/* * Copyright (c) 2009-2014, 2016-2019 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi */ #include "arch/arm/utility.hh" #include #include "arch/arm/faults.hh" #include "arch/arm/isa_traits.hh" #include "arch/arm/system.hh" #include "arch/arm/tlb.hh" #include "arch/arm/vtophys.hh" #include "cpu/base.hh" #include "cpu/checker/cpu.hh" #include "cpu/thread_context.hh" #include "mem/fs_translating_port_proxy.hh" #include "sim/full_system.hh" namespace ArmISA { void initCPU(ThreadContext *tc, int cpuId) { // Reset CP15?? What does that mean -- ali // FPEXC.EN = 0 static Fault reset = std::make_shared(); reset->invoke(tc); } uint64_t getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp) { if (!FullSystem) { panic("getArgument() only implemented for full system mode.\n"); M5_DUMMY_RETURN } if (fp) panic("getArgument(): Floating point arguments not implemented\n"); if (inAArch64(tc)) { if (size == (uint16_t)(-1)) size = sizeof(uint64_t); if (number < 8 /*NumArgumentRegs64*/) { return tc->readIntReg(number); } else { panic("getArgument(): No support reading stack args for AArch64\n"); } } else { if (size == (uint16_t)(-1)) // todo: should this not be sizeof(uint32_t) rather? size = ArmISA::MachineBytes; if (number < NumArgumentRegs) { // If the argument is 64 bits, it must be in an even regiser // number. Increment the number here if it isn't even. if (size == sizeof(uint64_t)) { if ((number % 2) != 0) number++; // Read the two halves of the data. Number is inc here to // get the second half of the 64 bit reg. uint64_t tmp; tmp = tc->readIntReg(number++); tmp |= tc->readIntReg(number) << 32; return tmp; } else { return tc->readIntReg(number); } } else { Addr sp = tc->readIntReg(StackPointerReg); PortProxy &vp = tc->getVirtProxy(); uint64_t arg; if (size == sizeof(uint64_t)) { // If the argument is even it must be aligned if ((number % 2) != 0) number++; arg = vp.read(sp + (number-NumArgumentRegs) * sizeof(uint32_t)); // since two 32 bit args == 1 64 bit arg, increment number number++; } else { arg = vp.read(sp + (number-NumArgumentRegs) * sizeof(uint32_t)); } return arg; } } panic("getArgument() should always return\n"); } void skipFunction(ThreadContext *tc) { PCState newPC = tc->pcState(); if (inAArch64(tc)) { newPC.set(tc->readIntReg(INTREG_X30)); } else { newPC.set(tc->readIntReg(ReturnAddressReg) & ~ULL(1)); } CheckerCPU *checker = tc->getCheckerCpuPtr(); if (checker) { tc->pcStateNoRecord(newPC); } else { tc->pcState(newPC); } } static void copyVecRegs(ThreadContext *src, ThreadContext *dest) { auto src_mode = RenameMode::mode(src->pcState()); // The way vector registers are copied (VecReg vs VecElem) is relevant // in the O3 model only. if (src_mode == Enums::Full) { for (auto idx = 0; idx < NumVecRegs; idx++) dest->setVecRegFlat(idx, src->readVecRegFlat(idx)); } else { for (auto idx = 0; idx < NumVecRegs; idx++) for (auto elem_idx = 0; elem_idx < NumVecElemPerVecReg; elem_idx++) dest->setVecElemFlat( idx, elem_idx, src->readVecElemFlat(idx, elem_idx)); } } void copyRegs(ThreadContext *src, ThreadContext *dest) { for (int i = 0; i < NumIntRegs; i++) dest->setIntRegFlat(i, src->readIntRegFlat(i)); for (int i = 0; i < NumFloatRegs; i++) dest->setFloatRegFlat(i, src->readFloatRegFlat(i)); for (int i = 0; i < NumCCRegs; i++) dest->setCCReg(i, src->readCCReg(i)); for (int i = 0; i < NumMiscRegs; i++) dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i)); copyVecRegs(src, dest); // setMiscReg "with effect" will set the misc register mapping correctly. // e.g. updateRegMap(val) dest->setMiscReg(MISCREG_CPSR, src->readMiscRegNoEffect(MISCREG_CPSR)); // Copy over the PC State dest->pcState(src->pcState()); // Invalidate the tlb misc register cache dynamic_cast(dest->getITBPtr())->invalidateMiscReg(); dynamic_cast(dest->getDTBPtr())->invalidateMiscReg(); } bool inSecureState(ThreadContext *tc) { SCR scr = inAArch64(tc) ? tc->readMiscReg(MISCREG_SCR_EL3) : tc->readMiscReg(MISCREG_SCR); return ArmSystem::haveSecurity(tc) && inSecureState( scr, tc->readMiscReg(MISCREG_CPSR)); } inline bool isSecureBelowEL3(ThreadContext *tc) { SCR scr = tc->readMiscReg(MISCREG_SCR_EL3); return ArmSystem::haveEL(tc, EL3) && scr.ns == 0; } bool inAArch64(ThreadContext *tc) { CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); return opModeIs64((OperatingMode) (uint8_t) cpsr.mode); } bool longDescFormatInUse(ThreadContext *tc) { TTBCR ttbcr = tc->readMiscReg(MISCREG_TTBCR); return ArmSystem::haveLPAE(tc) && ttbcr.eae; } RegVal readMPIDR(ArmSystem *arm_sys, ThreadContext *tc) { CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); const ExceptionLevel current_el = opModeToEL((OperatingMode) (uint8_t) cpsr.mode); const bool is_secure = isSecureBelowEL3(tc); switch (current_el) { case EL0: // Note: in MsrMrs instruction we read the register value before // checking access permissions. This means that EL0 entry must // be part of the table even if MPIDR is not accessible in user // mode. warn_once("Trying to read MPIDR at EL0\n"); M5_FALLTHROUGH; case EL1: if (ArmSystem::haveEL(tc, EL2) && !is_secure) return tc->readMiscReg(MISCREG_VMPIDR_EL2); else return getMPIDR(arm_sys, tc); case EL2: case EL3: return getMPIDR(arm_sys, tc); default: panic("Invalid EL for reading MPIDR register\n"); } } RegVal getMPIDR(ArmSystem *arm_sys, ThreadContext *tc) { // Multiprocessor Affinity Register MPIDR from Cortex(tm)-A15 Technical // Reference Manual // // bit 31 - Multi-processor extensions available // bit 30 - Uni-processor system // bit 24 - Multi-threaded cores // bit 11-8 - Cluster ID // bit 1-0 - CPU ID // // We deliberately extend both the Cluster ID and CPU ID fields to allow // for simulation of larger systems assert((0 <= tc->cpuId()) && (tc->cpuId() < 256)); assert(tc->socketId() < 65536); if (arm_sys->multiThread) { return 0x80000000 | // multiprocessor extensions available 0x01000000 | // multi-threaded cores tc->contextId(); } else if (arm_sys->multiProc) { return 0x80000000 | // multiprocessor extensions available tc->cpuId() | tc->socketId() << 8; } else { return 0x80000000 | // multiprocessor extensions available 0x40000000 | // in up system tc->cpuId() | tc->socketId() << 8; } } bool ELIs64(ThreadContext *tc, ExceptionLevel el) { return !ELIs32(tc, el); } bool ELIs32(ThreadContext *tc, ExceptionLevel el) { bool known, aarch32; std::tie(known, aarch32) = ELUsingAArch32K(tc, el); panic_if(!known, "EL state is UNKNOWN"); return aarch32; } bool ELIsInHost(ThreadContext *tc, ExceptionLevel el) { if (!ArmSystem::haveVirtualization(tc)) { return false; } HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2); return (!isSecureBelowEL3(tc) && !ELIs32(tc, EL2) && hcr.e2h == 1 && (el == EL2 || (el == EL0 && hcr.tge == 1))); } std::pair ELUsingAArch32K(ThreadContext *tc, ExceptionLevel el) { // Return true if the specified EL is in aarch32 state. const bool have_el3 = ArmSystem::haveSecurity(tc); const bool have_el2 = ArmSystem::haveVirtualization(tc); panic_if(el == EL2 && !have_el2, "Asking for EL2 when it doesn't exist"); panic_if(el == EL3 && !have_el3, "Asking for EL3 when it doesn't exist"); bool known, aarch32; known = aarch32 = false; if (ArmSystem::highestELIs64(tc) && ArmSystem::highestEL(tc) == el) { // Target EL is the highest one in a system where // the highest is using AArch64. known = true; aarch32 = false; } else if (!ArmSystem::highestELIs64(tc)) { // All ELs are using AArch32: known = true; aarch32 = true; } else { SCR scr = tc->readMiscReg(MISCREG_SCR_EL3); bool aarch32_below_el3 = (have_el3 && scr.rw == 0); HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2); bool aarch32_at_el1 = (aarch32_below_el3 || (have_el2 && !isSecureBelowEL3(tc) && hcr.rw == 0)); // Only know if EL0 using AArch32 from PSTATE if (el == EL0 && !aarch32_at_el1) { // EL0 controlled by PSTATE CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); known = (cpsr.el == EL0); aarch32 = (cpsr.width == 1); } else { known = true; aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && (el == EL0 || el == EL1) ); } } return std::make_pair(known, aarch32); } bool isBigEndian64(ThreadContext *tc) { switch (opModeToEL(currOpMode(tc))) { case EL3: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).ee; case EL2: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).ee; case EL1: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).ee; case EL0: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).e0e; default: panic("Invalid exception level"); break; } } bool badMode32(ThreadContext *tc, OperatingMode mode) { return unknownMode32(mode) || !ArmSystem::haveEL(tc, opModeToEL(mode)); } bool badMode(ThreadContext *tc, OperatingMode mode) { return unknownMode(mode) || !ArmSystem::haveEL(tc, opModeToEL(mode)); } Addr purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el, TTBCR tcr) { switch (el) { case EL0: case EL1: if (bits(addr, 55, 48) == 0xFF && tcr.tbi1) return addr | mask(63, 55); else if (!bits(addr, 55, 48) && tcr.tbi0) return bits(addr,55, 0); break; case EL2: assert(ArmSystem::haveVirtualization(tc)); tcr = tc->readMiscReg(MISCREG_TCR_EL2); if (tcr.tbi) return addr & mask(56); break; case EL3: assert(ArmSystem::haveSecurity(tc)); if (tcr.tbi) return addr & mask(56); break; default: panic("Invalid exception level"); break; } return addr; // Nothing to do if this is not a tagged address } Addr purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el) { TTBCR tcr; switch (el) { case EL0: case EL1: tcr = tc->readMiscReg(MISCREG_TCR_EL1); if (bits(addr, 55, 48) == 0xFF && tcr.tbi1) return addr | mask(63, 55); else if (!bits(addr, 55, 48) && tcr.tbi0) return bits(addr,55, 0); break; case EL2: assert(ArmSystem::haveVirtualization(tc)); tcr = tc->readMiscReg(MISCREG_TCR_EL2); if (tcr.tbi) return addr & mask(56); break; case EL3: assert(ArmSystem::haveSecurity(tc)); tcr = tc->readMiscReg(MISCREG_TCR_EL3); if (tcr.tbi) return addr & mask(56); break; default: panic("Invalid exception level"); break; } return addr; // Nothing to do if this is not a tagged address } Addr truncPage(Addr addr) { return addr & ~(PageBytes - 1); } Addr roundPage(Addr addr) { return (addr + PageBytes - 1) & ~(PageBytes - 1); } bool mcrMrc15TrapToHyp(const MiscRegIndex miscReg, ThreadContext *tc, uint32_t iss) { bool isRead; uint32_t crm; IntRegIndex rt; uint32_t crn; uint32_t opc1; uint32_t opc2; bool trapToHype = false; const CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); const HCR hcr = tc->readMiscReg(MISCREG_HCR); const SCR scr = tc->readMiscReg(MISCREG_SCR); const HDCR hdcr = tc->readMiscReg(MISCREG_HDCR); const HSTR hstr = tc->readMiscReg(MISCREG_HSTR); const HCPTR hcptr = tc->readMiscReg(MISCREG_HCPTR); if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) { mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2); trapToHype = ((uint32_t) hstr) & (1 << crn); trapToHype |= hdcr.tpm && (crn == 9) && (crm >= 12); trapToHype |= hcr.tidcp && ( ((crn == 9) && ((crm <= 2) || ((crm >= 5) && (crm <= 8)))) || ((crn == 10) && ((crm <= 1) || (crm == 4) || (crm == 8))) || ((crn == 11) && ((crm <= 8) || (crm == 15))) ); if (!trapToHype) { switch (unflattenMiscReg(miscReg)) { case MISCREG_CPACR: trapToHype = hcptr.tcpac; break; case MISCREG_REVIDR: case MISCREG_TCMTR: case MISCREG_TLBTR: case MISCREG_AIDR: trapToHype = hcr.tid1; break; case MISCREG_CTR: case MISCREG_CCSIDR: case MISCREG_CLIDR: case MISCREG_CSSELR: trapToHype = hcr.tid2; break; case MISCREG_ID_PFR0: case MISCREG_ID_PFR1: case MISCREG_ID_DFR0: case MISCREG_ID_AFR0: case MISCREG_ID_MMFR0: case MISCREG_ID_MMFR1: case MISCREG_ID_MMFR2: case MISCREG_ID_MMFR3: case MISCREG_ID_ISAR0: case MISCREG_ID_ISAR1: case MISCREG_ID_ISAR2: case MISCREG_ID_ISAR3: case MISCREG_ID_ISAR4: case MISCREG_ID_ISAR5: trapToHype = hcr.tid3; break; case MISCREG_DCISW: case MISCREG_DCCSW: case MISCREG_DCCISW: trapToHype = hcr.tsw; break; case MISCREG_DCIMVAC: case MISCREG_DCCIMVAC: case MISCREG_DCCMVAC: trapToHype = hcr.tpc; break; case MISCREG_ICIMVAU: case MISCREG_ICIALLU: case MISCREG_ICIALLUIS: case MISCREG_DCCMVAU: trapToHype = hcr.tpu; break; case MISCREG_TLBIALLIS: case MISCREG_TLBIMVAIS: case MISCREG_TLBIASIDIS: case MISCREG_TLBIMVAAIS: case MISCREG_TLBIMVALIS: case MISCREG_TLBIMVAALIS: case MISCREG_DTLBIALL: case MISCREG_ITLBIALL: case MISCREG_DTLBIMVA: case MISCREG_ITLBIMVA: case MISCREG_DTLBIASID: case MISCREG_ITLBIASID: case MISCREG_TLBIMVAA: case MISCREG_TLBIALL: case MISCREG_TLBIMVA: case MISCREG_TLBIMVAL: case MISCREG_TLBIMVAAL: case MISCREG_TLBIASID: trapToHype = hcr.ttlb; break; case MISCREG_ACTLR: trapToHype = hcr.tac; break; case MISCREG_SCTLR: case MISCREG_TTBR0: case MISCREG_TTBR1: case MISCREG_TTBCR: case MISCREG_DACR: case MISCREG_DFSR: case MISCREG_IFSR: case MISCREG_DFAR: case MISCREG_IFAR: case MISCREG_ADFSR: case MISCREG_AIFSR: case MISCREG_PRRR: case MISCREG_NMRR: case MISCREG_MAIR0: case MISCREG_MAIR1: case MISCREG_CONTEXTIDR: trapToHype = hcr.tvm & !isRead; break; case MISCREG_PMCR: trapToHype = hdcr.tpmcr; break; // GICv3 regs case MISCREG_ICC_SGI0R: if (tc->getIsaPtr()->haveGICv3CpuIfc()) trapToHype = hcr.fmo; break; case MISCREG_ICC_SGI1R: case MISCREG_ICC_ASGI1R: if (tc->getIsaPtr()->haveGICv3CpuIfc()) trapToHype = hcr.imo; break; // No default action needed default: break; } } } return trapToHype; } bool mcrMrc14TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr, HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss) { bool isRead; uint32_t crm; IntRegIndex rt; uint32_t crn; uint32_t opc1; uint32_t opc2; bool trapToHype = false; if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) { mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2); inform("trap check M:%x N:%x 1:%x 2:%x hdcr %x, hcptr %x, hstr %x\n", crm, crn, opc1, opc2, hdcr, hcptr, hstr); trapToHype = hdcr.tda && (opc1 == 0); trapToHype |= hcptr.tta && (opc1 == 1); if (!trapToHype) { switch (unflattenMiscReg(miscReg)) { case MISCREG_DBGOSLSR: case MISCREG_DBGOSLAR: case MISCREG_DBGOSDLR: case MISCREG_DBGPRCR: trapToHype = hdcr.tdosa; break; case MISCREG_DBGDRAR: case MISCREG_DBGDSAR: trapToHype = hdcr.tdra; break; case MISCREG_JIDR: trapToHype = hcr.tid0; break; case MISCREG_JOSCR: case MISCREG_JMCR: trapToHype = hstr.tjdbx; break; case MISCREG_TEECR: case MISCREG_TEEHBR: trapToHype = hstr.ttee; break; // No default action needed default: break; } } } return trapToHype; } bool mcrrMrrc15TrapToHyp(const MiscRegIndex miscReg, CPSR cpsr, SCR scr, HSTR hstr, HCR hcr, uint32_t iss) { uint32_t crm; IntRegIndex rt; uint32_t crn; uint32_t opc1; uint32_t opc2; bool isRead; bool trapToHype = false; if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) { // This is technically the wrong function, but we can re-use it for // the moment because we only need one field, which overlaps with the // mcrmrc layout mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2); trapToHype = ((uint32_t) hstr) & (1 << crm); if (!trapToHype) { switch (unflattenMiscReg(miscReg)) { case MISCREG_SCTLR: case MISCREG_TTBR0: case MISCREG_TTBR1: case MISCREG_TTBCR: case MISCREG_DACR: case MISCREG_DFSR: case MISCREG_IFSR: case MISCREG_DFAR: case MISCREG_IFAR: case MISCREG_ADFSR: case MISCREG_AIFSR: case MISCREG_PRRR: case MISCREG_NMRR: case MISCREG_MAIR0: case MISCREG_MAIR1: case MISCREG_CONTEXTIDR: trapToHype = hcr.tvm & !isRead; break; // No default action needed default: break; } } } return trapToHype; } bool decodeMrsMsrBankedReg(uint8_t sysM, bool r, bool &isIntReg, int ®Idx, CPSR cpsr, SCR scr, NSACR nsacr, bool checkSecurity) { OperatingMode mode = MODE_UNDEFINED; bool ok = true; // R mostly indicates if its a int register or a misc reg, we override // below if the few corner cases isIntReg = !r; // Loosely based on ARM ARM issue C section B9.3.10 if (r) { switch (sysM) { case 0xE: regIdx = MISCREG_SPSR_FIQ; mode = MODE_FIQ; break; case 0x10: regIdx = MISCREG_SPSR_IRQ; mode = MODE_IRQ; break; case 0x12: regIdx = MISCREG_SPSR_SVC; mode = MODE_SVC; break; case 0x14: regIdx = MISCREG_SPSR_ABT; mode = MODE_ABORT; break; case 0x16: regIdx = MISCREG_SPSR_UND; mode = MODE_UNDEFINED; break; case 0x1C: regIdx = MISCREG_SPSR_MON; mode = MODE_MON; break; case 0x1E: regIdx = MISCREG_SPSR_HYP; mode = MODE_HYP; break; default: ok = false; break; } } else { int sysM4To3 = bits(sysM, 4, 3); if (sysM4To3 == 0) { mode = MODE_USER; regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8); } else if (sysM4To3 == 1) { mode = MODE_FIQ; regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8); } else if (sysM4To3 == 3) { if (bits(sysM, 1) == 0) { mode = MODE_MON; regIdx = intRegInMode(mode, 14 - bits(sysM, 0)); } else { mode = MODE_HYP; if (bits(sysM, 0) == 1) { regIdx = intRegInMode(mode, 13); // R13 in HYP } else { isIntReg = false; regIdx = MISCREG_ELR_HYP; } } } else { // Other Banked registers int sysM2 = bits(sysM, 2); int sysM1 = bits(sysM, 1); mode = (OperatingMode) ( ((sysM2 || sysM1) << 0) | (1 << 1) | ((sysM2 && !sysM1) << 2) | ((sysM2 && sysM1) << 3) | (1 << 4) ); regIdx = intRegInMode(mode, 14 - bits(sysM, 0)); // Don't flatten the register here. This is going to go through // setIntReg() which will do the flattening ok &= mode != cpsr.mode; } } // Check that the requested register is accessable from the current mode if (ok && checkSecurity && mode != cpsr.mode) { switch (cpsr.mode) { case MODE_USER: ok = false; break; case MODE_FIQ: ok &= mode != MODE_HYP; ok &= (mode != MODE_MON) || !scr.ns; break; case MODE_HYP: ok &= mode != MODE_MON; ok &= (mode != MODE_FIQ) || !nsacr.rfr; break; case MODE_IRQ: case MODE_SVC: case MODE_ABORT: case MODE_UNDEFINED: case MODE_SYSTEM: ok &= mode != MODE_HYP; ok &= (mode != MODE_MON) || !scr.ns; ok &= (mode != MODE_FIQ) || !nsacr.rfr; break; // can access everything, no further checks required case MODE_MON: break; default: panic("unknown Mode 0x%x\n", cpsr.mode); break; } } return (ok); } bool SPAlignmentCheckEnabled(ThreadContext* tc) { switch (opModeToEL(currOpMode(tc))) { case EL3: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).sa; case EL2: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).sa; case EL1: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa; case EL0: return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa0; default: panic("Invalid exception level"); break; } } int decodePhysAddrRange64(uint8_t pa_enc) { switch (pa_enc) { case 0x0: return 32; case 0x1: return 36; case 0x2: return 40; case 0x3: return 42; case 0x4: return 44; case 0x5: case 0x6: case 0x7: return 48; default: panic("Invalid phys. address range encoding"); } } uint8_t encodePhysAddrRange64(int pa_size) { switch (pa_size) { case 32: return 0x0; case 36: return 0x1; case 40: return 0x2; case 42: return 0x3; case 44: return 0x4; case 48: return 0x5; default: panic("Invalid phys. address range"); } } } // namespace ArmISA