/* * Copyright (c) 2003-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __ARCH_SPARC_ISA_TRAITS_HH__ #define __ARCH_SPARC_ISA_TRAITS_HH__ #include "arch/sparc/faults.hh" #include "base/misc.hh" #include "sim/host.hh" class FastCPU; //class FullCPU; //class Checkpoint; #define TARGET_SPARC template class StaticInst; template class StaticInstPtr; //namespace EV5 //{ // int DTB_ASN_ASN(uint64_t reg); // int ITB_ASN_ASN(uint64_t reg); //} class SPARCISA { public: typedef uint32_t MachInst; typedef uint64_t Addr; typedef uint8_t RegIndex; enum { MemoryEnd = 0xffffffffffffffffULL, NumFloatRegs = 32, NumMiscRegs = 32, MaxRegsOfAnyType = 32, // Static instruction parameters MaxInstSrcRegs = 3, MaxInstDestRegs = 2, // Maximum trap level MaxTL = 4 // semantically meaningful register indices ZeroReg = 0, // architecturally meaningful // the rest of these depend on the ABI } typedef uint64_t IntReg; class IntRegFile { private: //For right now, let's pretend the register file is static IntReg regs[32]; public: IntReg & operator [] (RegIndex index) { //Don't allow indexes outside of the 32 registers index &= 0x1F return regs[index]; } }; void inline serialize(std::ostream & os) { SERIALIZE_ARRAY(regs, 32); } void inline unserialize(Checkpoint &*cp, const std::string §ion) { UNSERIALIZE_ARRAY(regs, 32); } class FloatRegFile { private: //By using the largest data type, we ensure everything //is aligned correctly in memory union { double double rawRegs[16]; uint64_t regDump[32]; }; class QuadRegs { private: FloatRegFile * parent; public: QuadRegs(FloatRegFile * p) : parent(p) {;} double double & operator [] (RegIndex index) { //Quad floats are index by the single //precision register the start on, //and only 16 should be accessed index = (index >> 2) & 0xF; return parent->rawRegs[index]; } }; class DoubleRegs { private: FloatRegFile * parent; public: DoubleRegs(FloatRegFile * p) : parent(p) {;} double & operator [] (RegIndex index) { //Double floats are index by the single //precision register the start on, //and only 32 should be accessed index = (index >> 1) & 0x1F return ((double [])parent->rawRegs)[index]; } } class SingleRegs { private: FloatRegFile * parent; public: SingleRegs(FloatRegFile * p) : parent(p) {;} double & operator [] (RegFile index) { //Only 32 single floats should be accessed index &= 0x1F return ((float [])parent->rawRegs)[index]; } } public: void inline serialize(std::ostream & os) { SERIALIZE_ARRAY(regDump, 32); } void inline unserialize(Checkpoint &* cp, std::string & section) { UNSERIALIZE_ARRAY(regDump, 32); } QuadRegs quadRegs; DoubleRegs doubleRegs; SingleRegs singleRegs; FloatRegFile() : quadRegs(this), doubleRegs(this), singleRegs(this) {;} }; // control register file contents typedef uint64_t MiscReg; // The control registers, broken out into fields class MiscRegFile { public: union { uint16_t pstate; // Process State Register struct { uint16_t ag:1; // Alternate Globals uint16_t ie:1; // Interrupt enable uint16_t priv:1; // Privelege mode uint16_t am:1; // Address mask uint16_t pef:1; // PSTATE enable floating-point uint16_t red:1; // RED (reset, error, debug) state uint16_t mm:2; // Memory Model uint16_t tle:1; // Trap little-endian uint16_t cle:1; // Current little-endian } pstateFields; } uint64_t tba; // Trap Base Address union { uint64_t y; // Y (used in obsolete multiplication) struct { uint64_t value:32; // The actual value stored in y const uint64_t :32; // reserved bits } yFields; } uint8_t pil; // Process Interrupt Register uint8_t cwp; // Current Window Pointer uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured on the previous level) union { uint8_t ccr; // Condition Code Register struct { union { uint8_t icc:4; // 32-bit condition codes struct { uint8_t c:1; // Carry uint8_t v:1; // Overflow uint8_t z:1; // Zero uint8_t n:1; // Negative } iccFields:4; } :4; union { uint8_t xcc:4; // 64-bit condition codes struct { uint8_t c:1; // Carry uint8_t v:1; // Overflow uint8_t z:1; // Zero uint8_t n:1; // Negative } xccFields:4; } :4; } ccrFields; } uint8_t asi; // Address Space Identifier uint8_t tl; // Trap Level uint64_t tpc[MaxTL]; // Trap Program Counter (value from previous trap level) uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from previous trap level) union { uint64_t tstate[MaxTL]; // Trap State struct { //Values are from previous trap level uint64_t cwp:5; // Current Window Pointer const uint64_t :2; // Reserved bits uint64_t pstate:10; // Process State const uint64_t :6; // Reserved bits uint64_t asi:8; // Address Space Identifier uint64_t ccr:8; // Condition Code Register } tstateFields[MaxTL]; } union { uint64_t tick; // Hardware clock-tick counter struct { uint64_t counter:63; // Clock-tick count uint64_t npt:1; // Non-priveleged trap } tickFields; } uint8_t cansave; // Savable windows uint8_t canrestore; // Restorable windows uint8_t otherwin; // Other windows uint8_t cleanwin; // Clean windows union { uint8_t wstate; // Window State struct { uint8_t normal:3; // Bits TT<4:2> are set to on a normal // register window trap uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin" // register window trap } wstateFields; } union { uint64_t ver; // Version struct { uint64_t maxwin:5; // Max CWP value const uint64_t :2; // Reserved bits uint64_t maxtl:8; // Maximum trap level const uint64_t :8; // Reserved bits uint64_t mask:8; // Processor mask set revision number uint64_t impl:16; // Implementation identification number uint64_t manuf:16; // Manufacturer code } verFields; } union { uint64_t fsr; // Floating-Point State Register struct { union { uint64_t cexc:5; // Current excpetion struct { uint64_t nxc:1; // Inexact uint64_t dzc:1; // Divide by zero uint64_t ufc:1; // Underflow uint64_t ofc:1; // Overflow uint64_t nvc:1; // Invalid operand } cexecFields:5; } :5; union { uint64_t aexc:5; // Accrued exception struct { uint64_t nxc:1; // Inexact uint64_t dzc:1; // Divide by zero uint64_t ufc:1; // Underflow uint64_t ofc:1; // Overflow uint64_t nvc:1; // Invalid operand } aexecFields:5; } :5; uint64_t fcc0:2; // Floating-Point condtion codes const uint64_t :1; // Reserved bits uint64_t qne:1; // Deferred trap queue not empty // with no queue, it should read 0 uint64_t ftt:3; // Floating-Point trap type uint64_t ver:3; // Version (of the FPU) const uint64_t :2; // Reserved bits uint64_t ns:1; // Nonstandard floating point union { uint64_t tem:5; // Trap Enable Mask struct { uint64_t nxm:1; // Inexact uint64_t dzm:1; // Divide by zero uint64_t ufm:1; // Underflow uint64_t ofm:1; // Overflow uint64_t nvm:1; // Invalid operand } temFields:5; } :5; const uint64_t :2; // Reserved bits uint64_t rd:2; // Rounding direction uint64_t fcc1:2; // Floating-Point condition codes uint64_t fcc2:2; // Floating-Point condition codes uint64_t fcc3:2; // Floating-Point condition codes const uint64_t :26; // Reserved bits } fsrFields; } union { uint8_t fprs; // Floating-Point Register State struct { dl:1; // Dirty lower du:1; // Dirty upper fef:1; // FPRS enable floating-Point } fprsFields; }; void serialize(std::ostream & os) { SERIALIZE_SCALAR(pstate); SERIAlIZE_SCALAR(tba); SERIALIZE_SCALAR(y); SERIALIZE_SCALAR(pil); SERIALIZE_SCALAR(cwp); SERIALIZE_ARRAY(tt, MaxTL); SERIALIZE_SCALAR(ccr); SERIALIZE_SCALAR(asi); SERIALIZE_SCALAR(tl); SERIALIZE_SCALAR(tpc); SERIALIZE_SCALAR(tnpc); SERIALIZE_ARRAY(tstate, MaxTL); SERIALIZE_SCALAR(tick); SERIALIZE_SCALAR(cansave); SERIALIZE_SCALAR(canrestore); SERIALIZE_SCALAR(otherwin); SERIALIZE_SCALAR(cleanwin); SERIALIZE_SCALAR(wstate); SERIALIZE_SCALAR(ver); SERIALIZE_SCALAR(fsr); SERIALIZE_SCALAR(fprs); } void unserialize(Checkpoint &* cp, std::string & section) { UNSERIALIZE_SCALAR(pstate); UNSERIAlIZE_SCALAR(tba); UNSERIALIZE_SCALAR(y); UNSERIALIZE_SCALAR(pil); UNSERIALIZE_SCALAR(cwp); UNSERIALIZE_ARRAY(tt, MaxTL); UNSERIALIZE_SCALAR(ccr); UNSERIALIZE_SCALAR(asi); UNSERIALIZE_SCALAR(tl); UNSERIALIZE_SCALAR(tpc); UNSERIALIZE_SCALAR(tnpc); UNSERIALIZE_ARRAY(tstate, MaxTL); UNSERIALIZE_SCALAR(tick); UNSERIALIZE_SCALAR(cansave); UNSERIALIZE_SCALAR(canrestore); UNSERIALIZE_SCALAR(otherwin); UNSERIALIZE_SCALAR(cleanwin); UNSERIALIZE_SCALAR(wstate); UNSERIALIZE_SCALAR(ver); UNSERIALIZE_SCALAR(fsr); UNSERIALIZE_SCALAR(fprs); } }; typedef union { IntReg intreg; FloatReg fpreg; MiscReg ctrlreg; } AnyReg; struct RegFile { IntRegFile intRegFile; // (signed) integer register file FloatRegFile floatRegFile; // floating point register file MiscRegFile miscRegFile; // control register file Addr pc; // Program Counter Addr npc; // Next Program Counter void serialize(std::ostream &os); void unserialize(Checkpoint *cp, const std::string §ion); }; static StaticInstPtr decodeInst(MachInst); // return a no-op instruction... used for instruction fetch faults static const MachInst NoopMachInst; // Instruction address compression hooks static inline Addr realPCToFetchPC(const Addr &addr) { return addr; } static inline Addr fetchPCToRealPC(const Addr &addr) { return addr; } // the size of "fetched" instructions (not necessarily the size // of real instructions for PISA) static inline size_t fetchInstSize() { return sizeof(MachInst); } /** * Function to insure ISA semantics about 0 registers. * @param xc The execution context. */ template static void zeroRegisters(XC *xc); }; typedef SPARCISA TheISA; typedef TheISA::MachInst MachInst; typedef TheISA::Addr Addr; typedef TheISA::RegIndex RegIndex; typedef TheISA::IntReg IntReg; typedef TheISA::IntRegFile IntRegFile; typedef TheISA::FloatReg FloatReg; typedef TheISA::FloatRegFile FloatRegFile; typedef TheISA::MiscReg MiscReg; typedef TheISA::MiscRegFile MiscRegFile; typedef TheISA::AnyReg AnyReg; typedef TheISA::RegFile RegFile; const int VMPageSize = TheISA::VMPageSize; const int LogVMPageSize = TheISA::LogVMPageSize; const int ZeroReg = TheISA::ZeroReg; const int BranchPredAddrShiftAmt = TheISA::BranchPredAddrShiftAmt; const int MaxAddr = (Addr)-1; #ifndef FULL_SYSTEM class SyscallReturn { public: template SyscallReturn(T v, bool s) { retval = (uint64_t)v; success = s; } template SyscallReturn(T v) { success = (v >= 0); retval = (uint64_t)v; } ~SyscallReturn() {} SyscallReturn& operator=(const SyscallReturn& s) { retval = s.retval; success = s.success; return *this; } bool successful() { return success; } uint64_t value() { return retval; } private: uint64_t retval; bool success; }; #endif #ifdef FULL_SYSTEM #include "arch/alpha/ev5.hh" #endif #endif // __ARCH_SPARC_ISA_TRAITS_HH__