a problem if an incoming * snoop invalidate modifies the line, in which case we need to squash. * If nothing modified the line the order doesn't matter. */ bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; } void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; } /** True if the address hit a external snoop while sitting in the LSQ. * If this is true and a older instruction sees it, this instruction must * reexecute */ bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; } void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; } /** * Returns true if the DTB address translation is being delayed due to a hw * page table walk. */ bool isTranslationDelayed() const { return (translationStarted() && !translationCompleted()); } public: #ifdef DEBUG void dumpSNList(); #endif /** Returns the physical register index of the i'th destination * register. */ PhysRegIdPtr renamedDestRegIdx(int idx) const { return _destRegIdx[idx]; } /** Returns the physical register index of the i'th source register. */ PhysRegIdPtr renamedSrcRegIdx(int idx) const { assert(TheISA::MaxInstSrcRegs > idx); return _srcRegIdx[idx]; } /** Returns the flattened register index of the i'th destination * register. */ const RegId& flattenedDestRegIdx(int idx) const { return _flatDestRegIdx[idx]; } /** Returns the physical register index of the previous physical register * that remapped to the same logical register index. */ PhysRegIdPtr prevDestRegIdx(int idx) const { return _prevDestRegIdx[idx]; } /** Renames a destination register to a physical register. Also records * the previous physical register that the logical register mapped to. */ void renameDestReg(int idx, PhysRegIdPtr renamed_dest, PhysRegIdPtr previous_rename) { _destRegIdx[idx] = renamed_dest; _prevDestRegIdx[idx] = previous_rename; } /** Renames a source logical register to the physical register which * has/will produce that logical register's result. * @todo: add in whether or not the source register is ready. */ void renameSrcReg(int idx, PhysRegIdPtr renamed_src) { _srcRegIdx[idx] = renamed_src; } /** Flattens a destination architectural register index into a logical * index. */ void flattenDestReg(int idx, const RegId& flattened_dest) { _flatDestRegIdx[idx] = flattened_dest; } /** BaseDynInst constructor given a binary instruction. * @param staticInst A StaticInstPtr to the underlying instruction. * @param pc The PC state for the instruction. * @param predPC The predicted next PC state for the instruction. * @param seq_num The sequence number of the instruction. * @param cpu Pointer to the instruction's CPU. */ BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr ¯oop, TheISA::PCState pc, TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu); /** BaseDynInst constructor given a StaticInst pointer. * @param _staticInst The StaticInst for this BaseDynInst. */ BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr ¯oop); /** BaseDynInst destructor. */ ~BaseDynInst(); private: /** Function to initialize variables in the constructors. */ void initVars(); public: /** Dumps out contents of this BaseDynInst. */ void dump(); /** Dumps out contents of this BaseDynInst into given string. */ void dump(std::string &outstring); /** Read this CPU's ID. */ int cpuId() const { return cpu->cpuId(); } /** Read this CPU's Socket ID. */ uint32_t socketId() const { return cpu->socketId(); } /** Read this CPU's data requestor ID */ MasterID masterId() const { return cpu->dataMasterId(); } /** Read this context's system-wide ID **/ ContextID contextId() const { return thread->contextId(); } /** Returns the fault type. */ Fault getFault() const { return fault; } /** TODO: This I added for the LSQRequest side to be able to modify the * fault. There should be a better mechanism in place. */ Fault& getFault() { return fault; } /** Checks whether or not this instruction has had its branch target * calculated yet. For now it is not utilized and is hacked to be * always false. * @todo: Actually use this instruction. */ bool doneTargCalc() { return false; } /** Set the predicted target of this current instruction. */ void setPredTarg(const TheISA::PCState &_predPC) { predPC = _predPC; } const TheISA::PCState &readPredTarg() { return predPC; } /** Returns the predicted PC immediately after the branch. */ Addr predInstAddr() { return predPC.instAddr(); } /** Returns the predicted PC two instructions after the branch */ Addr predNextInstAddr() { return predPC.nextInstAddr(); } /** Returns the predicted micro PC after the branch */ Addr predMicroPC() { return predPC.microPC(); } /** Returns whether the instruction was predicted taken or not. */ bool readPredTaken() { return instFlags[PredTaken]; } void setPredTaken(bool predicted_taken) { instFlags[PredTaken] = predicted_taken; } /** Returns whether the instruction mispredicted. */ bool mispredicted() { TheISA::PCState tempPC = pc; TheISA::advancePC(tempPC, staticInst); return !(tempPC == predPC); } // // Instruction types. Forward checks to StaticInst object. // bool isNop() const { return staticInst->isNop(); } bool isMemRef() const { return staticInst->isMemRef(); } bool isLoad() const { return staticInst->isLoad(); } bool isStore() const { return staticInst->isStore(); } bool isAtomic() const { return staticInst->isAtomic(); } bool isStoreConditional() const { return staticInst->isStoreConditional(); } bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } bool isInteger() const { return staticInst->isInteger(); } bool isFloating() const { return staticInst->isFloating(); } bool isVector() const { return staticInst->isVector(); } bool isControl() const { return staticInst->isControl(); } bool isCall() const { return staticInst->isCall(); } bool isReturn() const { return staticInst->isReturn(); } bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } bool isCondCtrl() const { return staticInst->isCondCtrl(); } bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); } bool isThreadSync() const { return staticInst->isThreadSync(); } bool isSerializing() const { return staticInst->isSerializing(); } bool isSerializeBefore() const { return staticInst->isSerializeBefore() || status[SerializeBefore]; } bool isSerializeAfter() const { return staticInst->isSerializeAfter() || status[SerializeAfter]; } bool isSquashAfter() const { return staticInst->isSquashAfter(); } bool isMemBarrier() const { return staticInst->isMemBarrier(); } bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } bool isQuiesce() const { return staticInst->isQuiesce(); } bool isIprAccess() const { return staticInst->isIprAccess(); } bool isUnverifiable() const { return staticInst->isUnverifiable(); } bool isSyscall() const { return staticInst->isSyscall(); } bool isMacroop() const { return staticInst->isMacroop(); } bool isMicroop() const { return staticInst->isMicroop(); } bool isDelayedCommit() const { return staticInst->isDelayedCommit(); } bool isLastMicroop() const { return staticInst->isLastMicroop(); } bool isFirstMicroop() const { return staticInst->isFirstMicroop(); } bool isMicroBranch() const { return staticInst->isMicroBranch(); } /** Temporarily sets this instruction as a serialize before instruction. */ void setSerializeBefore() { status.set(SerializeBefore); } /** Clears the serializeBefore part of this instruction. */ void clearSerializeBefore() { status.reset(SerializeBefore); } /** Checks if this serializeBefore is only temporarily set. */ bool isTempSerializeBefore() { return status[SerializeBefore]; } /** Temporarily sets this instruction as a serialize after instruction. */ void setSerializeAfter() { status.set(SerializeAfter); } /** Clears the serializeAfter part of this instruction.*/ void clearSerializeAfter() { status.reset(SerializeAfter); } /** Checks if this serializeAfter is only temporarily set. */ bool isTempSerializeAfter() { return status[SerializeAfter]; } /** Sets the serialization part of this instruction as handled. */ void setSerializeHandled() { status.set(SerializeHandled); } /** Checks if the serialization part of this instruction has been * handled. This does not apply to the temporary serializing * state; it only applies to this instruction's own permanent * serializing state. */ bool isSerializeHandled() { return status[SerializeHandled]; } /** Returns the opclass of this instruction. */ OpClass opClass() const { return staticInst->opClass(); } /** Returns the branch target address. */ TheISA::PCState branchTarget() const { return staticInst->branchTarget(pc); } /** Returns the number of source registers. */ int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } /** Returns the number of destination registers. */ int8_t numDestRegs() const { return staticInst->numDestRegs(); } // the following are used to track physical register usage // for machines with separate int & FP reg files int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); } int8_t numVecDestRegs() const { return staticInst->numVecDestRegs(); } int8_t numVecElemDestRegs() const { return staticInst->numVecElemDestRegs(); } int8_t numVecPredDestRegs() const { return staticInst->numVecPredDestRegs(); } /** Returns the logical register index of the i'th destination register. */ const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); } /** Returns the logical register index of the i'th source register. */ const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } /** Return the size of the instResult queue. */ uint8_t resultSize() { return instResult.size(); } /** Pops a result off the instResult queue. * If the result stack is empty, return the default value. * */ InstResult popResult(InstResult dflt = InstResult()) { if (!instResult.empty()) { InstResult t = instResult.front(); instResult.pop(); return t; } return dflt; } /** Pushes a result onto the instResult queue. */ /** @{ */ /** Scalar result. */ template void setScalarResult(T&& t) { if (instFlags[RecordResult]) { instResult.push(InstResult(std::forward(t), InstResult::ResultType::Scalar)); } } /** Full vector result. */ template void setVecResult(T&& t) { if (instFlags[RecordResult]) { instResult.push(InstResult(std::forward(t), InstResult::ResultType::VecReg)); } } /** Vector element result. */ template void setVecElemResult(T&& t) { if (instFlags[RecordResult]) { instResult.push(InstResult(std::forward(t), InstResult::ResultType::VecElem)); } } /** Predicate result. */ template void setVecPredResult(T&& t) { if (instFlags[RecordResult]) { instResult.push(InstResult(std::forward(t), InstResult::ResultType::VecPredReg)); } } /** @} */ /** Records an integer register being set to a value. */ void setIntRegOperand(const StaticInst *si, int idx, RegVal val) { setScalarResult(val); } /** Records a CC register being set to a value. */ void setCCRegOperand(const StaticInst *si, int idx, RegVal val) { setScalarResult(val); } /** Record a vector register being set to a value */ void setVecRegOperand(const StaticInst *si, int idx, const VecRegContainer& val) { setVecResult(val); } /** Records an fp register being set to an integer value. */ void setFloatRegOperandBits(const StaticInst *si, int idx, RegVal val) { setScalarResult(val); } /** Record a vector register being set to a value */ void setVecElemOperand(const StaticInst *si, int idx, const VecElem val) { setVecElemResult(val); } /** Record a vector register being set to a value */ void setVecPredRegOperand(const StaticInst *si, int idx, const VecPredRegContainer& val) { setVecPredResult(val); } /** Records that one of the source registers is ready. */ void markSrcRegReady(); /** Marks a specific register as ready. */ void markSrcRegReady(RegIndex src_idx); /** Returns if a source register is ready. */ bool isReadySrcRegIdx(int idx) const { return this->_readySrcRegIdx[idx]; } /** Sets this instruction as completed. */ void setCompleted() { status.set(Completed); } /** Returns whether or not this instruction is completed. */ bool isCompleted() const { return status[Completed]; } /** Marks the result as ready. */ void setResultReady() { status.set(ResultReady); } /** Returns whether or not the result is ready. */ bool isResultReady() const { return status[ResultReady]; } /** Sets this instruction as ready to issue. */ void setCanIssue() { status.set(CanIssue); } /** Returns whether or not this instruction is ready to issue. */ bool readyToIssue() const { return status[CanIssue]; } /** Clears this instruction being able to issue. */ void clearCanIssue() { status.reset(CanIssue); } /** Sets this instruction as issued from the IQ. */ void setIssued() { status.set(Issued); } /** Returns whether or not this instruction has issued. */ bool isIssued() const { return status[Issued]; } /** Clears this instruction as being issued. */ void clearIssued() { status.reset(Issued); } /** Sets this instruction as executed. */ void setExecuted() { status.set(Executed); } /** Returns whether or not this instruction has executed. */ bool isExecuted() const { return status[Executed]; } /** Sets this instruction as ready to commit. */ void setCanCommit() { status.set(CanCommit); } /** Clears this instruction as being ready to commit. */ void clearCanCommit() { status.reset(CanCommit); } /** Returns whether or not this instruction is ready to commit. */ bool readyToCommit() const { return status[CanCommit]; } void setAtCommit() { status.set(AtCommit); } bool isAtCommit() { return status[AtCommit]; } /** Sets this instruction as committed. */ void setCommitted() { status.set(Committed); } /** Returns whether or not this instruction is committed. */ bool isCommitted() const { return status[Committed]; } /** Sets this instruction as squashed. */ void setSquashed() { status.set(Squashed); } /** Returns whether or not this instruction is squashed. */ bool isSquashed() const { return status[Squashed]; } //Instruction Queue Entry //----------------------- /** Sets this instruction as a entry the IQ. */ void setInIQ() { status.set(IqEntry); } /** Sets this instruction as a entry the IQ. */ void clearInIQ() { status.reset(IqEntry); } /** Returns whether or not this instruction has issued. */ bool isInIQ() const { return status[IqEntry]; } /** Sets this instruction as squashed in the IQ. */ void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);} /** Returns whether or not this instruction is squashed in the IQ. */ bool isSquashedInIQ() const { return status[SquashedInIQ]; } //Load / Store Queue Functions //----------------------- /** Sets this instruction as a entry the LSQ. */ void setInLSQ() { status.set(LsqEntry); } /** Sets this instruction as a entry the LSQ. */ void removeInLSQ() { status.reset(LsqEntry); } /** Returns whether or not this instruction is in the LSQ. */ bool isInLSQ() const { return status[LsqEntry]; } /** Sets this instruction as squashed in the LSQ. */ void setSquashedInLSQ() { status.set(SquashedInLSQ);} /** Returns whether or not this instruction is squashed in the LSQ. */ bool isSquashedInLSQ() const { return status[SquashedInLSQ]; } //Reorder Buffer Functions //----------------------- /** Sets this instruction as a entry the ROB. */ void setInROB() { status.set(RobEntry); } /** Sets this instruction as a entry the ROB. */ void clearInROB() { status.reset(RobEntry); } /** Returns whether or not this instruction is in the ROB. */ bool isInROB() const { return status[RobEntry]; } /** Sets this instruction as squashed in the ROB. */ void setSquashedInROB() { status.set(SquashedInROB); } /** Returns whether or not this instruction is squashed in the ROB. */ bool isSquashedInROB() const { return status[SquashedInROB]; } /** Read the PC state of this instruction. */ TheISA::PCState pcState() const { return pc; } /** Set the PC state of this instruction. */ void pcState(const TheISA::PCState &val) { pc = val; } /** Read the PC of this instruction. */ Addr instAddr() const { return pc.instAddr(); } /** Read the PC of the next instruction. */ Addr nextInstAddr() const { return pc.nextInstAddr(); } /**Read the micro PC of this instruction. */ Addr microPC() const { return pc.microPC(); } bool readPredicate() const { return instFlags[Predicate]; } void setPredicate(bool val) { instFlags[Predicate] = val; if (traceData) { traceData->setPredicate(val); } } bool readMemAccPredicate() const { return instFlags[MemAccPredicate]; } void setMemAccPredicate(bool val) { instFlags[MemAccPredicate] = val; } /** Sets the ASID. */ void setASID(short addr_space_id) { asid = addr_space_id; } short getASID() { return asid; } /** Sets the thread id. */ void setTid(ThreadID tid) { threadNumber = tid; } /** Sets the pointer to the thread state. */ void setThreadState(ImplState *state) { thread = state; } /** Returns the thread context. */ ThreadContext *tcBase() { return thread->getTC(); } public: /** Returns whether or not the eff. addr. source registers are ready. */ bool eaSrcsReady() const; /** Is this instruction's memory access strictly ordered? */ bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; } void strictlyOrdered(bool so) { instFlags[IsStrictlyOrdered] = so; } /** Has this instruction generated a memory request. */ bool hasRequest() const { return instFlags[ReqMade]; } /** Assert this instruction has generated a memory request. */ void setRequest() { instFlags[ReqMade] = true; } /** Returns iterator to this instruction in the list of all insts. */ ListIt &getInstListIt() { return instListIt; } /** Sets iterator for this instruction in the list of all insts. */ void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; } public: /** Returns the number of consecutive store conditional failures. */ unsigned int readStCondFailures() const { return thread->storeCondFailures; } /** Sets the number of consecutive store conditional failures. */ void setStCondFailures(unsigned int sc_failures) { thread->storeCondFailures = sc_failures; } public: // monitor/mwait funtions void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); } bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); } void mwaitAtomic(ThreadContext *tc) { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); } AddressMonitor *getAddrMonitor() { return cpu->getCpuAddrMonitor(threadNumber); } }; template Fault BaseDynInst::initiateMemRead(Addr addr, unsigned size, Request::Flags flags, const std::vector& byteEnable) { return cpu->pushRequest( dynamic_cast(this), /* ld */ true, nullptr, size, addr, flags, nullptr, nullptr, byteEnable); } template Fault BaseDynInst::writeMem(uint8_t *data, unsigned size, Addr addr, Request::Flags flags, uint64_t *res, const std::vector& byteEnable) { return cpu->pushRequest( dynamic_cast(this), /* st */ false, data, size, addr, flags, res, nullptr, byteEnable); } template Fault BaseDynInst::initiateMemAMO(Addr addr, unsigned size, Request::Flags flags, AtomicOpFunctor *amo_op) { // atomic memory instructions do not have data to be written to memory yet // since the atomic operations will be executed directly in cache/memory. // Therefore, its `data` field is nullptr. // Atomic memory requests need to carry their `amo_op` fields to cache/ // memory return cpu->pushRequest( dynamic_cast(this), /* atomic */ false, nullptr, size, addr, flags, nullptr, amo_op); } #endif // __CPU_BASE_DYN_INST_HH__