/* * Copyright (c) 2002-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "cpu/base_cpu.hh" #include "base/cprintf.hh" #include "cpu/exec_context.hh" #include "base/misc.hh" #include "sim/param.hh" #include "sim/sim_events.hh" using namespace std; vector BaseCPU::cpuList; // This variable reflects the max number of threads in any CPU. Be // careful to only use it once all the CPUs that you care about have // been initialized int maxThreadsPerCPU = 1; #ifdef FULL_SYSTEM BaseCPU::BaseCPU(const string &_name, int _number_of_threads, bool _def_reg, Counter max_insts_any_thread, Counter max_insts_all_threads, Counter max_loads_any_thread, Counter max_loads_all_threads, System *_system, Tick freq) : SimObject(_name), frequency(freq), deferRegistration(_def_reg), number_of_threads(_number_of_threads), system(_system) #else BaseCPU::BaseCPU(const string &_name, int _number_of_threads, bool _def_reg, Counter max_insts_any_thread, Counter max_insts_all_threads, Counter max_loads_any_thread, Counter max_loads_all_threads) : SimObject(_name), deferRegistration(_def_reg), number_of_threads(_number_of_threads) #endif { // add self to global list of CPUs cpuList.push_back(this); if (number_of_threads > maxThreadsPerCPU) maxThreadsPerCPU = number_of_threads; // allocate per-thread instruction-based event queues comInstEventQueue = new (EventQueue *)[number_of_threads]; for (int i = 0; i < number_of_threads; ++i) comInstEventQueue[i] = new EventQueue("instruction-based event queue"); // // set up instruction-count-based termination events, if any // if (max_insts_any_thread != 0) for (int i = 0; i < number_of_threads; ++i) new SimExitEvent(comInstEventQueue[i], max_insts_any_thread, "a thread reached the max instruction count"); if (max_insts_all_threads != 0) { // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = number_of_threads; for (int i = 0; i < number_of_threads; ++i) new CountedExitEvent(comInstEventQueue[i], "all threads reached the max instruction count", max_insts_all_threads, *counter); } // allocate per-thread load-based event queues comLoadEventQueue = new (EventQueue *)[number_of_threads]; for (int i = 0; i < number_of_threads; ++i) comLoadEventQueue[i] = new EventQueue("load-based event queue"); // // set up instruction-count-based termination events, if any // if (max_loads_any_thread != 0) for (int i = 0; i < number_of_threads; ++i) new SimExitEvent(comLoadEventQueue[i], max_loads_any_thread, "a thread reached the max load count"); if (max_loads_all_threads != 0) { // allocate & initialize shared downcounter: each event will // decrement this when triggered; simulation will terminate // when counter reaches 0 int *counter = new int; *counter = number_of_threads; for (int i = 0; i < number_of_threads; ++i) new CountedExitEvent(comLoadEventQueue[i], "all threads reached the max load count", max_loads_all_threads, *counter); } #ifdef FULL_SYSTEM memset(interrupts, 0, sizeof(interrupts)); intstatus = 0; #endif } void BaseCPU::init() { if (!deferRegistration) registerExecContexts(); } void BaseCPU::regStats() { using namespace Stats; numCycles .name(name() + ".numCycles") .desc("number of cpu cycles simulated") ; int size = execContexts.size(); if (size > 1) { for (int i = 0; i < size; ++i) { stringstream namestr; ccprintf(namestr, "%s.ctx%d", name(), i); execContexts[i]->regStats(namestr.str()); } } else if (size == 1) execContexts[0]->regStats(name()); } void BaseCPU::registerExecContexts() { for (int i = 0; i < execContexts.size(); ++i) { ExecContext *xc = execContexts[i]; int cpu_id; #ifdef FULL_SYSTEM cpu_id = system->registerExecContext(xc); #else cpu_id = xc->process->registerExecContext(xc); #endif xc->cpu_id = cpu_id; } } void BaseCPU::switchOut() { // default: do nothing } void BaseCPU::takeOverFrom(BaseCPU *oldCPU) { assert(execContexts.size() == oldCPU->execContexts.size()); for (int i = 0; i < execContexts.size(); ++i) { ExecContext *newXC = execContexts[i]; ExecContext *oldXC = oldCPU->execContexts[i]; newXC->takeOverFrom(oldXC); assert(newXC->cpu_id == oldXC->cpu_id); #ifdef FULL_SYSTEM system->replaceExecContext(newXC, newXC->cpu_id); #else assert(newXC->process == oldXC->process); newXC->process->replaceExecContext(newXC, newXC->cpu_id); #endif } #ifdef FULL_SYSTEM for (int i = 0; i < NumInterruptLevels; ++i) interrupts[i] = oldCPU->interrupts[i]; intstatus = oldCPU->intstatus; #endif } #ifdef FULL_SYSTEM void BaseCPU::post_interrupt(int int_num, int index) { DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index); if (int_num < 0 || int_num >= NumInterruptLevels) panic("int_num out of bounds\n"); if (index < 0 || index >= sizeof(uint64_t) * 8) panic("int_num out of bounds\n"); AlphaISA::check_interrupts = 1; interrupts[int_num] |= 1 << index; intstatus |= (ULL(1) << int_num); } void BaseCPU::clear_interrupt(int int_num, int index) { DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index); if (int_num < 0 || int_num >= NumInterruptLevels) panic("int_num out of bounds\n"); if (index < 0 || index >= sizeof(uint64_t) * 8) panic("int_num out of bounds\n"); interrupts[int_num] &= ~(1 << index); if (interrupts[int_num] == 0) intstatus &= ~(ULL(1) << int_num); } void BaseCPU::clear_interrupts() { DPRINTF(Interrupt, "Interrupts all cleared\n"); memset(interrupts, 0, sizeof(interrupts)); intstatus = 0; } void BaseCPU::serialize(std::ostream &os) { SERIALIZE_ARRAY(interrupts, NumInterruptLevels); SERIALIZE_SCALAR(intstatus); } void BaseCPU::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_ARRAY(interrupts, NumInterruptLevels); UNSERIALIZE_SCALAR(intstatus); } #endif // FULL_SYSTEM DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)