/* * Copyright (c) 2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Matt Horsnell * Prakash Ramrakhyani */ #include #include #include #include "crypto.hh" namespace ArmISA { void Crypto::sha256Op( uint32_t *X, uint32_t *Y, uint32_t *Z) { uint32_t T0, T1, T2, T3; for (int i = 0; i < 4; ++i) { T0 = choose(Y[0], Y[1], Y[2]); T1 = majority(X[0], X[1], X[2]); T2 = Y[3] + sigma1(Y[0]) + T0 + Z[i]; X[3] = T2 + X[3]; Y[3] = T2 + sigma0(X[0]) + T1; // Rotate T3 = Y[3]; Y[3] = Y[2]; Y[2] = Y[1]; Y[1] = Y[0]; Y[0] = X[3]; X[3] = X[2]; X[2] = X[1]; X[1] = X[0]; X[0] = T3; } } void Crypto::_sha1Op( uint32_t *X, uint32_t *Y, uint32_t *Z, SHAOp op) { uint32_t T1, T2; for (int i = 0; i < 4; ++i) { switch (op) { case CHOOSE: T1 = choose(X[1], X[2], X[3]); break; case PARITY: T1 = parity(X[1], X[2], X[3]); break; case MAJORITY: T1 = majority(X[1], X[2], X[3]); break; default: return; } Y[0] += ror(X[0], 27) + T1 + Z[i]; X[1] = ror(X[1], 2); T2 = Y[0]; Y[0] = X[3]; X[3] = X[2]; X[2] = X[1]; X[1] = X[0]; X[0] = T2; } } void Crypto::sha256H( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); sha256Op(&X[0], &Y[0], &Z[0]); store1Reg(output, &X[0]); } void Crypto::sha256H2( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); sha256Op(&Y[0], &X[0], &Z[0]); store1Reg(output, &X[0]); } void Crypto::sha256Su0(uint8_t *output, uint8_t *input) { uint32_t X[4], Y[4]; uint32_t T[4]; load2Reg(&X[0], &Y[0], output, input); T[3] = Y[0]; T[2] = X[3]; T[1] = X[2]; T[0] = X[1]; T[3] = ror(T[3], 7) ^ ror(T[3], 18) ^ (T[3] >> 3); T[2] = ror(T[2], 7) ^ ror(T[2], 18) ^ (T[2] >> 3); T[1] = ror(T[1], 7) ^ ror(T[1], 18) ^ (T[1] >> 3); T[0] = ror(T[0], 7) ^ ror(T[0], 18) ^ (T[0] >> 3); X[3] += T[3]; X[2] += T[2]; X[1] += T[1]; X[0] += T[0]; store1Reg(output, &X[0]); } void Crypto::sha256Su1( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4]; uint32_t T0[4], T1[4], T2[4], T3[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); T0[3] = Z[0]; T0[2] = Y[3]; T0[1] = Y[2]; T0[0] = Y[1]; T1[1] = Z[3]; T1[0] = Z[2]; T1[1] = ror(T1[1], 17) ^ ror(T1[1], 19) ^ (T1[1] >> 10); T1[0] = ror(T1[0], 17) ^ ror(T1[0], 19) ^ (T1[0] >> 10); T3[1] = X[1] + T0[1]; T3[0] = X[0] + T0[0]; T1[1] = T3[1] + T1[1]; T1[0] = T3[0] + T1[0]; T2[1] = ror(T1[1], 17) ^ ror(T1[1], 19) ^ (T1[1] >> 10); T2[0] = ror(T1[0], 17) ^ ror(T1[0], 19) ^ (T1[0] >> 10); T3[1] = X[3] + T0[3]; T3[0] = X[2] + T0[2]; X[3] = T3[1] + T2[1]; X[2] = T3[0] + T2[0]; X[1] = T1[1]; X[0] = T1[0]; store1Reg(output, &X[0]); } void Crypto::sha1Op( uint8_t *output, uint8_t *input, uint8_t *input2, SHAOp op) { uint32_t X[4], Y[4], Z[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); _sha1Op(&X[0], &Y[0], &Z[0], op); store1Reg(output, &X[0]); } void Crypto::sha1C( uint8_t *output, uint8_t *input, uint8_t *input2) { sha1Op(output, input, input2, CHOOSE); } void Crypto::sha1P( uint8_t *output, uint8_t *input, uint8_t *input2) { sha1Op(output, input, input2, PARITY); } void Crypto::sha1M( uint8_t *output, uint8_t *input, uint8_t *input2) { sha1Op(output, input, input2, MAJORITY); } void Crypto::sha1H(uint8_t *output, uint8_t *input) { uint32_t X[4], Y[4]; load2Reg(&X[0], &Y[0], output, input); X[0] = ror(Y[0], 2); store1Reg(output, &X[0]); } void Crypto::sha1Su0( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4], T[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); T[3] = Y[1]; T[2] = Y[0]; T[1] = X[3]; T[0] = X[2]; X[3] = T[3] ^ X[3] ^ Z[3]; X[2] = T[2] ^ X[2] ^ Z[2]; X[1] = T[1] ^ X[1] ^ Z[1]; X[0] = T[0] ^ X[0] ^ Z[0]; store1Reg(output, &X[0]); } void Crypto::sha1Su1(uint8_t *output, uint8_t *input) { uint32_t X[4], Y[4], T[4]; load2Reg(&X[0], &Y[0], output, input); T[3] = X[3] ^ 0x0; T[2] = X[2] ^ Y[3]; T[1] = X[1] ^ Y[2]; T[0] = X[0] ^ Y[1]; X[2] = ror(T[2], 31); X[1] = ror(T[1], 31); X[0] = ror(T[0], 31); X[3] = ror(T[3], 31) ^ ror(T[0], 30); store1Reg(output, &X[0]); } void Crypto::load2Reg( uint32_t *X, uint32_t *Y, uint8_t *output, uint8_t *input) { for (int i = 0; i < 4; ++i) { X[i] = *((uint32_t *)&output[i*4]); Y[i] = *((uint32_t *)&input[i*4]); } } void Crypto::load3Reg( uint32_t *X, uint32_t *Y, uint32_t *Z, uint8_t *output, uint8_t *input, uint8_t *input2) { for (int i = 0; i < 4; ++i) { X[i] = *((uint32_t *)&output[i*4]); Y[i] = *((uint32_t *)&input[i*4]); Z[i] = *((uint32_t *)&input2[i*4]); } } void Crypto::store1Reg(uint8_t *output, uint32_t *X) { for (int i = 0; i < 4; ++i) { output[i*4] = (uint8_t)(X[i]); output[i*4+1] = (uint8_t)(X[i] >> 8); output[i*4+2] = (uint8_t)(X[i] >> 16); output[i*4+3] = (uint8_t)(X[i] >> 24); } } } // namespace ArmISA