/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi * Korey Sewell */ #include "arch/mips/process.hh" #include "arch/mips/isa_traits.hh" #include "base/loader/elf_object.hh" #include "base/loader/object_file.hh" #include "base/logging.hh" #include "cpu/thread_context.hh" #include "debug/Loader.hh" #include "mem/page_table.hh" #include "params/Process.hh" #include "sim/aux_vector.hh" #include "sim/process.hh" #include "sim/process_impl.hh" #include "sim/syscall_return.hh" #include "sim/system.hh" using namespace std; using namespace MipsISA; MipsProcess::MipsProcess(ProcessParams *params, ObjectFile *objFile) : Process(params, new EmulationPageTable(params->name, params->pid, PageBytes), objFile) { fatal_if(params->useArchPT, "Arch page tables not implemented."); // Set up stack. On MIPS, stack starts at the top of kuseg // user address space. MIPS stack grows down from here Addr stack_base = 0x7FFFFFFF; Addr max_stack_size = 8 * 1024 * 1024; // Set pointer for next thread stack. Reserve 8M for main stack. Addr next_thread_stack_base = stack_base - max_stack_size; // Set up break point (Top of Heap) Addr brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize(); brk_point = roundUp(brk_point, PageBytes); // Set up region for mmaps. Start it 1GB above the top of the heap. Addr mmap_end = brk_point + 0x40000000L; memState = make_shared(brk_point, stack_base, max_stack_size, next_thread_stack_base, mmap_end); } void MipsProcess::initState() { Process::initState(); argsInit(PageBytes); } template void MipsProcess::argsInit(int pageSize) { int intSize = sizeof(IntType); // Patch the ld_bias for dynamic executables. updateBias(); // load object file into target memory objFile->loadSections(initVirtMem); std::vector> auxv; ElfObject * elfObject = dynamic_cast(objFile); if (elfObject) { // Set the system page size auxv.emplace_back(M5_AT_PAGESZ, MipsISA::PageBytes); // Set the frequency at which time() increments auxv.emplace_back(M5_AT_CLKTCK, 100); // For statically linked executables, this is the virtual // address of the program header tables if they appear in the // executable image. auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable()); DPRINTF(Loader, "auxv at PHDR %08p\n", elfObject->programHeaderTable()); // This is the size of a program header entry from the elf file. auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize()); // This is the number of program headers from the original elf file. auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount()); // This is the base address of the ELF interpreter; it should be // zero for static executables or contain the base address for // dynamic executables. auxv.emplace_back(M5_AT_BASE, getBias()); //The entry point to the program auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint()); //Different user and group IDs auxv.emplace_back(M5_AT_UID, uid()); auxv.emplace_back(M5_AT_EUID, euid()); auxv.emplace_back(M5_AT_GID, gid()); auxv.emplace_back(M5_AT_EGID, egid()); } // Calculate how much space we need for arg & env & auxv arrays. int argv_array_size = intSize * (argv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int auxv_array_size = intSize * 2 * (auxv.size() + 1); int arg_data_size = 0; for (vector::size_type i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int env_data_size = 0; for (vector::size_type i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int space_needed = argv_array_size + envp_array_size + auxv_array_size + arg_data_size + env_data_size; // set bottom of stack memState->setStackMin(memState->getStackBase() - space_needed); // align it memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); memState->setStackSize(memState->getStackBase() - memState->getStackMin()); // map memory allocateMem(memState->getStackMin(), roundUp(memState->getStackSize(), pageSize)); // map out initial stack contents; leave room for argc IntType argv_array_base = memState->getStackMin() + intSize; IntType envp_array_base = argv_array_base + argv_array_size; IntType auxv_array_base = envp_array_base + envp_array_size; IntType arg_data_base = auxv_array_base + auxv_array_size; IntType env_data_base = arg_data_base + arg_data_size; // write contents to stack IntType argc = argv.size(); argc = htog((IntType)argc); initVirtMem.writeBlob(memState->getStackMin(), (uint8_t*)&argc, intSize); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); // Copy the aux vector Addr auxv_array_end = auxv_array_base; for (const auto &aux: auxv) { initVirtMem.write(auxv_array_end, aux, GuestByteOrder); auxv_array_end += sizeof(aux); } // Write out the terminating zeroed auxilliary vector const AuxVector zero(0, 0); initVirtMem.write(auxv_array_end, zero); auxv_array_end += sizeof(zero); ThreadContext *tc = system->getThreadContext(contextIds[0]); setSyscallArg(tc, 0, argc); setSyscallArg(tc, 1, argv_array_base); tc->setIntReg(StackPointerReg, memState->getStackMin()); tc->pcState(getStartPC()); } RegVal MipsProcess::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 6); return tc->readIntReg(FirstArgumentReg + i++); } void MipsProcess::setSyscallArg(ThreadContext *tc, int i, RegVal val) { assert(i < 6); tc->setIntReg(FirstArgumentReg + i, val); } void MipsProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { if (sysret.successful()) { // no error tc->setIntReg(SyscallSuccessReg, 0); tc->setIntReg(ReturnValueReg, sysret.returnValue()); } else { // got an error, return details tc->setIntReg(SyscallSuccessReg, (uint32_t)(-1)); tc->setIntReg(ReturnValueReg, sysret.errnoValue()); } }