/* pybind11/pybind11.h: Main header file of the C++11 python binding generator library Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant # pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted # pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning) # pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name # pragma warning(disable: 4702) // warning C4702: unreachable code # pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified #elif defined(__INTEL_COMPILER) # pragma warning(push) # pragma warning(disable: 186) // pointless comparison of unsigned integer with zero # pragma warning(disable: 1334) // the "template" keyword used for syntactic disambiguation may only be used within a template # pragma warning(disable: 2196) // warning #2196: routine is both "inline" and "noinline" #elif defined(__GNUG__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-but-set-parameter" # pragma GCC diagnostic ignored "-Wunused-but-set-variable" # pragma GCC diagnostic ignored "-Wmissing-field-initializers" # pragma GCC diagnostic ignored "-Wstrict-aliasing" # pragma GCC diagnostic ignored "-Wattributes" #endif #include "attr.h" #include "options.h" NAMESPACE_BEGIN(pybind11) /// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object class cpp_function : public function { public: cpp_function() { } /// Construct a cpp_function from a vanilla function pointer template cpp_function(Return (*f)(Args...), const Extra&... extra) { initialize(f, f, extra...); } /// Construct a cpp_function from a lambda function (possibly with internal state) template cpp_function(Func &&f, const Extra&... extra) { initialize(std::forward(f), (typename detail::remove_class::type::operator())>::type *) nullptr, extra...); } /// Construct a cpp_function from a class method (non-const) template cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) { initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*) (Class *, Arg...)) nullptr, extra...); } /// Construct a cpp_function from a class method (const) template cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*)(const Class *, Arg ...)) nullptr, extra...); } /// Return the function name object name() const { return attr("__name__"); } protected: /// Space optimization: don't inline this frequently instantiated fragment PYBIND11_NOINLINE detail::function_record *make_function_record() { return new detail::function_record(); } /// Special internal constructor for functors, lambda functions, etc. template void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) { static_assert(detail::expected_num_args(sizeof...(Args)), "The number of named arguments does not match the function signature"); struct capture { typename std::remove_reference::type f; }; /* Store the function including any extra state it might have (e.g. a lambda capture object) */ auto rec = make_function_record(); /* Store the capture object directly in the function record if there is enough space */ if (sizeof(capture) <= sizeof(rec->data)) { /* Without these pragmas, GCC warns that there might not be enough space to use the placement new operator. However, the 'if' statement above ensures that this is the case. */ #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wplacement-new" #endif new ((capture *) &rec->data) capture { std::forward(f) }; #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6 # pragma GCC diagnostic pop #endif if (!std::is_trivially_destructible::value) rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); }; } else { rec->data[0] = new capture { std::forward(f) }; rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); }; } /* Type casters for the function arguments and return value */ using cast_in = detail::argument_loader; using cast_out = detail::make_caster< detail::conditional_t::value, detail::void_type, Return> >; /* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](detail::function_record *rec, handle args, handle kwargs, handle parent) -> handle { cast_in args_converter; /* Try to cast the function arguments into the C++ domain */ if (!args_converter.load_args(args, kwargs, true)) return PYBIND11_TRY_NEXT_OVERLOAD; /* Invoke call policy pre-call hook */ detail::process_attributes::precall(args); /* Get a pointer to the capture object */ capture *cap = (capture *) (sizeof(capture) <= sizeof(rec->data) ? &rec->data : rec->data[0]); /* Override policy for rvalues -- always move */ constexpr auto is_rvalue = !std::is_pointer::value && !std::is_lvalue_reference::value; const auto policy = is_rvalue ? return_value_policy::move : rec->policy; /* Perform the function call */ handle result = cast_out::cast(args_converter.template call(cap->f), policy, parent); /* Invoke call policy post-call hook */ detail::process_attributes::postcall(args, result); return result; }; /* Process any user-provided function attributes */ detail::process_attributes::init(extra..., rec); /* Generate a readable signature describing the function's arguments and return value types */ using detail::descr; using detail::_; PYBIND11_DESCR signature = _("(") + cast_in::arg_names() + _(") -> ") + cast_out::name(); /* Register the function with Python from generic (non-templated) code */ initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args)); if (cast_in::has_args) rec->has_args = true; if (cast_in::has_kwargs) rec->has_kwargs = true; /* Stash some additional information used by an important optimization in 'functional.h' */ using FunctionType = Return (*)(Args...); constexpr bool is_function_ptr = std::is_convertible::value && sizeof(capture) == sizeof(void *); if (is_function_ptr) { rec->is_stateless = true; rec->data[1] = (void *) &typeid(FunctionType); } } /// Register a function call with Python (generic non-templated code goes here) void initialize_generic(detail::function_record *rec, const char *text, const std::type_info *const *types, size_t args) { /* Create copies of all referenced C-style strings */ rec->name = strdup(rec->name ? rec->name : ""); if (rec->doc) rec->doc = strdup(rec->doc); for (auto &a: rec->args) { if (a.name) a.name = strdup(a.name); if (a.descr) a.descr = strdup(a.descr); else if (a.value) a.descr = strdup(a.value.attr("__repr__")().cast().c_str()); } /* Generate a proper function signature */ std::string signature; size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0; while (true) { char c = text[char_index++]; if (c == '\0') break; if (c == '{') { // Write arg name for everything except *args, **kwargs and return type. if (type_depth == 0 && text[char_index] != '*' && arg_index < args) { if (!rec->args.empty()) { signature += rec->args[arg_index].name; } else if (arg_index == 0 && rec->is_method) { signature += "self"; } else { signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0)); } signature += ": "; } ++type_depth; } else if (c == '}') { --type_depth; if (type_depth == 0) { if (arg_index < rec->args.size() && rec->args[arg_index].descr) { signature += "="; signature += rec->args[arg_index].descr; } arg_index++; } } else if (c == '%') { const std::type_info *t = types[type_index++]; if (!t) pybind11_fail("Internal error while parsing type signature (1)"); if (auto tinfo = detail::get_type_info(*t)) { signature += tinfo->type->tp_name; } else { std::string tname(t->name()); detail::clean_type_id(tname); signature += tname; } } else { signature += c; } } if (type_depth != 0 || types[type_index] != nullptr) pybind11_fail("Internal error while parsing type signature (2)"); #if !defined(PYBIND11_CPP14) delete[] types; delete[] text; #endif #if PY_MAJOR_VERSION < 3 if (strcmp(rec->name, "__next__") == 0) { std::free(rec->name); rec->name = strdup("next"); } else if (strcmp(rec->name, "__bool__") == 0) { std::free(rec->name); rec->name = strdup("__nonzero__"); } #endif rec->signature = strdup(signature.c_str()); rec->args.shrink_to_fit(); rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__"); rec->nargs = (uint16_t) args; #if PY_MAJOR_VERSION < 3 if (rec->sibling && PyMethod_Check(rec->sibling.ptr())) rec->sibling = PyMethod_GET_FUNCTION(rec->sibling.ptr()); #endif detail::function_record *chain = nullptr, *chain_start = rec; if (rec->sibling) { if (PyCFunction_Check(rec->sibling.ptr())) { auto rec_capsule = reinterpret_borrow(PyCFunction_GetSelf(rec->sibling.ptr())); chain = (detail::function_record *) rec_capsule; /* Never append a method to an overload chain of a parent class; instead, hide the parent's overloads in this case */ if (chain->scope != rec->scope) chain = nullptr; } // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing else if (!rec->sibling.is_none() && rec->name[0] != '_') pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) + "\" with a function of the same name"); } if (!chain) { /* No existing overload was found, create a new function object */ rec->def = new PyMethodDef(); memset(rec->def, 0, sizeof(PyMethodDef)); rec->def->ml_name = rec->name; rec->def->ml_meth = reinterpret_cast(*dispatcher); rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS; capsule rec_capsule(rec, [](PyObject *o) { destruct((detail::function_record *) PyCapsule_GetPointer(o, nullptr)); }); object scope_module; if (rec->scope) { if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } } m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); } else { /* Append at the end of the overload chain */ m_ptr = rec->sibling.ptr(); inc_ref(); chain_start = chain; while (chain->next) chain = chain->next; chain->next = rec; } std::string signatures; int index = 0; /* Create a nice pydoc rec including all signatures and docstrings of the functions in the overload chain */ if (chain && options::show_function_signatures()) { // First a generic signature signatures += rec->name; signatures += "(*args, **kwargs)\n"; signatures += "Overloaded function.\n\n"; } // Then specific overload signatures for (auto it = chain_start; it != nullptr; it = it->next) { if (options::show_function_signatures()) { if (chain) signatures += std::to_string(++index) + ". "; signatures += rec->name; signatures += it->signature; signatures += "\n"; } if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) { if (options::show_function_signatures()) signatures += "\n"; signatures += it->doc; if (options::show_function_signatures()) signatures += "\n"; } if (it->next) signatures += "\n"; } /* Install docstring */ PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; if (func->m_ml->ml_doc) std::free((char *) func->m_ml->ml_doc); func->m_ml->ml_doc = strdup(signatures.c_str()); if (rec->is_method) { m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object"); Py_DECREF(func); } } /// When a cpp_function is GCed, release any memory allocated by pybind11 static void destruct(detail::function_record *rec) { while (rec) { detail::function_record *next = rec->next; if (rec->free_data) rec->free_data(rec); std::free((char *) rec->name); std::free((char *) rec->doc); std::free((char *) rec->signature); for (auto &arg: rec->args) { std::free((char *) arg.name); std::free((char *) arg.descr); arg.value.dec_ref(); } if (rec->def) { std::free((char *) rec->def->ml_doc); delete rec->def; } delete rec; rec = next; } } /// Main dispatch logic for calls to functions bound using pybind11 static PyObject *dispatcher(PyObject *self, PyObject *args, PyObject *kwargs) { /* Iterator over the list of potentially admissible overloads */ detail::function_record *overloads = (detail::function_record *) PyCapsule_GetPointer(self, nullptr), *it = overloads; /* Need to know how many arguments + keyword arguments there are to pick the right overload */ size_t nargs = (size_t) PyTuple_GET_SIZE(args), nkwargs = kwargs ? (size_t) PyDict_Size(kwargs) : 0; handle parent = nargs > 0 ? PyTuple_GET_ITEM(args, 0) : nullptr, result = PYBIND11_TRY_NEXT_OVERLOAD; try { for (; it != nullptr; it = it->next) { auto args_ = reinterpret_borrow(args); size_t kwargs_consumed = 0; /* For each overload: 1. If the required list of arguments is longer than the actually provided amount, create a copy of the argument list and fill in any available keyword/default arguments. 2. Ensure that all keyword arguments were "consumed" 3. Call the function call dispatcher (function_record::impl) */ size_t nargs_ = nargs; if (nargs < it->args.size()) { nargs_ = it->args.size(); args_ = tuple(nargs_); for (size_t i = 0; i < nargs; ++i) { handle item = PyTuple_GET_ITEM(args, i); PyTuple_SET_ITEM(args_.ptr(), i, item.inc_ref().ptr()); } int arg_ctr = 0; for (auto const &it2 : it->args) { int index = arg_ctr++; if (PyTuple_GET_ITEM(args_.ptr(), index)) continue; handle value; if (kwargs) value = PyDict_GetItemString(kwargs, it2.name); if (value) kwargs_consumed++; else if (it2.value) value = it2.value; if (value) { PyTuple_SET_ITEM(args_.ptr(), index, value.inc_ref().ptr()); } else { kwargs_consumed = (size_t) -1; /* definite failure */ break; } } } try { if ((kwargs_consumed == nkwargs || it->has_kwargs) && (nargs_ == it->nargs || it->has_args)) result = it->impl(it, args_, kwargs, parent); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; } if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break; } } catch (error_already_set &e) { e.restore(); return nullptr; } catch (...) { /* When an exception is caught, give each registered exception translator a chance to translate it to a Python exception in reverse order of registration. A translator may choose to do one of the following: - catch the exception and call PyErr_SetString or PyErr_SetObject to set a standard (or custom) Python exception, or - do nothing and let the exception fall through to the next translator, or - delegate translation to the next translator by throwing a new type of exception. */ auto last_exception = std::current_exception(); auto ®istered_exception_translators = pybind11::detail::get_internals().registered_exception_translators; for (auto& translator : registered_exception_translators) { try { translator(last_exception); } catch (...) { last_exception = std::current_exception(); continue; } return nullptr; } PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!"); return nullptr; } if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { if (overloads->is_operator) return handle(Py_NotImplemented).inc_ref().ptr(); std::string msg = std::string(overloads->name) + "(): incompatible " + std::string(overloads->is_constructor ? "constructor" : "function") + " arguments. The following argument types are supported:\n"; int ctr = 0; for (detail::function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { msg += " "+ std::to_string(++ctr) + ". "; bool wrote_sig = false; if (overloads->is_constructor) { // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)` std::string sig = it2->signature; size_t start = sig.find('(') + 7; // skip "(self: " if (start < sig.size()) { // End at the , for the next argument size_t end = sig.find(", "), next = end + 2; size_t ret = sig.rfind(" -> "); // Or the ), if there is no comma: if (end >= sig.size()) next = end = sig.find(')'); if (start < end && next < sig.size()) { msg.append(sig, start, end - start); msg += '('; msg.append(sig, next, ret - next); wrote_sig = true; } } } if (!wrote_sig) msg += it2->signature; msg += "\n"; } msg += "\nInvoked with: "; auto args_ = reinterpret_borrow(args); for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) { msg += pybind11::repr(args_[ti]); if ((ti + 1) != args_.size() ) msg += ", "; } PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else if (!result) { std::string msg = "Unable to convert function return value to a " "Python type! The signature was\n\t"; msg += it->signature; PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else { if (overloads->is_constructor) { /* When a constructor ran successfully, the corresponding holder type (e.g. std::unique_ptr) must still be initialized. */ PyObject *inst = PyTuple_GET_ITEM(args, 0); auto tinfo = detail::get_type_info(Py_TYPE(inst)); tinfo->init_holder(inst, nullptr); } return result.ptr(); } } }; /// Wrapper for Python extension modules class module : public object { public: PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check) explicit module(const char *name, const char *doc = nullptr) { if (!options::show_user_defined_docstrings()) doc = nullptr; #if PY_MAJOR_VERSION >= 3 PyModuleDef *def = new PyModuleDef(); memset(def, 0, sizeof(PyModuleDef)); def->m_name = name; def->m_doc = doc; def->m_size = -1; Py_INCREF(def); m_ptr = PyModule_Create(def); #else m_ptr = Py_InitModule3(name, nullptr, doc); #endif if (m_ptr == nullptr) pybind11_fail("Internal error in module::module()"); inc_ref(); } template module &def(const char *name_, Func &&f, const Extra& ... extra) { cpp_function func(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); // NB: allow overwriting here because cpp_function sets up a chain with the intention of // overwriting (and has already checked internally that it isn't overwriting non-functions). add_object(name_, func, true /* overwrite */); return *this; } module def_submodule(const char *name, const char *doc = nullptr) { std::string full_name = std::string(PyModule_GetName(m_ptr)) + std::string(".") + std::string(name); auto result = reinterpret_borrow(PyImport_AddModule(full_name.c_str())); if (doc && options::show_user_defined_docstrings()) result.attr("__doc__") = pybind11::str(doc); attr(name) = result; return result; } static module import(const char *name) { PyObject *obj = PyImport_ImportModule(name); if (!obj) throw error_already_set(); return reinterpret_steal(obj); } // Adds an object to the module using the given name. Throws if an object with the given name // already exists. // // overwrite should almost always be false: attempting to overwrite objects that pybind11 has // established will, in most cases, break things. PYBIND11_NOINLINE void add_object(const char *name, object &obj, bool overwrite = false) { if (!overwrite && hasattr(*this, name)) pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" + std::string(name) + "\""); obj.inc_ref(); // PyModule_AddObject() steals a reference PyModule_AddObject(ptr(), name, obj.ptr()); } }; NAMESPACE_BEGIN(detail) extern "C" inline PyObject *get_dict(PyObject *op, void *) { PyObject *&dict = *_PyObject_GetDictPtr(op); if (!dict) { dict = PyDict_New(); } Py_XINCREF(dict); return dict; } extern "C" inline int set_dict(PyObject *op, PyObject *new_dict, void *) { if (!PyDict_Check(new_dict)) { PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, not a '%.200s'", Py_TYPE(new_dict)->tp_name); return -1; } PyObject *&dict = *_PyObject_GetDictPtr(op); Py_INCREF(new_dict); Py_CLEAR(dict); dict = new_dict; return 0; } static PyGetSetDef generic_getset[] = { {const_cast("__dict__"), get_dict, set_dict, nullptr, nullptr}, {nullptr, nullptr, nullptr, nullptr, nullptr} }; /// Generic support for creating new Python heap types class generic_type : public object { template friend class class_; public: PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) protected: void initialize(type_record *rec) { auto &internals = get_internals(); auto tindex = std::type_index(*(rec->type)); if (get_type_info(*(rec->type))) pybind11_fail("generic_type: type \"" + std::string(rec->name) + "\" is already registered!"); auto name = reinterpret_steal(PYBIND11_FROM_STRING(rec->name)); object scope_module; if (rec->scope) { if (hasattr(rec->scope, rec->name)) pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec->name) + "\": an object with that name is already defined"); if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } } #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 /* Qualified names for Python >= 3.3 */ object scope_qualname; if (rec->scope && hasattr(rec->scope, "__qualname__")) scope_qualname = rec->scope.attr("__qualname__"); object ht_qualname; if (scope_qualname) { ht_qualname = reinterpret_steal(PyUnicode_FromFormat( "%U.%U", scope_qualname.ptr(), name.ptr())); } else { ht_qualname = name; } #endif size_t num_bases = rec->bases.size(); auto bases = tuple(rec->bases); std::string full_name = (scope_module ? ((std::string) pybind11::str(scope_module) + "." + rec->name) : std::string(rec->name)); char *tp_doc = nullptr; if (rec->doc && options::show_user_defined_docstrings()) { /* Allocate memory for docstring (using PyObject_MALLOC, since Python will free this later on) */ size_t size = strlen(rec->doc) + 1; tp_doc = (char *) PyObject_MALLOC(size); memcpy((void *) tp_doc, rec->doc, size); } /* Danger zone: from now (and until PyType_Ready), make sure to issue no Python C API calls which could potentially invoke the garbage collector (the GC will call type_traverse(), which will in turn find the newly constructed type in an invalid state) */ auto type_holder = reinterpret_steal(PyType_Type.tp_alloc(&PyType_Type, 0)); auto type = (PyHeapTypeObject*) type_holder.ptr(); if (!type_holder || !name) pybind11_fail(std::string(rec->name) + ": Unable to create type object!"); /* Register supplemental type information in C++ dict */ detail::type_info *tinfo = new detail::type_info(); tinfo->type = (PyTypeObject *) type; tinfo->type_size = rec->type_size; tinfo->init_holder = rec->init_holder; tinfo->direct_conversions = &internals.direct_conversions[tindex]; internals.registered_types_cpp[tindex] = tinfo; internals.registered_types_py[type] = tinfo; /* Basic type attributes */ type->ht_type.tp_name = strdup(full_name.c_str()); type->ht_type.tp_basicsize = (ssize_t) rec->instance_size; if (num_bases > 0) { type->ht_type.tp_base = (PyTypeObject *) ((object) bases[0]).inc_ref().ptr(); type->ht_type.tp_bases = bases.release().ptr(); rec->multiple_inheritance |= num_bases > 1; } type->ht_name = name.release().ptr(); #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 type->ht_qualname = ht_qualname.release().ptr(); #endif /* Supported protocols */ type->ht_type.tp_as_number = &type->as_number; type->ht_type.tp_as_sequence = &type->as_sequence; type->ht_type.tp_as_mapping = &type->as_mapping; /* Supported elementary operations */ type->ht_type.tp_init = (initproc) init; type->ht_type.tp_new = (newfunc) new_instance; type->ht_type.tp_dealloc = rec->dealloc; /* Support weak references (needed for the keep_alive feature) */ type->ht_type.tp_weaklistoffset = offsetof(instance_essentials, weakrefs); /* Flags */ type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE; #if PY_MAJOR_VERSION < 3 type->ht_type.tp_flags |= Py_TPFLAGS_CHECKTYPES; #endif type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC; /* Support dynamic attributes */ if (rec->dynamic_attr) { type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_GC; type->ht_type.tp_dictoffset = type->ht_type.tp_basicsize; // place the dict at the end type->ht_type.tp_basicsize += sizeof(PyObject *); // and allocate enough space for it type->ht_type.tp_getset = generic_getset; type->ht_type.tp_traverse = traverse; type->ht_type.tp_clear = clear; } type->ht_type.tp_doc = tp_doc; if (PyType_Ready(&type->ht_type) < 0) pybind11_fail(std::string(rec->name) + ": PyType_Ready failed (" + detail::error_string() + ")!"); m_ptr = type_holder.ptr(); if (scope_module) // Needed by pydoc attr("__module__") = scope_module; /* Register type with the parent scope */ if (rec->scope) rec->scope.attr(handle(type->ht_name)) = *this; if (rec->multiple_inheritance) mark_parents_nonsimple(&type->ht_type); type_holder.release(); } /// Helper function which tags all parents of a type using mult. inheritance void mark_parents_nonsimple(PyTypeObject *value) { auto t = reinterpret_borrow(value->tp_bases); for (handle h : t) { auto tinfo2 = get_type_info((PyTypeObject *) h.ptr()); if (tinfo2) tinfo2->simple_type = false; mark_parents_nonsimple((PyTypeObject *) h.ptr()); } } /// Allocate a metaclass on demand (for static properties) handle metaclass() { auto &ht_type = ((PyHeapTypeObject *) m_ptr)->ht_type; auto &ob_type = PYBIND11_OB_TYPE(ht_type); if (ob_type == &PyType_Type) { std::string name_ = std::string(ht_type.tp_name) + "__Meta"; #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 auto ht_qualname = reinterpret_steal(PyUnicode_FromFormat("%U__Meta", attr("__qualname__").ptr())); #endif auto name = reinterpret_steal(PYBIND11_FROM_STRING(name_.c_str())); auto type_holder = reinterpret_steal(PyType_Type.tp_alloc(&PyType_Type, 0)); if (!type_holder || !name) pybind11_fail("generic_type::metaclass(): unable to create type object!"); auto type = (PyHeapTypeObject*) type_holder.ptr(); type->ht_name = name.release().ptr(); #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 /* Qualified names for Python >= 3.3 */ type->ht_qualname = ht_qualname.release().ptr(); #endif type->ht_type.tp_name = strdup(name_.c_str()); type->ht_type.tp_base = ob_type; type->ht_type.tp_flags |= (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE) & ~Py_TPFLAGS_HAVE_GC; if (PyType_Ready(&type->ht_type) < 0) pybind11_fail("generic_type::metaclass(): PyType_Ready failed!"); ob_type = (PyTypeObject *) type_holder.release().ptr(); } return handle((PyObject *) ob_type); } static int init(void *self, PyObject *, PyObject *) { std::string msg = std::string(Py_TYPE(self)->tp_name) + ": No constructor defined!"; PyErr_SetString(PyExc_TypeError, msg.c_str()); return -1; } static PyObject *new_instance(PyTypeObject *type, PyObject *, PyObject *) { instance *self = (instance *) PyType_GenericAlloc((PyTypeObject *) type, 0); auto tinfo = detail::get_type_info(type); self->value = ::operator new(tinfo->type_size); self->owned = true; self->holder_constructed = false; detail::get_internals().registered_instances.emplace(self->value, (PyObject *) self); return (PyObject *) self; } static void dealloc(instance *self) { if (self->value) { auto instance_type = Py_TYPE(self); auto ®istered_instances = detail::get_internals().registered_instances; auto range = registered_instances.equal_range(self->value); bool found = false; for (auto it = range.first; it != range.second; ++it) { if (instance_type == Py_TYPE(it->second)) { registered_instances.erase(it); found = true; break; } } if (!found) pybind11_fail("generic_type::dealloc(): Tried to deallocate unregistered instance!"); if (self->weakrefs) PyObject_ClearWeakRefs((PyObject *) self); PyObject **dict_ptr = _PyObject_GetDictPtr((PyObject *) self); if (dict_ptr) { Py_CLEAR(*dict_ptr); } } Py_TYPE(self)->tp_free((PyObject*) self); } static int traverse(PyObject *op, visitproc visit, void *arg) { PyObject *&dict = *_PyObject_GetDictPtr(op); Py_VISIT(dict); return 0; } static int clear(PyObject *op) { PyObject *&dict = *_PyObject_GetDictPtr(op); Py_CLEAR(dict); return 0; } void install_buffer_funcs( buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; type->ht_type.tp_as_buffer = &type->as_buffer; #if PY_MAJOR_VERSION < 3 type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif type->as_buffer.bf_getbuffer = getbuffer; type->as_buffer.bf_releasebuffer = releasebuffer; auto tinfo = detail::get_type_info(&type->ht_type); tinfo->get_buffer = get_buffer; tinfo->get_buffer_data = get_buffer_data; } static int getbuffer(PyObject *obj, Py_buffer *view, int flags) { auto tinfo = detail::get_type_info(Py_TYPE(obj)); if (view == nullptr || obj == nullptr || !tinfo || !tinfo->get_buffer) { PyErr_SetString(PyExc_BufferError, "generic_type::getbuffer(): Internal error"); return -1; } memset(view, 0, sizeof(Py_buffer)); buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data); view->obj = obj; view->ndim = 1; view->internal = info; view->buf = info->ptr; view->itemsize = (ssize_t) info->itemsize; view->len = view->itemsize; for (auto s : info->shape) view->len *= s; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) view->format = const_cast(info->format.c_str()); if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) { view->ndim = (int) info->ndim; view->strides = (ssize_t *) &info->strides[0]; view->shape = (ssize_t *) &info->shape[0]; } Py_INCREF(view->obj); return 0; } static void releasebuffer(PyObject *, Py_buffer *view) { delete (buffer_info *) view->internal; } }; NAMESPACE_END(detail) template class class_ : public detail::generic_type { template using is_holder = detail::is_holder_type; template using is_subtype = detail::bool_constant::value && !std::is_same::value>; template using is_base = detail::bool_constant::value && !std::is_same::value>; template using is_valid_class_option = detail::bool_constant< is_holder::value || is_subtype::value || is_base::value >; public: using type = type_; using type_alias = detail::first_of_t; constexpr static bool has_alias = !std::is_void::value; using holder_type = detail::first_of_t, options...>; using instance_type = detail::instance; static_assert(detail::all_of_t::value, "Unknown/invalid class_ template parameters provided"); PYBIND11_OBJECT(class_, generic_type, PyType_Check) template class_(handle scope, const char *name, const Extra &... extra) { detail::type_record record; record.scope = scope; record.name = name; record.type = &typeid(type); record.type_size = sizeof(detail::conditional_t); record.instance_size = sizeof(instance_type); record.init_holder = init_holder; record.dealloc = dealloc; /* Register base classes specified via template arguments to class_, if any */ bool unused[] = { (add_base(record), false)..., false }; (void) unused; /* Process optional arguments, if any */ detail::process_attributes::init(extra..., &record); detail::generic_type::initialize(&record); if (has_alias) { auto &instances = pybind11::detail::get_internals().registered_types_cpp; instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))]; } } template ::value, int> = 0> static void add_base(detail::type_record &rec) { rec.add_base(&typeid(Base), [](void *src) -> void * { return static_cast(reinterpret_cast(src)); }); } template ::value, int> = 0> static void add_base(detail::type_record &) { } template class_ &def(const char *name_, Func&& f, const Extra&... extra) { cpp_function cf(std::forward(f), name(name_), is_method(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; } template class_ & def_static(const char *name_, Func f, const Extra&... extra) { cpp_function cf(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; } template class_ &def(const detail::op_ &op, const Extra&... extra) { op.execute(*this, extra...); return *this; } template class_ & def_cast(const detail::op_ &op, const Extra&... extra) { op.execute_cast(*this, extra...); return *this; } template class_ &def(const detail::init &init, const Extra&... extra) { init.execute(*this, extra...); return *this; } template class_ &def(const detail::init_alias &init, const Extra&... extra) { init.execute(*this, extra...); return *this; } template class_& def_buffer(Func &&func) { struct capture { Func func; }; capture *ptr = new capture { std::forward(func) }; install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { detail::type_caster caster; if (!caster.load(obj, false)) return nullptr; return new buffer_info(((capture *) ptr)->func(caster)); }, ptr); return *this; } template class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)), fset([pm](C &c, const D &value) { c.*pm = value; }, is_method(*this)); def_property(name, fget, fset, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)); def_property_readonly(name, fget, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)), fset([pm](object, const D &value) { *pm = value; }, scope(*this)); def_property_static(name, fget, fset, return_value_policy::reference, extra...); return *this; } template class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)); def_property_readonly_static(name, fget, return_value_policy::reference, extra...); return *this; } /// Uses return_value_policy::reference_internal by default template class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly(name, cpp_function(fget), return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property(name, fget, cpp_function(), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property_static(name, fget, cpp_function(), extra...); } /// Uses return_value_policy::reference_internal by default template class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property(name, cpp_function(fget), fset, return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, fget, fset, is_method(*this), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset); char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */ detail::process_attributes::init(extra..., rec_fget); if (rec_fget->doc && rec_fget->doc != doc_prev) { free(doc_prev); rec_fget->doc = strdup(rec_fget->doc); } if (rec_fset) { doc_prev = rec_fset->doc; detail::process_attributes::init(extra..., rec_fset); if (rec_fset->doc && rec_fset->doc != doc_prev) { free(doc_prev); rec_fset->doc = strdup(rec_fset->doc); } } pybind11::str doc_obj = pybind11::str((rec_fget->doc && pybind11::options::show_user_defined_docstrings()) ? rec_fget->doc : ""); const auto property = reinterpret_steal( PyObject_CallFunctionObjArgs((PyObject *) &PyProperty_Type, fget.ptr() ? fget.ptr() : Py_None, fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr(), nullptr)); if (rec_fget->is_method && rec_fget->scope) attr(name) = property; else metaclass().attr(name) = property; return *this; } private: /// Initialize holder object, variant 1: object derives from enable_shared_from_this template static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const std::enable_shared_from_this * /* dummy */) { try { new (&inst->holder) holder_type(std::static_pointer_cast(inst->value->shared_from_this())); inst->holder_constructed = true; } catch (const std::bad_weak_ptr &) { if (inst->owned) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } } /// Initialize holder object, variant 2: try to construct from existing holder object, if possible template ::value, int> = 0> static void init_holder_helper(instance_type *inst, const holder_type *holder_ptr, const void * /* dummy */) { if (holder_ptr) { new (&inst->holder) holder_type(*holder_ptr); inst->holder_constructed = true; } else if (inst->owned) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } /// Initialize holder object, variant 3: holder is not copy constructible (e.g. unique_ptr), always initialize from raw pointer template ::value, int> = 0> static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const void * /* dummy */) { if (inst->owned) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } /// Initialize holder object of an instance, possibly given a pointer to an existing holder static void init_holder(PyObject *inst_, const void *holder_ptr) { auto inst = (instance_type *) inst_; init_holder_helper(inst, (const holder_type *) holder_ptr, inst->value); } static void dealloc(PyObject *inst_) { instance_type *inst = (instance_type *) inst_; if (inst->holder_constructed) inst->holder.~holder_type(); else if (inst->owned) ::operator delete(inst->value); generic_type::dealloc((detail::instance *) inst); } static detail::function_record *get_function_record(handle h) { h = detail::get_function(h); return h ? (detail::function_record *) reinterpret_borrow(PyCFunction_GetSelf(h.ptr())) : nullptr; } }; /// Binds C++ enumerations and enumeration classes to Python template class enum_ : public class_ { public: using class_::def; using Scalar = typename std::underlying_type::type; template using arithmetic_tag = std::is_same; template enum_(const handle &scope, const char *name, const Extra&... extra) : class_(scope, name, extra...), m_parent(scope) { constexpr bool is_arithmetic = !std::is_same, void>::value; auto entries = new std::unordered_map(); def("__repr__", [name, entries](Type value) -> std::string { auto it = entries->find((Scalar) value); return std::string(name) + "." + ((it == entries->end()) ? std::string("???") : std::string(it->second)); }); def("__init__", [](Type& value, Scalar i) { value = (Type)i; }); def("__init__", [](Type& value, Scalar i) { new (&value) Type((Type) i); }); def("__int__", [](Type value) { return (Scalar) value; }); def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; }); def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; }); def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; }); def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; }); def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; }); } if (std::is_convertible::value) { // Don't provide comparison with the underlying type if the enum isn't convertible, // i.e. if Type is a scoped enum, mirroring the C++ behaviour. (NB: we explicitly // convert Type to Scalar below anyway because this needs to compile). def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; }); def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; }); def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; }); def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; }); def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; }); def("__invert__", [](const Type &value) { return ~((Scalar) value); }); def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; }); def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; }); def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; }); } } def("__hash__", [](const Type &value) { return (Scalar) value; }); // Pickling and unpickling -- needed for use with the 'multiprocessing' module def("__getstate__", [](const Type &value) { return pybind11::make_tuple((Scalar) value); }); def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast()); }); m_entries = entries; } /// Export enumeration entries into the parent scope enum_ &export_values() { PyObject *dict = ((PyTypeObject *) this->m_ptr)->tp_dict; PyObject *key, *value; ssize_t pos = 0; while (PyDict_Next(dict, &pos, &key, &value)) if (PyObject_IsInstance(value, this->m_ptr)) m_parent.attr(key) = value; return *this; } /// Add an enumeration entry enum_& value(char const* name, Type value) { this->attr(name) = pybind11::cast(value, return_value_policy::copy); (*m_entries)[(Scalar) value] = name; return *this; } private: std::unordered_map *m_entries; handle m_parent; }; NAMESPACE_BEGIN(detail) template struct init { template = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; /// Function which calls a specific C++ in-place constructor cl.def("__init__", [](Base *self_, Args... args) { new (self_) Base(args...); }, extra...); } template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; using Alias = typename Class::type_alias; handle cl_type = cl; cl.def("__init__", [cl_type](handle self_, Args... args) { if (self_.get_type() == cl_type) new (self_.cast()) Base(args...); else new (self_.cast()) Alias(args...); }, extra...); } template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { init_alias::execute(cl, extra...); } }; template struct init_alias { template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Alias = typename Class::type_alias; cl.def("__init__", [](Alias *self_, Args... args) { new (self_) Alias(args...); }, extra...); } }; inline void keep_alive_impl(handle nurse, handle patient) { /* Clever approach based on weak references taken from Boost.Python */ if (!nurse || !patient) pybind11_fail("Could not activate keep_alive!"); if (patient.is_none() || nurse.is_none()) return; /* Nothing to keep alive or nothing to be kept alive by */ cpp_function disable_lifesupport( [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); }); weakref wr(nurse, disable_lifesupport); patient.inc_ref(); /* reference patient and leak the weak reference */ (void) wr.release(); } PYBIND11_NOINLINE inline void keep_alive_impl(int Nurse, int Patient, handle args, handle ret) { handle nurse (Nurse > 0 ? PyTuple_GetItem(args.ptr(), Nurse - 1) : ret.ptr()); handle patient(Patient > 0 ? PyTuple_GetItem(args.ptr(), Patient - 1) : ret.ptr()); keep_alive_impl(nurse, patient); } template struct iterator_state { Iterator it; Sentinel end; bool first; }; NAMESPACE_END(detail) template detail::init init() { return detail::init(); } template detail::init_alias init_alias() { return detail::init_alias(); } template ()), typename... Extra> iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state state; if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> ValueType { if (!s.first) ++s.it; else s.first = false; if (s.it == s.end) throw stop_iteration(); return *s.it; }, std::forward(extra)..., Policy); } return (iterator) cast(state { first, last, true }); } template ()).first), typename... Extra> iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state state; if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> KeyType { if (!s.first) ++s.it; else s.first = false; if (s.it == s.end) throw stop_iteration(); return (*s.it).first; }, std::forward(extra)..., Policy); } return (iterator) cast(state { first, last, true }); } template iterator make_iterator(Type &value, Extra&&... extra) { return make_iterator(std::begin(value), std::end(value), extra...); } template iterator make_key_iterator(Type &value, Extra&&... extra) { return make_key_iterator(std::begin(value), std::end(value), extra...); } template void implicitly_convertible() { auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { if (!detail::type_caster().load(obj, false)) return nullptr; tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) PyErr_Clear(); return result; }; if (auto tinfo = detail::get_type_info(typeid(OutputType))) tinfo->implicit_conversions.push_back(implicit_caster); else pybind11_fail("implicitly_convertible: Unable to find type " + type_id()); } template void register_exception_translator(ExceptionTranslator&& translator) { detail::get_internals().registered_exception_translators.push_front( std::forward(translator)); } /* Wrapper to generate a new Python exception type. * * This should only be used with PyErr_SetString for now. * It is not (yet) possible to use as a py::base. * Template type argument is reserved for future use. */ template class exception : public object { public: exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { std::string full_name = scope.attr("__name__").cast() + std::string(".") + name; m_ptr = PyErr_NewException((char *) full_name.c_str(), base, NULL); if (hasattr(scope, name)) pybind11_fail("Error during initialization: multiple incompatible " "definitions with name \"" + std::string(name) + "\""); scope.attr(name) = *this; } // Sets the current python exception to this exception object with the given message void operator()(const char *message) { PyErr_SetString(m_ptr, message); } }; /** Registers a Python exception in `m` of the given `name` and installs an exception translator to * translate the C++ exception to the created Python exception using the exceptions what() method. * This is intended for simple exception translations; for more complex translation, register the * exception object and translator directly. */ template exception ®ister_exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { static exception ex(scope, name, base); register_exception_translator([](std::exception_ptr p) { if (!p) return; try { std::rethrow_exception(p); } catch (const CppException &e) { ex(e.what()); } }); return ex; } NAMESPACE_BEGIN(detail) PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) { auto strings = tuple(args.size()); for (size_t i = 0; i < args.size(); ++i) { strings[i] = str(args[i]); } auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" "); auto line = sep.attr("join")(strings); object file; if (kwargs.contains("file")) { file = kwargs["file"].cast(); } else { try { file = module::import("sys").attr("stdout"); } catch (const error_already_set &) { /* If print() is called from code that is executed as part of garbage collection during interpreter shutdown, importing 'sys' can fail. Give up rather than crashing the interpreter in this case. */ return; } } auto write = file.attr("write"); write(line); write(kwargs.contains("end") ? kwargs["end"] : cast("\n")); if (kwargs.contains("flush") && kwargs["flush"].cast()) file.attr("flush")(); } NAMESPACE_END(detail) template void print(Args &&...args) { auto c = detail::collect_arguments(std::forward(args)...); detail::print(c.args(), c.kwargs()); } #if defined(WITH_THREAD) /* The functions below essentially reproduce the PyGILState_* API using a RAII * pattern, but there are a few important differences: * * 1. When acquiring the GIL from an non-main thread during the finalization * phase, the GILState API blindly terminates the calling thread, which * is often not what is wanted. This API does not do this. * * 2. The gil_scoped_release function can optionally cut the relationship * of a PyThreadState and its associated thread, which allows moving it to * another thread (this is a fairly rare/advanced use case). * * 3. The reference count of an acquired thread state can be controlled. This * can be handy to prevent cases where callbacks issued from an external * thread would otherwise constantly construct and destroy thread state data * structures. * * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an * example which uses features 2 and 3 to migrate the Python thread of * execution to another thread (to run the event loop on the original thread, * in this case). */ class gil_scoped_acquire { public: PYBIND11_NOINLINE gil_scoped_acquire() { auto const &internals = detail::get_internals(); tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate); if (!tstate) { tstate = PyThreadState_New(internals.istate); #if !defined(NDEBUG) if (!tstate) pybind11_fail("scoped_acquire: could not create thread state!"); #endif tstate->gilstate_counter = 0; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(internals.tstate); #endif PyThread_set_key_value(internals.tstate, tstate); } else { release = detail::get_thread_state_unchecked() != tstate; } if (release) { /* Work around an annoying assertion in PyThreadState_Swap */ #if defined(Py_DEBUG) PyInterpreterState *interp = tstate->interp; tstate->interp = nullptr; #endif PyEval_AcquireThread(tstate); #if defined(Py_DEBUG) tstate->interp = interp; #endif } inc_ref(); } void inc_ref() { ++tstate->gilstate_counter; } PYBIND11_NOINLINE void dec_ref() { --tstate->gilstate_counter; #if !defined(NDEBUG) if (detail::get_thread_state_unchecked() != tstate) pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!"); if (tstate->gilstate_counter < 0) pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!"); #endif if (tstate->gilstate_counter == 0) { #if !defined(NDEBUG) if (!release) pybind11_fail("scoped_acquire::dec_ref(): internal error!"); #endif PyThreadState_Clear(tstate); PyThreadState_DeleteCurrent(); PyThread_delete_key_value(detail::get_internals().tstate); release = false; } } PYBIND11_NOINLINE ~gil_scoped_acquire() { dec_ref(); if (release) PyEval_SaveThread(); } private: PyThreadState *tstate = nullptr; bool release = true; }; class gil_scoped_release { public: explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) { tstate = PyEval_SaveThread(); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(key); #else PyThread_set_key_value(key, nullptr); #endif } } ~gil_scoped_release() { if (!tstate) return; PyEval_RestoreThread(tstate); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(key); #endif PyThread_set_key_value(key, tstate); } } private: PyThreadState *tstate; bool disassoc; }; #else class gil_scoped_acquire { }; class gil_scoped_release { }; #endif error_already_set::~error_already_set() { if (value) { gil_scoped_acquire gil; PyErr_Restore(type, value, trace); PyErr_Clear(); } } inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) { handle py_object = detail::get_object_handle(this_ptr, this_type); if (!py_object) return function(); handle type = py_object.get_type(); auto key = std::make_pair(type.ptr(), name); /* Cache functions that aren't overloaded in Python to avoid many costly Python dictionary lookups below */ auto &cache = detail::get_internals().inactive_overload_cache; if (cache.find(key) != cache.end()) return function(); function overload = getattr(py_object, name, function()); if (overload.is_cpp_function()) { cache.insert(key); return function(); } /* Don't call dispatch code if invoked from overridden function */ PyFrameObject *frame = PyThreadState_Get()->frame; if (frame && (std::string) str(frame->f_code->co_name) == name && frame->f_code->co_argcount > 0) { PyFrame_FastToLocals(frame); PyObject *self_caller = PyDict_GetItem( frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0)); if (self_caller == py_object.ptr()) return function(); } return overload; } template function get_overload(const T *this_ptr, const char *name) { auto tinfo = detail::get_type_info(typeid(T)); return tinfo ? get_type_overload(this_ptr, tinfo, name) : function(); } #define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \ pybind11::gil_scoped_acquire gil; \ pybind11::function overload = pybind11::get_overload(static_cast(this), name); \ if (overload) { \ auto o = overload(__VA_ARGS__); \ if (pybind11::detail::cast_is_temporary_value_reference::value) { \ static pybind11::detail::overload_caster_t caster; \ return pybind11::detail::cast_ref(std::move(o), caster); \ } \ else return pybind11::detail::cast_safe(std::move(o)); \ } \ } #define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ return cname::fn(__VA_ARGS__) #define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\""); #define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \ PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__) #define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \ PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__) NAMESPACE_END(pybind11) #if defined(_MSC_VER) # pragma warning(pop) #elif defined(__INTEL_COMPILER) /* Leave ignored warnings on */ #elif defined(__GNUG__) && !defined(__clang__) # pragma GCC diagnostic pop #endif