// -*- mode:c++ -*- // Copyright (c) 2007-2008 The Florida State University // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer; // redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution; // neither the name of the copyright holders nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: Stephen Hines //////////////////////////////////////////////////////////////////// // // Predicated Instruction Execution // output header {{ #include enum ArmPredicateBits { COND_EQ = 0, COND_NE, // 1 COND_CS, // 2 COND_CC, // 3 COND_MI, // 4 COND_PL, // 5 COND_VS, // 6 COND_VC, // 7 COND_HI, // 8 COND_LS, // 9 COND_GE, // 10 COND_LT, // 11 COND_GT, // 12 COND_LE, // 13 COND_AL, // 14 COND_NV // 15 }; inline uint32_t rotate_imm(uint32_t immValue, uint32_t rotateValue) { return ((immValue >> (int)(rotateValue & 31)) | (immValue << (32 - (int)(rotateValue & 31)))); } inline uint32_t nSet(uint32_t cpsr) { return cpsr & (1<<31); } inline uint32_t zSet(uint32_t cpsr) { return cpsr & (1<<30); } inline uint32_t cSet(uint32_t cpsr) { return cpsr & (1<<29); } inline uint32_t vSet(uint32_t cpsr) { return cpsr & (1<<28); } inline bool arm_predicate(uint32_t cpsr, uint32_t predBits) { enum ArmPredicateBits armPredBits = (enum ArmPredicateBits) predBits; uint32_t result = 0; switch (armPredBits) { case COND_EQ: result = zSet(cpsr); break; case COND_NE: result = !zSet(cpsr); break; case COND_CS: result = cSet(cpsr); break; case COND_CC: result = !cSet(cpsr); break; case COND_MI: result = nSet(cpsr); break; case COND_PL: result = !nSet(cpsr); break; case COND_VS: result = vSet(cpsr); break; case COND_VC: result = !vSet(cpsr); break; case COND_HI: result = cSet(cpsr) && !zSet(cpsr); break; case COND_LS: result = !cSet(cpsr) || zSet(cpsr); break; case COND_GE: result = (!nSet(cpsr) && !vSet(cpsr)) || (nSet(cpsr) && vSet(cpsr)); break; case COND_LT: result = (nSet(cpsr) && !vSet(cpsr)) || (!nSet(cpsr) && vSet(cpsr)); break; case COND_GT: result = (!nSet(cpsr) && !vSet(cpsr) && !zSet(cpsr)) || (nSet(cpsr) && vSet(cpsr) && !zSet(cpsr)); break; case COND_LE: result = (nSet(cpsr) && !vSet(cpsr)) || (!nSet(cpsr) && vSet(cpsr)) || zSet(cpsr); break; case COND_AL: result = 1; break; case COND_NV: result = 0; break; default: fprintf(stderr, "Unhandled predicate condition: %d\n", armPredBits); exit(1); } if (result) return true; else return false; } /** * Base class for predicated integer operations. */ class PredOp : public ArmStaticInst { protected: uint32_t condCode; /// Constructor PredOp(const char *mnem, MachInst _machInst, OpClass __opClass) : ArmStaticInst(mnem, _machInst, __opClass), condCode(COND_CODE) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for predicated immediate operations. */ class PredImmOp : public PredOp { protected: uint32_t imm; uint32_t rotate; uint32_t rotated_imm; uint32_t rotated_carry; /// Constructor PredImmOp(const char *mnem, MachInst _machInst, OpClass __opClass) : PredOp(mnem, _machInst, __opClass), imm(IMM), rotate(ROTATE << 1), rotated_imm(0), rotated_carry(0) { rotated_imm = rotate_imm(imm, rotate); if (rotate != 0) rotated_carry = (rotated_imm >> 31) & 1; } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for predicated integer operations. */ class PredIntOp : public PredOp { protected: uint32_t shift_size; uint32_t shift; /// Constructor PredIntOp(const char *mnem, MachInst _machInst, OpClass __opClass) : PredOp(mnem, _machInst, __opClass), shift_size(SHIFT_SIZE), shift(SHIFT) { } std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for predicated macro-operations. */ class PredMacroOp : public PredOp { protected: uint32_t numMicroops; StaticInstPtr * microOps; /// Constructor PredMacroOp(const char *mnem, MachInst _machInst, OpClass __opClass) : PredOp(mnem, _machInst, __opClass), numMicroops(0) { // We rely on the subclasses of this object to handle the // initialization of the micro-operations, since they are // all of variable length flags[IsMacroop] = true; } ~PredMacroOp() { if (numMicroops) delete [] microOps; } StaticInstPtr fetchMicroop(MicroPC microPC) { assert(microPC < numMicroops); return microOps[microPC]; } %(BasicExecPanic)s std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const; }; /** * Base class for predicated micro-operations. */ class PredMicroop : public PredOp { /// Constructor PredMicroop(const char *mnem, MachInst _machInst, OpClass __opClass) : PredOp(mnem, _machInst, __opClass) { flags[IsMicroop] = true; } }; }}; def template PredOpExecute {{ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const { Fault fault = NoFault; %(fp_enable_check)s; %(op_decl)s; %(op_rd)s; %(code)s; if (arm_predicate(xc->readMiscReg(ArmISA::CPSR), condCode)) { if (fault == NoFault) { %(op_wb)s; } } else return NoFault; // Predicated false instructions should not return faults return fault; } }}; //Outputs to decoder.cc output decoder {{ std::string PredOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); if (_numDestRegs > 0) { printReg(ss, _destRegIdx[0]); } ss << ", "; if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); ss << ", "; } return ss.str(); } std::string PredImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); if (_numDestRegs > 0) { printReg(ss, _destRegIdx[0]); } ss << ", "; if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); ss << ", "; } return ss.str(); } std::string PredIntOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); if (_numDestRegs > 0) { printReg(ss, _destRegIdx[0]); } ss << ", "; if (_numSrcRegs > 0) { printReg(ss, _srcRegIdx[0]); ss << ", "; } return ss.str(); } std::string PredMacroOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const { std::stringstream ss; ccprintf(ss, "%-10s ", mnemonic); return ss.str(); } }}; let {{ calcCcCode = ''' uint16_t _ic, _iv, _iz, _in; _in = (resTemp >> 31) & 1; _iz = (resTemp == 0); _iv = %(ivValue)s & 1; _ic = %(icValue)s & 1; Cpsr = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 | (Cpsr & 0x0FFFFFFF); DPRINTF(Arm, "in = %%d\\n", _in); DPRINTF(Arm, "iz = %%d\\n", _iz); DPRINTF(Arm, "ic = %%d\\n", _ic); DPRINTF(Arm, "iv = %%d\\n", _iv); ''' }}; def format PredOp(code, *opt_flags) {{ iop = InstObjParams(name, Name, 'PredOp', code, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = PredOpExecute.subst(iop) }}; def format PredImmOp(code, *opt_flags) {{ iop = InstObjParams(name, Name, 'PredImmOp', code, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = PredOpExecute.subst(iop) }}; def format PredImmOpCc(code, icValue, ivValue, *opt_flags) {{ ccCode = calcCcCode % vars() code += ccCode; iop = InstObjParams(name, Name, 'PredImmOp', {"code": code, "cc_code": ccCode}, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = PredOpExecute.subst(iop) }}; def format PredIntOp(code, *opt_flags) {{ new_code = ArmGenericCodeSubs(code) iop = InstObjParams(name, Name, 'PredIntOp', new_code, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = PredOpExecute.subst(iop) }}; def format PredIntOpCc(code, icValue, ivValue, *opt_flags) {{ ccCode = calcCcCode % vars() code += ccCode; new_code = ArmGenericCodeSubs(code) iop = InstObjParams(name, Name, 'PredIntOp', {"code": new_code, "cc_code": ccCode }, opt_flags) header_output = BasicDeclare.subst(iop) decoder_output = BasicConstructor.subst(iop) decode_block = BasicDecode.subst(iop) exec_output = PredOpExecute.subst(iop) }};