# Copyright (c) 2014, 2016, 2019 ARM Limited # All rights reserved # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2003-2005 The Regents of The University of Michigan # Copyright (c) 2013,2015 Advanced Micro Devices, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Steve Reinhardt from __future__ import with_statement, print_function import os import sys import re import string import inspect, traceback # get type names from types import * from m5.util.grammar import Grammar debug=False ################### # Utility functions # # Indent every line in string 's' by two spaces # (except preprocessor directives). # Used to make nested code blocks look pretty. # def indent(s): return re.sub(r'(?m)^(?!#)', ' ', s) # # Munge a somewhat arbitrarily formatted piece of Python code # (e.g. from a format 'let' block) into something whose indentation # will get by the Python parser. # # The two keys here are that Python will give a syntax error if # there's any whitespace at the beginning of the first line, and that # all lines at the same lexical nesting level must have identical # indentation. Unfortunately the way code literals work, an entire # let block tends to have some initial indentation. Rather than # trying to figure out what that is and strip it off, we prepend 'if # 1:' to make the let code the nested block inside the if (and have # the parser automatically deal with the indentation for us). # # We don't want to do this if (1) the code block is empty or (2) the # first line of the block doesn't have any whitespace at the front. def fixPythonIndentation(s): # get rid of blank lines first s = re.sub(r'(?m)^\s*\n', '', s); if (s != '' and re.match(r'[ \t]', s[0])): s = 'if 1:\n' + s return s class ISAParserError(Exception): """Exception class for parser errors""" def __init__(self, first, second=None): if second is None: self.lineno = 0 self.string = first else: self.lineno = first self.string = second def __str__(self): return self.string def error(*args): raise ISAParserError(*args) #################### # Template objects. # # Template objects are format strings that allow substitution from # the attribute spaces of other objects (e.g. InstObjParams instances). labelRE = re.compile(r'(?pcState();\n' + \ myDict['op_rd'] # Compose the op_wb string. If we're going to write back the # PC state because we changed some of its elements, we'll need to # do that as early as possible. That allows later uncoordinated # modifications to the PC to layer appropriately. reordered = list(operands.items) reordered.reverse() op_wb_str = '' pcWbStr = 'xc->pcState(__parserAutoPCState);\n' for op_desc in reordered: if op_desc.isPCPart() and op_desc.is_dest: op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str pcWbStr = '' else: op_wb_str = op_desc.op_wb + op_wb_str myDict['op_wb'] = op_wb_str elif isinstance(d, dict): # if the argument is a dictionary, we just use it. myDict.update(d) elif hasattr(d, '__dict__'): # if the argument is an object, we use its attribute map. myDict.update(d.__dict__) else: raise TypeError, "Template.subst() arg must be or have dictionary" return template % myDict # Convert to string. def __str__(self): return self.template ################ # Format object. # # A format object encapsulates an instruction format. It must provide # a defineInst() method that generates the code for an instruction # definition. class Format(object): def __init__(self, id, params, code): self.id = id self.params = params label = 'def format ' + id self.user_code = compile(fixPythonIndentation(code), label, 'exec') param_list = string.join(params, ", ") f = '''def defInst(_code, _context, %s): my_locals = vars().copy() exec _code in _context, my_locals return my_locals\n''' % param_list c = compile(f, label + ' wrapper', 'exec') exec c self.func = defInst def defineInst(self, parser, name, args, lineno): parser.updateExportContext() context = parser.exportContext.copy() if len(name): Name = name[0].upper() if len(name) > 1: Name += name[1:] context.update({ 'name' : name, 'Name' : Name }) try: vars = self.func(self.user_code, context, *args[0], **args[1]) except Exception, exc: if debug: raise error(lineno, 'error defining "%s": %s.' % (name, exc)) for k in vars.keys(): if k not in ('header_output', 'decoder_output', 'exec_output', 'decode_block'): del vars[k] return GenCode(parser, **vars) # Special null format to catch an implicit-format instruction # definition outside of any format block. class NoFormat(object): def __init__(self): self.defaultInst = '' def defineInst(self, parser, name, args, lineno): error(lineno, 'instruction definition "%s" with no active format!' % name) ############### # GenCode class # # The GenCode class encapsulates generated code destined for various # output files. The header_output and decoder_output attributes are # strings containing code destined for decoder.hh and decoder.cc # respectively. The decode_block attribute contains code to be # incorporated in the decode function itself (that will also end up in # decoder.cc). The exec_output attribute is the string of code for the # exec.cc file. The has_decode_default attribute is used in the decode block # to allow explicit default clauses to override default default clauses. class GenCode(object): # Constructor. def __init__(self, parser, header_output = '', decoder_output = '', exec_output = '', decode_block = '', has_decode_default = False): self.parser = parser self.header_output = header_output self.decoder_output = decoder_output self.exec_output = exec_output self.decode_block = decode_block self.has_decode_default = has_decode_default # Write these code chunks out to the filesystem. They will be properly # interwoven by the write_top_level_files(). def emit(self): if self.header_output: self.parser.get_file('header').write(self.header_output) if self.decoder_output: self.parser.get_file('decoder').write(self.decoder_output) if self.exec_output: self.parser.get_file('exec').write(self.exec_output) if self.decode_block: self.parser.get_file('decode_block').write(self.decode_block) # Override '+' operator: generate a new GenCode object that # concatenates all the individual strings in the operands. def __add__(self, other): return GenCode(self.parser, self.header_output + other.header_output, self.decoder_output + other.decoder_output, self.exec_output + other.exec_output, self.decode_block + other.decode_block, self.has_decode_default or other.has_decode_default) # Prepend a string (typically a comment) to all the strings. def prepend_all(self, pre): self.header_output = pre + self.header_output self.decoder_output = pre + self.decoder_output self.decode_block = pre + self.decode_block self.exec_output = pre + self.exec_output # Wrap the decode block in a pair of strings (e.g., 'case foo:' # and 'break;'). Used to build the big nested switch statement. def wrap_decode_block(self, pre, post = ''): self.decode_block = pre + indent(self.decode_block) + post ##################################################################### # # Bitfield Operator Support # ##################################################################### bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>') bitOpWordRE = re.compile(r'(?') bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>') def substBitOps(code): # first convert single-bit selectors to two-index form # i.e., --> code = bitOp1ArgRE.sub(r'<\1:\1>', code) # simple case: selector applied to ID (name) # i.e., foo --> bits(foo, a, b) code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code) # if selector is applied to expression (ending in ')'), # we need to search backward for matching '(' match = bitOpExprRE.search(code) while match: exprEnd = match.start() here = exprEnd - 1 nestLevel = 1 while nestLevel > 0: if code[here] == '(': nestLevel -= 1 elif code[here] == ')': nestLevel += 1 here -= 1 if here < 0: sys.exit("Didn't find '('!") exprStart = here+1 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1], match.group(1), match.group(2)) code = code[:exprStart] + newExpr + code[match.end():] match = bitOpExprRE.search(code) return code ##################################################################### # # Code Parser # # The remaining code is the support for automatically extracting # instruction characteristics from pseudocode. # ##################################################################### # Force the argument to be a list. Useful for flags, where a caller # can specify a singleton flag or a list of flags. Also usful for # converting tuples to lists so they can be modified. def makeList(arg): if isinstance(arg, list): return arg elif isinstance(arg, tuple): return list(arg) elif not arg: return [] else: return [ arg ] class Operand(object): '''Base class for operand descriptors. An instance of this class (or actually a class derived from this one) represents a specific operand for a code block (e.g, "Rc.sq" as a dest). Intermediate derived classes encapsulates the traits of a particular operand type (e.g., "32-bit integer register").''' def buildReadCode(self, func = None): subst_dict = {"name": self.base_name, "func": func, "reg_idx": self.reg_spec, "ctype": self.ctype} if hasattr(self, 'src_reg_idx'): subst_dict['op_idx'] = self.src_reg_idx code = self.read_code % subst_dict return '%s = %s;\n' % (self.base_name, code) def buildWriteCode(self, func = None): subst_dict = {"name": self.base_name, "func": func, "reg_idx": self.reg_spec, "ctype": self.ctype, "final_val": self.base_name} if hasattr(self, 'dest_reg_idx'): subst_dict['op_idx'] = self.dest_reg_idx code = self.write_code % subst_dict return ''' { %s final_val = %s; %s; if (traceData) { traceData->setData(final_val); } }''' % (self.dflt_ctype, self.base_name, code) def __init__(self, parser, full_name, ext, is_src, is_dest): self.full_name = full_name self.ext = ext self.is_src = is_src self.is_dest = is_dest # The 'effective extension' (eff_ext) is either the actual # extension, if one was explicitly provided, or the default. if ext: self.eff_ext = ext elif hasattr(self, 'dflt_ext'): self.eff_ext = self.dflt_ext if hasattr(self, 'eff_ext'): self.ctype = parser.operandTypeMap[self.eff_ext] # Finalize additional fields (primarily code fields). This step # is done separately since some of these fields may depend on the # register index enumeration that hasn't been performed yet at the # time of __init__(). The register index enumeration is affected # by predicated register reads/writes. Hence, we forward the flags # that indicate whether or not predication is in use. def finalize(self, predRead, predWrite): self.flags = self.getFlags() self.constructor = self.makeConstructor(predRead, predWrite) self.op_decl = self.makeDecl() if self.is_src: self.op_rd = self.makeRead(predRead) self.op_src_decl = self.makeDecl() else: self.op_rd = '' self.op_src_decl = '' if self.is_dest: self.op_wb = self.makeWrite(predWrite) self.op_dest_decl = self.makeDecl() else: self.op_wb = '' self.op_dest_decl = '' def isMem(self): return 0 def isReg(self): return 0 def isFloatReg(self): return 0 def isIntReg(self): return 0 def isCCReg(self): return 0 def isControlReg(self): return 0 def isVecReg(self): return 0 def isVecElem(self): return 0 def isPCState(self): return 0 def isPCPart(self): return self.isPCState() and self.reg_spec def hasReadPred(self): return self.read_predicate != None def hasWritePred(self): return self.write_predicate != None def getFlags(self): # note the empty slice '[:]' gives us a copy of self.flags[0] # instead of a reference to it my_flags = self.flags[0][:] if self.is_src: my_flags += self.flags[1] if self.is_dest: my_flags += self.flags[2] return my_flags def makeDecl(self): # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. return self.ctype + ' ' + self.base_name + ' = 0;\n'; src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);' dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);' class IntRegOperand(Operand): reg_class = 'IntRegClass' def isReg(self): return 1 def isIntReg(self): return 1 def makeConstructor(self, predRead, predWrite): c_src = '' c_dest = '' if self.is_src: c_src = src_reg_constructor % (self.reg_class, self.reg_spec) if self.hasReadPred(): c_src = '\n\tif (%s) {%s\n\t}' % \ (self.read_predicate, c_src) if self.is_dest: c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec) c_dest += '\n\t_numIntDestRegs++;' if self.hasWritePred(): c_dest = '\n\tif (%s) {%s\n\t}' % \ (self.write_predicate, c_dest) return c_src + c_dest def makeRead(self, predRead): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to read integer register as FP') if self.read_code != None: return self.buildReadCode('readIntRegOperand') int_reg_val = '' if predRead: int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)' if self.hasReadPred(): int_reg_val = '(%s) ? %s : 0' % \ (self.read_predicate, int_reg_val) else: int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx return '%s = %s;\n' % (self.base_name, int_reg_val) def makeWrite(self, predWrite): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to write integer register as FP') if self.write_code != None: return self.buildWriteCode('setIntRegOperand') if predWrite: wp = 'true' if self.hasWritePred(): wp = self.write_predicate wcond = 'if (%s)' % (wp) windex = '_destIndex++' else: wcond = '' windex = '%d' % self.dest_reg_idx wb = ''' %s { %s final_val = %s; xc->setIntRegOperand(this, %s, final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (wcond, self.ctype, self.base_name, windex) return wb class FloatRegOperand(Operand): reg_class = 'FloatRegClass' def isReg(self): return 1 def isFloatReg(self): return 1 def makeConstructor(self, predRead, predWrite): c_src = '' c_dest = '' if self.is_src: c_src = src_reg_constructor % (self.reg_class, self.reg_spec) if self.is_dest: c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec) c_dest += '\n\t_numFPDestRegs++;' return c_src + c_dest def makeRead(self, predRead): if self.read_code != None: return self.buildReadCode('readFloatRegOperandBits') if predRead: rindex = '_sourceIndex++' else: rindex = '%d' % self.src_reg_idx code = 'xc->readFloatRegOperandBits(this, %s)' % rindex if self.ctype == 'float': code = 'bitsToFloat32(%s)' % code elif self.ctype == 'double': code = 'bitsToFloat64(%s)' % code return '%s = %s;\n' % (self.base_name, code) def makeWrite(self, predWrite): if self.write_code != None: return self.buildWriteCode('setFloatRegOperandBits') if predWrite: wp = '_destIndex++' else: wp = '%d' % self.dest_reg_idx val = 'final_val' if self.ctype == 'float': val = 'floatToBits32(%s)' % val elif self.ctype == 'double': val = 'floatToBits64(%s)' % val wp = 'xc->setFloatRegOperandBits(this, %s, %s);' % (wp, val) wb = ''' { %s final_val = %s; %s\n if (traceData) { traceData->setData(final_val); } }''' % (self.ctype, self.base_name, wp) return wb class VecRegOperand(Operand): reg_class = 'VecRegClass' def __init__(self, parser, full_name, ext, is_src, is_dest): Operand.__init__(self, parser, full_name, ext, is_src, is_dest) self.elemExt = None self.parser = parser def isReg(self): return 1 def isVecReg(self): return 1 def makeDeclElem(self, elem_op): (elem_name, elem_ext) = elem_op (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name] if elem_ext: ext = elem_ext else: ext = dflt_elem_ext ctype = self.parser.operandTypeMap[ext] return '\n\t%s %s = 0;' % (ctype, elem_name) def makeDecl(self): if not self.is_dest and self.is_src: c_decl = '\t/* Vars for %s*/' % (self.base_name) if hasattr(self, 'active_elems'): if self.active_elems: for elem in self.active_elems: c_decl += self.makeDeclElem(elem) return c_decl + '\t/* End vars for %s */\n' % (self.base_name) else: return '' def makeConstructor(self, predRead, predWrite): c_src = '' c_dest = '' numAccessNeeded = 1 if self.is_src: c_src = src_reg_constructor % (self.reg_class, self.reg_spec) if self.is_dest: c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec) c_dest += '\n\t_numVecDestRegs++;' return c_src + c_dest # Read destination register to write def makeReadWElem(self, elem_op): (elem_name, elem_ext) = elem_op (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name] if elem_ext: ext = elem_ext else: ext = dflt_elem_ext ctype = self.parser.operandTypeMap[ext] c_read = '\t\t%s& %s = %s[%s];\n' % \ (ctype, elem_name, self.base_name, elem_spec) return c_read def makeReadW(self, predWrite): func = 'getWritableVecRegOperand' if self.read_code != None: return self.buildReadCode(func) if predWrite: rindex = '_destIndex++' else: rindex = '%d' % self.dest_reg_idx c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\ % ('TheISA::VecRegContainer', rindex, func, rindex) if self.elemExt: c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name, rindex, self.parser.operandTypeMap[self.elemExt]) if self.ext: c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name, rindex, self.parser.operandTypeMap[self.ext]) if hasattr(self, 'active_elems'): if self.active_elems: for elem in self.active_elems: c_readw += self.makeReadWElem(elem) return c_readw # Normal source operand read def makeReadElem(self, elem_op, name): (elem_name, elem_ext) = elem_op (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name] if elem_ext: ext = elem_ext else: ext = dflt_elem_ext ctype = self.parser.operandTypeMap[ext] c_read = '\t\t%s = %s[%s];\n' % \ (elem_name, name, elem_spec) return c_read def makeRead(self, predRead): func = 'readVecRegOperand' if self.read_code != None: return self.buildReadCode(func) if predRead: rindex = '_sourceIndex++' else: rindex = '%d' % self.src_reg_idx name = self.base_name if self.is_dest and self.is_src: name += '_merger' c_read = '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \ % ('const TheISA::VecRegContainer', rindex, func, rindex) # If the parser has detected that elements are being access, create # the appropriate view if self.elemExt: c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \ (name, rindex, self.parser.operandTypeMap[self.elemExt]) if self.ext: c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \ (name, rindex, self.parser.operandTypeMap[self.ext]) if hasattr(self, 'active_elems'): if self.active_elems: for elem in self.active_elems: c_read += self.makeReadElem(elem, name) return c_read def makeWrite(self, predWrite): func = 'setVecRegOperand' if self.write_code != None: return self.buildWriteCode(func) wb = ''' if (traceData) { warn_once("Vectors not supported yet in tracedata"); /*traceData->setData(final_val);*/ } ''' return wb def finalize(self, predRead, predWrite): super(VecRegOperand, self).finalize(predRead, predWrite) if self.is_dest: self.op_rd = self.makeReadW(predWrite) + self.op_rd class VecElemOperand(Operand): reg_class = 'VecElemClass' def isReg(self): return 1 def isVecElem(self): return 1 def makeDecl(self): if self.is_dest and not self.is_src: return '\n\t%s %s;' % (self.ctype, self.base_name) else: return '' def makeConstructor(self, predRead, predWrite): c_src = '' c_dest = '' numAccessNeeded = 1 if self.is_src: c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' % (self.reg_class, self.reg_spec, self.elem_spec)) if self.is_dest: c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' % (self.reg_class, self.reg_spec, self.elem_spec)) c_dest += '\n\t_numVecElemDestRegs++;' return c_src + c_dest def makeRead(self, predRead): c_read = 'xc->readVecElemOperand(this, %d)' % self.src_reg_idx if self.ctype == 'float': c_read = 'bitsToFloat32(%s)' % c_read elif self.ctype == 'double': c_read = 'bitsToFloat64(%s)' % c_read return '\n\t%s %s = %s;\n' % (self.ctype, self.base_name, c_read) def makeWrite(self, predWrite): if self.ctype == 'float': c_write = 'floatToBits32(%s)' % self.base_name elif self.ctype == 'double': c_write = 'floatToBits64(%s)' % self.base_name else: c_write = self.base_name c_write = ('\n\txc->setVecElemOperand(this, %d, %s);' % (self.dest_reg_idx, c_write)) return c_write class CCRegOperand(Operand): reg_class = 'CCRegClass' def isReg(self): return 1 def isCCReg(self): return 1 def makeConstructor(self, predRead, predWrite): c_src = '' c_dest = '' if self.is_src: c_src = src_reg_constructor % (self.reg_class, self.reg_spec) if self.hasReadPred(): c_src = '\n\tif (%s) {%s\n\t}' % \ (self.read_predicate, c_src) if self.is_dest: c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec) c_dest += '\n\t_numCCDestRegs++;' if self.hasWritePred(): c_dest = '\n\tif (%s) {%s\n\t}' % \ (self.write_predicate, c_dest) return c_src + c_dest def makeRead(self, predRead): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to read condition-code register as FP') if self.read_code != None: return self.buildReadCode('readCCRegOperand') int_reg_val = '' if predRead: int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)' if self.hasReadPred(): int_reg_val = '(%s) ? %s : 0' % \ (self.read_predicate, int_reg_val) else: int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx return '%s = %s;\n' % (self.base_name, int_reg_val) def makeWrite(self, predWrite): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to write condition-code register as FP') if self.write_code != None: return self.buildWriteCode('setCCRegOperand') if predWrite: wp = 'true' if self.hasWritePred(): wp = self.write_predicate wcond = 'if (%s)' % (wp) windex = '_destIndex++' else: wcond = '' windex = '%d' % self.dest_reg_idx wb = ''' %s { %s final_val = %s; xc->setCCRegOperand(this, %s, final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (wcond, self.ctype, self.base_name, windex) return wb class ControlRegOperand(Operand): reg_class = 'MiscRegClass' def isReg(self): return 1 def isControlReg(self): return 1 def makeConstructor(self, predRead, predWrite): c_src = '' c_dest = '' if self.is_src: c_src = src_reg_constructor % (self.reg_class, self.reg_spec) if self.is_dest: c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec) return c_src + c_dest def makeRead(self, predRead): bit_select = 0 if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to read control register as FP') if self.read_code != None: return self.buildReadCode('readMiscRegOperand') if predRead: rindex = '_sourceIndex++' else: rindex = '%d' % self.src_reg_idx return '%s = xc->readMiscRegOperand(this, %s);\n' % \ (self.base_name, rindex) def makeWrite(self, predWrite): if (self.ctype == 'float' or self.ctype == 'double'): error('Attempt to write control register as FP') if self.write_code != None: return self.buildWriteCode('setMiscRegOperand') if predWrite: windex = '_destIndex++' else: windex = '%d' % self.dest_reg_idx wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \ (windex, self.base_name) wb += 'if (traceData) { traceData->setData(%s); }' % \ self.base_name return wb class MemOperand(Operand): def isMem(self): return 1 def makeConstructor(self, predRead, predWrite): return '' def makeDecl(self): # Declare memory data variable. return '%s %s;\n' % (self.ctype, self.base_name) def makeRead(self, predRead): if self.read_code != None: return self.buildReadCode() return '' def makeWrite(self, predWrite): if self.write_code != None: return self.buildWriteCode() return '' class PCStateOperand(Operand): def makeConstructor(self, predRead, predWrite): return '' def makeRead(self, predRead): if self.reg_spec: # A component of the PC state. return '%s = __parserAutoPCState.%s();\n' % \ (self.base_name, self.reg_spec) else: # The whole PC state itself. return '%s = xc->pcState();\n' % self.base_name def makeWrite(self, predWrite): if self.reg_spec: # A component of the PC state. return '__parserAutoPCState.%s(%s);\n' % \ (self.reg_spec, self.base_name) else: # The whole PC state itself. return 'xc->pcState(%s);\n' % self.base_name def makeDecl(self): ctype = 'TheISA::PCState' if self.isPCPart(): ctype = self.ctype # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. return '%s %s = 0;\n' % (ctype, self.base_name) def isPCState(self): return 1 class OperandList(object): '''Find all the operands in the given code block. Returns an operand descriptor list (instance of class OperandList).''' def __init__(self, parser, code): self.items = [] self.bases = {} # delete strings and comments so we don't match on operands inside for regEx in (stringRE, commentRE): code = regEx.sub('', code) # search for operands next_pos = 0 while 1: match = parser.operandsRE.search(code, next_pos) if not match: # no more matches: we're done break op = match.groups() # regexp groups are operand full name, base, and extension (op_full, op_base, op_ext) = op # If is a elem operand, define or update the corresponding # vector operand isElem = False if op_base in parser.elemToVector: isElem = True elem_op = (op_base, op_ext) op_base = parser.elemToVector[op_base] op_ext = '' # use the default one # if the token following the operand is an assignment, this is # a destination (LHS), else it's a source (RHS) is_dest = (assignRE.match(code, match.end()) != None) is_src = not is_dest # see if we've already seen this one op_desc = self.find_base(op_base) if op_desc: if op_ext and op_ext != '' and op_desc.ext != op_ext: error ('Inconsistent extensions for operand %s: %s - %s' \ % (op_base, op_desc.ext, op_ext)) op_desc.is_src = op_desc.is_src or is_src op_desc.is_dest = op_desc.is_dest or is_dest if isElem: (elem_base, elem_ext) = elem_op found = False for ae in op_desc.active_elems: (ae_base, ae_ext) = ae if ae_base == elem_base: if ae_ext != elem_ext: error('Inconsistent extensions for elem' ' operand %s' % elem_base) else: found = True if not found: op_desc.active_elems.append(elem_op) else: # new operand: create new descriptor op_desc = parser.operandNameMap[op_base](parser, op_full, op_ext, is_src, is_dest) # if operand is a vector elem, add the corresponding vector # operand if not already done if isElem: op_desc.elemExt = elem_op[1] op_desc.active_elems = [elem_op] self.append(op_desc) # start next search after end of current match next_pos = match.end() self.sort() # enumerate source & dest register operands... used in building # constructor later self.numSrcRegs = 0 self.numDestRegs = 0 self.numFPDestRegs = 0 self.numIntDestRegs = 0 self.numVecDestRegs = 0 self.numCCDestRegs = 0 self.numMiscDestRegs = 0 self.memOperand = None # Flags to keep track if one or more operands are to be read/written # conditionally. self.predRead = False self.predWrite = False for op_desc in self.items: if op_desc.isReg(): if op_desc.is_src: op_desc.src_reg_idx = self.numSrcRegs self.numSrcRegs += 1 if op_desc.is_dest: op_desc.dest_reg_idx = self.numDestRegs self.numDestRegs += 1 if op_desc.isFloatReg(): self.numFPDestRegs += 1 elif op_desc.isIntReg(): self.numIntDestRegs += 1 elif op_desc.isVecReg(): self.numVecDestRegs += 1 elif op_desc.isCCReg(): self.numCCDestRegs += 1 elif op_desc.isControlReg(): self.numMiscDestRegs += 1 elif op_desc.isMem(): if self.memOperand: error("Code block has more than one memory operand.") self.memOperand = op_desc # Check if this operand has read/write predication. If true, then # the microop will dynamically index source/dest registers. self.predRead = self.predRead or op_desc.hasReadPred() self.predWrite = self.predWrite or op_desc.hasWritePred() if parser.maxInstSrcRegs < self.numSrcRegs: parser.maxInstSrcRegs = self.numSrcRegs if parser.maxInstDestRegs < self.numDestRegs: parser.maxInstDestRegs = self.numDestRegs if parser.maxMiscDestRegs < self.numMiscDestRegs: parser.maxMiscDestRegs = self.numMiscDestRegs # now make a final pass to finalize op_desc fields that may depend # on the register enumeration for op_desc in self.items: op_desc.finalize(self.predRead, self.predWrite) def __len__(self): return len(self.items) def __getitem__(self, index): return self.items[index] def append(self, op_desc): self.items.append(op_desc) self.bases[op_desc.base_name] = op_desc def find_base(self, base_name): # like self.bases[base_name], but returns None if not found # (rather than raising exception) return self.bases.get(base_name) # internal helper function for concat[Some]Attr{Strings|Lists} def __internalConcatAttrs(self, attr_name, filter, result): for op_desc in self.items: if filter(op_desc): result += getattr(op_desc, attr_name) return result # return a single string that is the concatenation of the (string) # values of the specified attribute for all operands def concatAttrStrings(self, attr_name): return self.__internalConcatAttrs(attr_name, lambda x: 1, '') # like concatAttrStrings, but only include the values for the operands # for which the provided filter function returns true def concatSomeAttrStrings(self, filter, attr_name): return self.__internalConcatAttrs(attr_name, filter, '') # return a single list that is the concatenation of the (list) # values of the specified attribute for all operands def concatAttrLists(self, attr_name): return self.__internalConcatAttrs(attr_name, lambda x: 1, []) # like concatAttrLists, but only include the values for the operands # for which the provided filter function returns true def concatSomeAttrLists(self, filter, attr_name): return self.__internalConcatAttrs(attr_name, filter, []) def sort(self): self.items.sort(lambda a, b: a.sort_pri - b.sort_pri) class SubOperandList(OperandList): '''Find all the operands in the given code block. Returns an operand descriptor list (instance of class OperandList).''' def __init__(self, parser, code, master_list): self.items = [] self.bases = {} # delete strings and comments so we don't match on operands inside for regEx in (stringRE, commentRE): code = regEx.sub('', code) # search for operands next_pos = 0 while 1: match = parser.operandsRE.search(code, next_pos) if not match: # no more matches: we're done break op = match.groups() # regexp groups are operand full name, base, and extension (op_full, op_base, op_ext) = op # If is a elem operand, define or update the corresponding # vector operand if op_base in parser.elemToVector: elem_op = op_base op_base = parser.elemToVector[elem_op] # find this op in the master list op_desc = master_list.find_base(op_base) if not op_desc: error('Found operand %s which is not in the master list!' % op_base) else: # See if we've already found this operand op_desc = self.find_base(op_base) if not op_desc: # if not, add a reference to it to this sub list self.append(master_list.bases[op_base]) # start next search after end of current match next_pos = match.end() self.sort() self.memOperand = None # Whether the whole PC needs to be read so parts of it can be accessed self.readPC = False # Whether the whole PC needs to be written after parts of it were # changed self.setPC = False # Whether this instruction manipulates the whole PC or parts of it. # Mixing the two is a bad idea and flagged as an error. self.pcPart = None # Flags to keep track if one or more operands are to be read/written # conditionally. self.predRead = False self.predWrite = False for op_desc in self.items: if op_desc.isPCPart(): self.readPC = True if op_desc.is_dest: self.setPC = True if op_desc.isPCState(): if self.pcPart is not None: if self.pcPart and not op_desc.isPCPart() or \ not self.pcPart and op_desc.isPCPart(): error("Mixed whole and partial PC state operands.") self.pcPart = op_desc.isPCPart() if op_desc.isMem(): if self.memOperand: error("Code block has more than one memory operand.") self.memOperand = op_desc # Check if this operand has read/write predication. If true, then # the microop will dynamically index source/dest registers. self.predRead = self.predRead or op_desc.hasReadPred() self.predWrite = self.predWrite or op_desc.hasWritePred() # Regular expression object to match C++ strings stringRE = re.compile(r'"([^"\\]|\\.)*"') # Regular expression object to match C++ comments # (used in findOperands()) commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?', re.DOTALL | re.MULTILINE) # Regular expression object to match assignment statements (used in # findOperands()). If the code immediately following the first # appearance of the operand matches this regex, then the operand # appears to be on the LHS of an assignment, and is thus a # destination. basically we're looking for an '=' that's not '=='. # The heinous tangle before that handles the case where the operand # has an array subscript. assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE) def makeFlagConstructor(flag_list): if len(flag_list) == 0: return '' # filter out repeated flags flag_list.sort() i = 1 while i < len(flag_list): if flag_list[i] == flag_list[i-1]: del flag_list[i] else: i += 1 pre = '\n\tflags[' post = '] = true;' code = pre + string.join(flag_list, post + pre) + post return code # Assume all instruction flags are of the form 'IsFoo' instFlagRE = re.compile(r'Is.*') # OpClass constants end in 'Op' except No_OpClass opClassRE = re.compile(r'.*Op|No_OpClass') class InstObjParams(object): def __init__(self, parser, mnem, class_name, base_class = '', snippets = {}, opt_args = []): self.mnemonic = mnem self.class_name = class_name self.base_class = base_class if not isinstance(snippets, dict): snippets = {'code' : snippets} compositeCode = ' '.join(map(str, snippets.values())) self.snippets = snippets self.operands = OperandList(parser, compositeCode) # The header of the constructor declares the variables to be used # in the body of the constructor. header = '' header += '\n\t_numSrcRegs = 0;' header += '\n\t_numDestRegs = 0;' header += '\n\t_numFPDestRegs = 0;' header += '\n\t_numVecDestRegs = 0;' header += '\n\t_numVecElemDestRegs = 0;' header += '\n\t_numIntDestRegs = 0;' header += '\n\t_numCCDestRegs = 0;' self.constructor = header + \ self.operands.concatAttrStrings('constructor') self.flags = self.operands.concatAttrLists('flags') self.op_class = None # Optional arguments are assumed to be either StaticInst flags # or an OpClass value. To avoid having to import a complete # list of these values to match against, we do it ad-hoc # with regexps. for oa in opt_args: if instFlagRE.match(oa): self.flags.append(oa) elif opClassRE.match(oa): self.op_class = oa else: error('InstObjParams: optional arg "%s" not recognized ' 'as StaticInst::Flag or OpClass.' % oa) # Make a basic guess on the operand class if not set. # These are good enough for most cases. if not self.op_class: if 'IsStore' in self.flags: # The order matters here: 'IsFloating' and 'IsInteger' are # usually set in FP instructions because of the base # register if 'IsFloating' in self.flags: self.op_class = 'FloatMemWriteOp' else: self.op_class = 'MemWriteOp' elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags: # The order matters here: 'IsFloating' and 'IsInteger' are # usually set in FP instructions because of the base # register if 'IsFloating' in self.flags: self.op_class = 'FloatMemReadOp' else: self.op_class = 'MemReadOp' elif 'IsFloating' in self.flags: self.op_class = 'FloatAddOp' elif 'IsVector' in self.flags: self.op_class = 'SimdAddOp' else: self.op_class = 'IntAluOp' # add flag initialization to contructor here to include # any flags added via opt_args self.constructor += makeFlagConstructor(self.flags) # if 'IsFloating' is set, add call to the FP enable check # function (which should be provided by isa_desc via a declare) # if 'IsVector' is set, add call to the Vector enable check # function (which should be provided by isa_desc via a declare) if 'IsFloating' in self.flags: self.fp_enable_check = 'fault = checkFpEnableFault(xc);' elif 'IsVector' in self.flags: self.fp_enable_check = 'fault = checkVecEnableFault(xc);' else: self.fp_enable_check = '' ############## # Stack: a simple stack object. Used for both formats (formatStack) # and default cases (defaultStack). Simply wraps a list to give more # stack-like syntax and enable initialization with an argument list # (as opposed to an argument that's a list). class Stack(list): def __init__(self, *items): list.__init__(self, items) def push(self, item): self.append(item); def top(self): return self[-1] # Format a file include stack backtrace as a string def backtrace(filename_stack): fmt = "In file included from %s:" return "\n".join([fmt % f for f in filename_stack]) ####################### # # LineTracker: track filenames along with line numbers in PLY lineno fields # PLY explicitly doesn't do anything with 'lineno' except propagate # it. This class lets us tie filenames with the line numbers with a # minimum of disruption to existing increment code. # class LineTracker(object): def __init__(self, filename, lineno=1): self.filename = filename self.lineno = lineno # Overload '+=' for increments. We need to create a new object on # each update else every token ends up referencing the same # constantly incrementing instance. def __iadd__(self, incr): return LineTracker(self.filename, self.lineno + incr) def __str__(self): return "%s:%d" % (self.filename, self.lineno) # In case there are places where someone really expects a number def __int__(self): return self.lineno ####################### # # ISA Parser # parses ISA DSL and emits C++ headers and source # class ISAParser(Grammar): def __init__(self, output_dir): super(ISAParser, self).__init__() self.output_dir = output_dir self.filename = None # for output file watermarking/scaremongering # variable to hold templates self.templateMap = {} # This dictionary maps format name strings to Format objects. self.formatMap = {} # Track open files and, if applicable, how many chunks it has been # split into so far. self.files = {} self.splits = {} # isa_name / namespace identifier from namespace declaration. # before the namespace declaration, None. self.isa_name = None self.namespace = None # The format stack. self.formatStack = Stack(NoFormat()) # The default case stack. self.defaultStack = Stack(None) # Stack that tracks current file and line number. Each # element is a tuple (filename, lineno) that records the # *current* filename and the line number in the *previous* # file where it was included. self.fileNameStack = Stack() symbols = ('makeList', 're', 'string') self.exportContext = dict([(s, eval(s)) for s in symbols]) self.maxInstSrcRegs = 0 self.maxInstDestRegs = 0 self.maxMiscDestRegs = 0 def __getitem__(self, i): # Allow object (self) to be return getattr(self, i) # passed to %-substitutions # Change the file suffix of a base filename: # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs def suffixize(self, s, sec): extn = re.compile('(\.[^\.]+)$') # isolate extension if self.namespace: return extn.sub(r'-ns\1.inc', s) # insert some text on either side else: return extn.sub(r'-g\1.inc', s) # Get the file object for emitting code into the specified section # (header, decoder, exec, decode_block). def get_file(self, section): if section == 'decode_block': filename = 'decode-method.cc.inc' else: if section == 'header': file = 'decoder.hh' else: file = '%s.cc' % section filename = self.suffixize(file, section) try: return self.files[filename] except KeyError: pass f = self.open(filename) self.files[filename] = f # The splittable files are the ones with many independent # per-instruction functions - the decoder's instruction constructors # and the instruction execution (execute()) methods. These both have # the suffix -ns.cc.inc, meaning they are within the namespace part # of the ISA, contain object-emitting C++ source, and are included # into other top-level files. These are the files that need special # #define's to allow parts of them to be compiled separately. Rather # than splitting the emissions into separate files, the monolithic # output of the ISA parser is maintained, but the value (or lack # thereof) of the __SPLIT definition during C preprocessing will # select the different chunks. If no 'split' directives are used, # the cpp emissions have no effect. if re.search('-ns.cc.inc$', filename): print('#if !defined(__SPLIT) || (__SPLIT == 1)', file=f) self.splits[f] = 1 # ensure requisite #include's elif filename == 'decoder-g.hh.inc': print('#include "base/bitfield.hh"', file=f) return f # Weave together the parts of the different output sections by # #include'ing them into some very short top-level .cc/.hh files. # These small files make it much clearer how this tool works, since # you directly see the chunks emitted as files that are #include'd. def write_top_level_files(self): # decoder header - everything depends on this file = 'decoder.hh' with self.open(file) as f: fn = 'decoder-g.hh.inc' assert(fn in self.files) f.write('#include "%s"\n' % fn) fn = 'decoder-ns.hh.inc' assert(fn in self.files) f.write('namespace %s {\n#include "%s"\n}\n' % (self.namespace, fn)) # decoder method - cannot be split file = 'decoder.cc' with self.open(file) as f: fn = 'base/compiler.hh' f.write('#include "%s"\n' % fn) fn = 'decoder-g.cc.inc' assert(fn in self.files) f.write('#include "%s"\n' % fn) fn = 'decoder.hh' f.write('#include "%s"\n' % fn) fn = 'decode-method.cc.inc' # is guaranteed to have been written for parse to complete f.write('#include "%s"\n' % fn) extn = re.compile('(\.[^\.]+)$') # instruction constructors splits = self.splits[self.get_file('decoder')] file_ = 'inst-constrs.cc' for i in range(1, splits+1): if splits > 1: file = extn.sub(r'-%d\1' % i, file_) else: file = file_ with self.open(file) as f: fn = 'decoder-g.cc.inc' assert(fn in self.files) f.write('#include "%s"\n' % fn) fn = 'decoder.hh' f.write('#include "%s"\n' % fn) fn = 'decoder-ns.cc.inc' assert(fn in self.files) print('namespace %s {' % self.namespace, file=f) if splits > 1: print('#define __SPLIT %u' % i, file=f) print('#include "%s"' % fn, file=f) print('}', file=f) # instruction execution splits = self.splits[self.get_file('exec')] for i in range(1, splits+1): file = 'generic_cpu_exec.cc' if splits > 1: file = extn.sub(r'_%d\1' % i, file) with self.open(file) as f: fn = 'exec-g.cc.inc' assert(fn in self.files) f.write('#include "%s"\n' % fn) f.write('#include "cpu/exec_context.hh"\n') f.write('#include "decoder.hh"\n') fn = 'exec-ns.cc.inc' assert(fn in self.files) print('namespace %s {' % self.namespace, file=f) if splits > 1: print('#define __SPLIT %u' % i, file=f) print('#include "%s"' % fn, file=f) print('}', file=f) # max_inst_regs.hh self.update('max_inst_regs.hh', '''namespace %(namespace)s { const int MaxInstSrcRegs = %(maxInstSrcRegs)d; const int MaxInstDestRegs = %(maxInstDestRegs)d; const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self) scaremonger_template ='''// DO NOT EDIT // This file was automatically generated from an ISA description: // %(filename)s '''; ##################################################################### # # Lexer # # The PLY lexer module takes two things as input: # - A list of token names (the string list 'tokens') # - A regular expression describing a match for each token. The # regexp for token FOO can be provided in two ways: # - as a string variable named t_FOO # - as the doc string for a function named t_FOO. In this case, # the function is also executed, allowing an action to be # associated with each token match. # ##################################################################### # Reserved words. These are listed separately as they are matched # using the same regexp as generic IDs, but distinguished in the # t_ID() function. The PLY documentation suggests this approach. reserved = ( 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT', 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS', 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE' ) # List of tokens. The lex module requires this. tokens = reserved + ( # identifier 'ID', # integer literal 'INTLIT', # string literal 'STRLIT', # code literal 'CODELIT', # ( ) [ ] { } < > , ; . : :: * 'LPAREN', 'RPAREN', 'LBRACKET', 'RBRACKET', 'LBRACE', 'RBRACE', 'LESS', 'GREATER', 'EQUALS', 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON', 'ASTERISK', # C preprocessor directives 'CPPDIRECTIVE' # The following are matched but never returned. commented out to # suppress PLY warning # newfile directive # 'NEWFILE', # endfile directive # 'ENDFILE' ) # Regular expressions for token matching t_LPAREN = r'\(' t_RPAREN = r'\)' t_LBRACKET = r'\[' t_RBRACKET = r'\]' t_LBRACE = r'\{' t_RBRACE = r'\}' t_LESS = r'\<' t_GREATER = r'\>' t_EQUALS = r'=' t_COMMA = r',' t_SEMI = r';' t_DOT = r'\.' t_COLON = r':' t_DBLCOLON = r'::' t_ASTERISK = r'\*' # Identifiers and reserved words reserved_map = { } for r in reserved: reserved_map[r.lower()] = r def t_ID(self, t): r'[A-Za-z_]\w*' t.type = self.reserved_map.get(t.value, 'ID') return t # Integer literal def t_INTLIT(self, t): r'-?(0x[\da-fA-F]+)|\d+' try: t.value = int(t.value,0) except ValueError: error(t.lexer.lineno, 'Integer value "%s" too large' % t.value) t.value = 0 return t # String literal. Note that these use only single quotes, and # can span multiple lines. def t_STRLIT(self, t): r"(?m)'([^'])+'" # strip off quotes t.value = t.value[1:-1] t.lexer.lineno += t.value.count('\n') return t # "Code literal"... like a string literal, but delimiters are # '{{' and '}}' so they get formatted nicely under emacs c-mode def t_CODELIT(self, t): r"(?m)\{\{([^\}]|}(?!\}))+\}\}" # strip off {{ & }} t.value = t.value[2:-2] t.lexer.lineno += t.value.count('\n') return t def t_CPPDIRECTIVE(self, t): r'^\#[^\#].*\n' t.lexer.lineno += t.value.count('\n') return t def t_NEWFILE(self, t): r'^\#\#newfile\s+"[^"]*"\n' self.fileNameStack.push(t.lexer.lineno) t.lexer.lineno = LineTracker(t.value[11:-2]) def t_ENDFILE(self, t): r'^\#\#endfile\n' t.lexer.lineno = self.fileNameStack.pop() # # The functions t_NEWLINE, t_ignore, and t_error are # special for the lex module. # # Newlines def t_NEWLINE(self, t): r'\n+' t.lexer.lineno += t.value.count('\n') # Comments def t_comment(self, t): r'//.*' # Completely ignored characters t_ignore = ' \t\x0c' # Error handler def t_error(self, t): error(t.lexer.lineno, "illegal character '%s'" % t.value[0]) t.skip(1) ##################################################################### # # Parser # # Every function whose name starts with 'p_' defines a grammar # rule. The rule is encoded in the function's doc string, while # the function body provides the action taken when the rule is # matched. The argument to each function is a list of the values # of the rule's symbols: t[0] for the LHS, and t[1..n] for the # symbols on the RHS. For tokens, the value is copied from the # t.value attribute provided by the lexer. For non-terminals, the # value is assigned by the producing rule; i.e., the job of the # grammar rule function is to set the value for the non-terminal # on the LHS (by assigning to t[0]). ##################################################################### # The LHS of the first grammar rule is used as the start symbol # (in this case, 'specification'). Note that this rule enforces # that there will be exactly one namespace declaration, with 0 or # more global defs/decls before and after it. The defs & decls # before the namespace decl will be outside the namespace; those # after will be inside. The decoder function is always inside the # namespace. def p_specification(self, t): 'specification : opt_defs_and_outputs top_level_decode_block' for f in self.splits.iterkeys(): f.write('\n#endif\n') for f in self.files.itervalues(): # close ALL the files; f.close() # not doing so can cause compilation to fail self.write_top_level_files() t[0] = True # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or # output statements. Its productions do the hard work of eventually # instantiating a GenCode, which are generally emitted (written to disk) # as soon as possible, except for the decode_block, which has to be # accumulated into one large function of nested switch/case blocks. def p_opt_defs_and_outputs_0(self, t): 'opt_defs_and_outputs : empty' def p_opt_defs_and_outputs_1(self, t): 'opt_defs_and_outputs : defs_and_outputs' def p_defs_and_outputs_0(self, t): 'defs_and_outputs : def_or_output' def p_defs_and_outputs_1(self, t): 'defs_and_outputs : defs_and_outputs def_or_output' # The list of possible definition/output statements. # They are all processed as they are seen. def p_def_or_output(self, t): '''def_or_output : name_decl | def_format | def_bitfield | def_bitfield_struct | def_template | def_operand_types | def_operands | output | global_let | split''' # Utility function used by both invocations of splitting - explicit # 'split' keyword and split() function inside "let {{ }};" blocks. def split(self, sec, write=False): assert(sec != 'header' and "header cannot be split") f = self.get_file(sec) self.splits[f] += 1 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f] if write: f.write(s) else: return s # split output file to reduce compilation time def p_split(self, t): 'split : SPLIT output_type SEMI' assert(self.isa_name and "'split' not allowed before namespace decl") self.split(t[2], True) def p_output_type(self, t): '''output_type : DECODER | HEADER | EXEC''' t[0] = t[1] # ISA name declaration looks like "namespace ;" def p_name_decl(self, t): 'name_decl : NAMESPACE ID SEMI' assert(self.isa_name == None and "Only 1 namespace decl permitted") self.isa_name = t[2] self.namespace = t[2] + 'Inst' # Output blocks 'output {{...}}' (C++ code blocks) are copied # directly to the appropriate output section. # Massage output block by substituting in template definitions and # bit operators. We handle '%'s embedded in the string that don't # indicate template substitutions by doubling them first so that the # format operation will reduce them back to single '%'s. def process_output(self, s): s = self.protectNonSubstPercents(s) return substBitOps(s % self.templateMap) def p_output(self, t): 'output : OUTPUT output_type CODELIT SEMI' kwargs = { t[2]+'_output' : self.process_output(t[3]) } GenCode(self, **kwargs).emit() # global let blocks 'let {{...}}' (Python code blocks) are # executed directly when seen. Note that these execute in a # special variable context 'exportContext' to prevent the code # from polluting this script's namespace. def p_global_let(self, t): 'global_let : LET CODELIT SEMI' def _split(sec): return self.split(sec) self.updateExportContext() self.exportContext["header_output"] = '' self.exportContext["decoder_output"] = '' self.exportContext["exec_output"] = '' self.exportContext["decode_block"] = '' self.exportContext["split"] = _split split_setup = ''' def wrap(func): def split(sec): globals()[sec + '_output'] += func(sec) return split split = wrap(split) del wrap ''' # This tricky setup (immediately above) allows us to just write # (e.g.) "split('exec')" in the Python code and the split #ifdef's # will automatically be added to the exec_output variable. The inner # Python execution environment doesn't know about the split points, # so we carefully inject and wrap a closure that can retrieve the # next split's #define from the parser and add it to the current # emission-in-progress. try: exec split_setup+fixPythonIndentation(t[2]) in self.exportContext except Exception, exc: traceback.print_exc(file=sys.stdout) if debug: raise error(t.lineno(1), 'In global let block: %s' % exc) GenCode(self, header_output=self.exportContext["header_output"], decoder_output=self.exportContext["decoder_output"], exec_output=self.exportContext["exec_output"], decode_block=self.exportContext["decode_block"]).emit() # Define the mapping from operand type extensions to C++ types and # bit widths (stored in operandTypeMap). def p_def_operand_types(self, t): 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI' try: self.operandTypeMap = eval('{' + t[3] + '}') except Exception, exc: if debug: raise error(t.lineno(1), 'In def operand_types: %s' % exc) # Define the mapping from operand names to operand classes and # other traits. Stored in operandNameMap. def p_def_operands(self, t): 'def_operands : DEF OPERANDS CODELIT SEMI' if not hasattr(self, 'operandTypeMap'): error(t.lineno(1), 'error: operand types must be defined before operands') try: user_dict = eval('{' + t[3] + '}', self.exportContext) except Exception, exc: if debug: raise error(t.lineno(1), 'In def operands: %s' % exc) self.buildOperandNameMap(user_dict, t.lexer.lineno) # A bitfield definition looks like: # 'def [signed] bitfield [:]' # This generates a preprocessor macro in the output file. def p_def_bitfield_0(self, t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) GenCode(self, header_output=hash_define).emit() # alternate form for single bit: 'def [signed] bitfield []' def p_def_bitfield_1(self, t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (1, expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) GenCode(self, header_output=hash_define).emit() # alternate form for structure member: 'def bitfield ' def p_def_bitfield_struct(self, t): 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI' if (t[2] != ''): error(t.lineno(1), 'error: structure bitfields are always unsigned.') expr = 'machInst.%s' % t[5] hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) GenCode(self, header_output=hash_define).emit() def p_id_with_dot_0(self, t): 'id_with_dot : ID' t[0] = t[1] def p_id_with_dot_1(self, t): 'id_with_dot : ID DOT id_with_dot' t[0] = t[1] + t[2] + t[3] def p_opt_signed_0(self, t): 'opt_signed : SIGNED' t[0] = t[1] def p_opt_signed_1(self, t): 'opt_signed : empty' t[0] = '' def p_def_template(self, t): 'def_template : DEF TEMPLATE ID CODELIT SEMI' if t[3] in self.templateMap: print("warning: template %s already defined" % t[3]) self.templateMap[t[3]] = Template(self, t[4]) # An instruction format definition looks like # "def format () {{...}};" def p_def_format(self, t): 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' (id, params, code) = (t[3], t[5], t[7]) self.defFormat(id, params, code, t.lexer.lineno) # The formal parameter list for an instruction format is a # possibly empty list of comma-separated parameters. Positional # (standard, non-keyword) parameters must come first, followed by # keyword parameters, followed by a '*foo' parameter that gets # excess positional arguments (as in Python). Each of these three # parameter categories is optional. # # Note that we do not support the '**foo' parameter for collecting # otherwise undefined keyword args. Otherwise the parameter list # is (I believe) identical to what is supported in Python. # # The param list generates a tuple, where the first element is a # list of the positional params and the second element is a dict # containing the keyword params. def p_param_list_0(self, t): 'param_list : positional_param_list COMMA nonpositional_param_list' t[0] = t[1] + t[3] def p_param_list_1(self, t): '''param_list : positional_param_list | nonpositional_param_list''' t[0] = t[1] def p_positional_param_list_0(self, t): 'positional_param_list : empty' t[0] = [] def p_positional_param_list_1(self, t): 'positional_param_list : ID' t[0] = [t[1]] def p_positional_param_list_2(self, t): 'positional_param_list : positional_param_list COMMA ID' t[0] = t[1] + [t[3]] def p_nonpositional_param_list_0(self, t): 'nonpositional_param_list : keyword_param_list COMMA excess_args_param' t[0] = t[1] + t[3] def p_nonpositional_param_list_1(self, t): '''nonpositional_param_list : keyword_param_list | excess_args_param''' t[0] = t[1] def p_keyword_param_list_0(self, t): 'keyword_param_list : keyword_param' t[0] = [t[1]] def p_keyword_param_list_1(self, t): 'keyword_param_list : keyword_param_list COMMA keyword_param' t[0] = t[1] + [t[3]] def p_keyword_param(self, t): 'keyword_param : ID EQUALS expr' t[0] = t[1] + ' = ' + t[3].__repr__() def p_excess_args_param(self, t): 'excess_args_param : ASTERISK ID' # Just concatenate them: '*ID'. Wrap in list to be consistent # with positional_param_list and keyword_param_list. t[0] = [t[1] + t[2]] # End of format definition-related rules. ############## # # A decode block looks like: # decode [, ]* [default ] { ... } # def p_top_level_decode_block(self, t): 'top_level_decode_block : decode_block' codeObj = t[1] codeObj.wrap_decode_block(''' StaticInstPtr %(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst) { using namespace %(namespace)s; ''' % self, '}') codeObj.emit() def p_decode_block(self, t): 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' default_defaults = self.defaultStack.pop() codeObj = t[5] # use the "default defaults" only if there was no explicit # default statement in decode_stmt_list if not codeObj.has_decode_default: codeObj += default_defaults codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n') t[0] = codeObj # The opt_default statement serves only to push the "default # defaults" onto defaultStack. This value will be used by nested # decode blocks, and used and popped off when the current # decode_block is processed (in p_decode_block() above). def p_opt_default_0(self, t): 'opt_default : empty' # no default specified: reuse the one currently at the top of # the stack self.defaultStack.push(self.defaultStack.top()) # no meaningful value returned t[0] = None def p_opt_default_1(self, t): 'opt_default : DEFAULT inst' # push the new default codeObj = t[2] codeObj.wrap_decode_block('\ndefault:\n', 'break;\n') self.defaultStack.push(codeObj) # no meaningful value returned t[0] = None def p_decode_stmt_list_0(self, t): 'decode_stmt_list : decode_stmt' t[0] = t[1] def p_decode_stmt_list_1(self, t): 'decode_stmt_list : decode_stmt decode_stmt_list' if (t[1].has_decode_default and t[2].has_decode_default): error(t.lineno(1), 'Two default cases in decode block') t[0] = t[1] + t[2] # # Decode statement rules # # There are four types of statements allowed in a decode block: # 1. Format blocks 'format { ... }' # 2. Nested decode blocks # 3. Instruction definitions. # 4. C preprocessor directives. # Preprocessor directives found in a decode statement list are # passed through to the output, replicated to all of the output # code streams. This works well for ifdefs, so we can ifdef out # both the declarations and the decode cases generated by an # instruction definition. Handling them as part of the grammar # makes it easy to keep them in the right place with respect to # the code generated by the other statements. def p_decode_stmt_cpp(self, t): 'decode_stmt : CPPDIRECTIVE' t[0] = GenCode(self, t[1], t[1], t[1], t[1]) # A format block 'format { ... }' sets the default # instruction format used to handle instruction definitions inside # the block. This format can be overridden by using an explicit # format on the instruction definition or with a nested format # block. def p_decode_stmt_format(self, t): 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' # The format will be pushed on the stack when 'push_format_id' # is processed (see below). Once the parser has recognized # the full production (though the right brace), we're done # with the format, so now we can pop it. self.formatStack.pop() t[0] = t[4] # This rule exists so we can set the current format (& push the # stack) when we recognize the format name part of the format # block. def p_push_format_id(self, t): 'push_format_id : ID' try: self.formatStack.push(self.formatMap[t[1]]) t[0] = ('', '// format %s' % t[1]) except KeyError: error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) # Nested decode block: if the value of the current field matches # the specified constant(s), do a nested decode on some other field. def p_decode_stmt_decode(self, t): 'decode_stmt : case_list COLON decode_block' case_list = t[1] codeObj = t[3] # just wrap the decoding code from the block as a case in the # outer switch statement. codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list), 'M5_UNREACHABLE;\n') codeObj.has_decode_default = (case_list == ['default:']) t[0] = codeObj # Instruction definition (finally!). def p_decode_stmt_inst(self, t): 'decode_stmt : case_list COLON inst SEMI' case_list = t[1] codeObj = t[3] codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n') codeObj.has_decode_default = (case_list == ['default:']) t[0] = codeObj # The constant list for a decode case label must be non-empty, and must # either be the keyword 'default', or made up of one or more # comma-separated integer literals or strings which evaluate to # constants when compiled as C++. def p_case_list_0(self, t): 'case_list : DEFAULT' t[0] = ['default:'] def prep_int_lit_case_label(self, lit): if lit >= 2**32: return 'case ULL(%#x): ' % lit else: return 'case %#x: ' % lit def prep_str_lit_case_label(self, lit): return 'case %s: ' % lit def p_case_list_1(self, t): 'case_list : INTLIT' t[0] = [self.prep_int_lit_case_label(t[1])] def p_case_list_2(self, t): 'case_list : STRLIT' t[0] = [self.prep_str_lit_case_label(t[1])] def p_case_list_3(self, t): 'case_list : case_list COMMA INTLIT' t[0] = t[1] t[0].append(self.prep_int_lit_case_label(t[3])) def p_case_list_4(self, t): 'case_list : case_list COMMA STRLIT' t[0] = t[1] t[0].append(self.prep_str_lit_case_label(t[3])) # Define an instruction using the current instruction format # (specified by an enclosing format block). # "()" def p_inst_0(self, t): 'inst : ID LPAREN arg_list RPAREN' # Pass the ID and arg list to the current format class to deal with. currentFormat = self.formatStack.top() codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno) args = ','.join(map(str, t[3])) args = re.sub('(?m)^', '//', args) args = re.sub('^//', '', args) comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args) codeObj.prepend_all(comment) t[0] = codeObj # Define an instruction using an explicitly specified format: # "::()" def p_inst_1(self, t): 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' try: format = self.formatMap[t[1]] except KeyError: error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno) comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5]) codeObj.prepend_all(comment) t[0] = codeObj # The arg list generates a tuple, where the first element is a # list of the positional args and the second element is a dict # containing the keyword args. def p_arg_list_0(self, t): 'arg_list : positional_arg_list COMMA keyword_arg_list' t[0] = ( t[1], t[3] ) def p_arg_list_1(self, t): 'arg_list : positional_arg_list' t[0] = ( t[1], {} ) def p_arg_list_2(self, t): 'arg_list : keyword_arg_list' t[0] = ( [], t[1] ) def p_positional_arg_list_0(self, t): 'positional_arg_list : empty' t[0] = [] def p_positional_arg_list_1(self, t): 'positional_arg_list : expr' t[0] = [t[1]] def p_positional_arg_list_2(self, t): 'positional_arg_list : positional_arg_list COMMA expr' t[0] = t[1] + [t[3]] def p_keyword_arg_list_0(self, t): 'keyword_arg_list : keyword_arg' t[0] = t[1] def p_keyword_arg_list_1(self, t): 'keyword_arg_list : keyword_arg_list COMMA keyword_arg' t[0] = t[1] t[0].update(t[3]) def p_keyword_arg(self, t): 'keyword_arg : ID EQUALS expr' t[0] = { t[1] : t[3] } # # Basic expressions. These constitute the argument values of # "function calls" (i.e. instruction definitions in the decode # block) and default values for formal parameters of format # functions. # # Right now, these are either strings, integers, or (recursively) # lists of exprs (using Python square-bracket list syntax). Note # that bare identifiers are trated as string constants here (since # there isn't really a variable namespace to refer to). # def p_expr_0(self, t): '''expr : ID | INTLIT | STRLIT | CODELIT''' t[0] = t[1] def p_expr_1(self, t): '''expr : LBRACKET list_expr RBRACKET''' t[0] = t[2] def p_list_expr_0(self, t): 'list_expr : expr' t[0] = [t[1]] def p_list_expr_1(self, t): 'list_expr : list_expr COMMA expr' t[0] = t[1] + [t[3]] def p_list_expr_2(self, t): 'list_expr : empty' t[0] = [] # # Empty production... use in other rules for readability. # def p_empty(self, t): 'empty :' pass # Parse error handler. Note that the argument here is the # offending *token*, not a grammar symbol (hence the need to use # t.value) def p_error(self, t): if t: error(t.lexer.lineno, "syntax error at '%s'" % t.value) else: error("unknown syntax error") # END OF GRAMMAR RULES def updateExportContext(self): # create a continuation that allows us to grab the current parser def wrapInstObjParams(*args): return InstObjParams(self, *args) self.exportContext['InstObjParams'] = wrapInstObjParams self.exportContext.update(self.templateMap) def defFormat(self, id, params, code, lineno): '''Define a new format''' # make sure we haven't already defined this one if id in self.formatMap: error(lineno, 'format %s redefined.' % id) # create new object and store in global map self.formatMap[id] = Format(id, params, code) def protectNonSubstPercents(self, s): '''Protect any non-dict-substitution '%'s in a format string (i.e. those not followed by '(')''' return re.sub(r'%(?!\()', '%%', s) def buildOperandNameMap(self, user_dict, lineno): operand_name = {} for op_name, val in user_dict.iteritems(): # Check if extra attributes have been specified. if len(val) > 9: error(lineno, 'error: too many attributes for operand "%s"' % base_cls_name) # Pad val with None in case optional args are missing val += (None, None, None, None) base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \ read_code, write_code, read_predicate, write_predicate = val[:9] # Canonical flag structure is a triple of lists, where each list # indicates the set of flags implied by this operand always, when # used as a source, and when used as a dest, respectively. # For simplicity this can be initialized using a variety of fairly # obvious shortcuts; we convert these to canonical form here. if not flags: # no flags specified (e.g., 'None') flags = ( [], [], [] ) elif isinstance(flags, str): # a single flag: assumed to be unconditional flags = ( [ flags ], [], [] ) elif isinstance(flags, list): # a list of flags: also assumed to be unconditional flags = ( flags, [], [] ) elif isinstance(flags, tuple): # it's a tuple: it should be a triple, # but each item could be a single string or a list (uncond_flags, src_flags, dest_flags) = flags flags = (makeList(uncond_flags), makeList(src_flags), makeList(dest_flags)) # Accumulate attributes of new operand class in tmp_dict tmp_dict = {} attrList = ['reg_spec', 'flags', 'sort_pri', 'read_code', 'write_code', 'read_predicate', 'write_predicate'] if dflt_ext: dflt_ctype = self.operandTypeMap[dflt_ext] attrList.extend(['dflt_ctype', 'dflt_ext']) # reg_spec is either just a string or a dictionary # (for elems of vector) if isinstance(reg_spec, tuple): (reg_spec, elem_spec) = reg_spec if isinstance(elem_spec, str): attrList.append('elem_spec') else: assert(isinstance(elem_spec, dict)) elems = elem_spec attrList.append('elems') for attr in attrList: tmp_dict[attr] = eval(attr) tmp_dict['base_name'] = op_name # New class name will be e.g. "IntReg_Ra" cls_name = base_cls_name + '_' + op_name # Evaluate string arg to get class object. Note that the # actual base class for "IntReg" is "IntRegOperand", i.e. we # have to append "Operand". try: base_cls = eval(base_cls_name + 'Operand') except NameError: error(lineno, 'error: unknown operand base class "%s"' % base_cls_name) # The following statement creates a new class called # as a subclass of with the attributes # in tmp_dict, just as if we evaluated a class declaration. operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict) self.operandNameMap = operand_name # Define operand variables. operands = user_dict.keys() # Add the elems defined in the vector operands and # build a map elem -> vector (used in OperandList) elem_to_vec = {} for op in user_dict.keys(): if hasattr(self.operandNameMap[op], 'elems'): for elem in self.operandNameMap[op].elems.keys(): operands.append(elem) elem_to_vec[elem] = op self.elemToVector = elem_to_vec extensions = self.operandTypeMap.keys() operandsREString = r''' (?[^"]*)".*$', re.MULTILINE) def replace_include(self, matchobj, dirname): """Function to replace a matched '##include' directive with the contents of the specified file (with nested ##includes replaced recursively). 'matchobj' is an re match object (from a match of includeRE) and 'dirname' is the directory relative to which the file path should be resolved.""" fname = matchobj.group('filename') full_fname = os.path.normpath(os.path.join(dirname, fname)) contents = '##newfile "%s"\n%s\n##endfile\n' % \ (full_fname, self.read_and_flatten(full_fname)) return contents def read_and_flatten(self, filename): """Read a file and recursively flatten nested '##include' files.""" current_dir = os.path.dirname(filename) try: contents = open(filename).read() except IOError: error('Error including file "%s"' % filename) self.fileNameStack.push(LineTracker(filename)) # Find any includes and include them def replace(matchobj): return self.replace_include(matchobj, current_dir) contents = self.includeRE.sub(replace, contents) self.fileNameStack.pop() return contents AlreadyGenerated = {} def _parse_isa_desc(self, isa_desc_file): '''Read in and parse the ISA description.''' # The build system can end up running the ISA parser twice: once to # finalize the build dependencies, and then to actually generate # the files it expects (in src/arch/$ARCH/generated). This code # doesn't do anything different either time, however; the SCons # invocations just expect different things. Since this code runs # within SCons, we can just remember that we've already run and # not perform a completely unnecessary run, since the ISA parser's # effect is idempotent. if isa_desc_file in ISAParser.AlreadyGenerated: return # grab the last three path components of isa_desc_file self.filename = '/'.join(isa_desc_file.split('/')[-3:]) # Read file and (recursively) all included files into a string. # PLY requires that the input be in a single string so we have to # do this up front. isa_desc = self.read_and_flatten(isa_desc_file) # Initialize lineno tracker self.lex.lineno = LineTracker(isa_desc_file) # Parse. self.parse_string(isa_desc) ISAParser.AlreadyGenerated[isa_desc_file] = None def parse_isa_desc(self, *args, **kwargs): try: self._parse_isa_desc(*args, **kwargs) except ISAParserError, e: print(backtrace(self.fileNameStack)) print("At %s:" % e.lineno) print(e) sys.exit(1) # Called as script: get args from command line. # Args are: if __name__ == '__main__': ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])