.. _numpy: NumPy ##### Buffer protocol =============== Python supports an extremely general and convenient approach for exchanging data between plugin libraries. Types can expose a buffer view [#f2]_, which provides fast direct access to the raw internal data representation. Suppose we want to bind the following simplistic Matrix class: .. code-block:: cpp class Matrix { public: Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { m_data = new float[rows*cols]; } float *data() { return m_data; } size_t rows() const { return m_rows; } size_t cols() const { return m_cols; } private: size_t m_rows, m_cols; float *m_data; }; The following binding code exposes the ``Matrix`` contents as a buffer object, making it possible to cast Matrices into NumPy arrays. It is even possible to completely avoid copy operations with Python expressions like ``np.array(matrix_instance, copy = False)``. .. code-block:: cpp py::class_(m, "Matrix") .def_buffer([](Matrix &m) -> py::buffer_info { return py::buffer_info( m.data(), /* Pointer to buffer */ sizeof(float), /* Size of one scalar */ py::format_descriptor::format(), /* Python struct-style format descriptor */ 2, /* Number of dimensions */ { m.rows(), m.cols() }, /* Buffer dimensions */ { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ sizeof(float) } ); }); The snippet above binds a lambda function, which can create ``py::buffer_info`` description records on demand describing a given matrix. The contents of ``py::buffer_info`` mirror the Python buffer protocol specification. .. code-block:: cpp struct buffer_info { void *ptr; size_t itemsize; std::string format; int ndim; std::vector shape; std::vector strides; }; To create a C++ function that can take a Python buffer object as an argument, simply use the type ``py::buffer`` as one of its arguments. Buffers can exist in a great variety of configurations, hence some safety checks are usually necessary in the function body. Below, you can see an basic example on how to define a custom constructor for the Eigen double precision matrix (``Eigen::MatrixXd``) type, which supports initialization from compatible buffer objects (e.g. a NumPy matrix). .. code-block:: cpp /* Bind MatrixXd (or some other Eigen type) to Python */ typedef Eigen::MatrixXd Matrix; typedef Matrix::Scalar Scalar; constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; py::class_(m, "Matrix") .def("__init__", [](Matrix &m, py::buffer b) { typedef Eigen::Stride Strides; /* Request a buffer descriptor from Python */ py::buffer_info info = b.request(); /* Some sanity checks ... */ if (info.format != py::format_descriptor::format()) throw std::runtime_error("Incompatible format: expected a double array!"); if (info.ndim != 2) throw std::runtime_error("Incompatible buffer dimension!"); auto strides = Strides( info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); auto map = Eigen::Map( static_cat(info.ptr), info.shape[0], info.shape[1], strides); new (&m) Matrix(map); }); For reference, the ``def_buffer()`` call for this Eigen data type should look as follows: .. code-block:: cpp .def_buffer([](Matrix &m) -> py::buffer_info { return py::buffer_info( m.data(), /* Pointer to buffer */ sizeof(Scalar), /* Size of one scalar */ /* Python struct-style format descriptor */ py::format_descriptor::format(), /* Number of dimensions */ 2, /* Buffer dimensions */ { (size_t) m.rows(), (size_t) m.cols() }, /* Strides (in bytes) for each index */ { sizeof(Scalar) * (rowMajor ? m.cols() : 1), sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } ); }) For a much easier approach of binding Eigen types (although with some limitations), refer to the section on :doc:`/advanced/cast/eigen`. .. seealso:: The file :file:`tests/test_buffers.cpp` contains a complete example that demonstrates using the buffer protocol with pybind11 in more detail. .. [#f2] http://docs.python.org/3/c-api/buffer.html Arrays ====== By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can restrict the function so that it only accepts NumPy arrays (rather than any type of Python object satisfying the buffer protocol). In many situations, we want to define a function which only accepts a NumPy array of a certain data type. This is possible via the ``py::array_t`` template. For instance, the following function requires the argument to be a NumPy array containing double precision values. .. code-block:: cpp void f(py::array_t array); When it is invoked with a different type (e.g. an integer or a list of integers), the binding code will attempt to cast the input into a NumPy array of the requested type. Note that this feature requires the :file:``pybind11/numpy.h`` header to be included. Data in NumPy arrays is not guaranteed to packed in a dense manner; furthermore, entries can be separated by arbitrary column and row strides. Sometimes, it can be useful to require a function to only accept dense arrays using either the C (row-major) or Fortran (column-major) ordering. This can be accomplished via a second template argument with values ``py::array::c_style`` or ``py::array::f_style``. .. code-block:: cpp void f(py::array_t array); The ``py::array::forcecast`` argument is the default value of the second template parameter, and it ensures that non-conforming arguments are converted into an array satisfying the specified requirements instead of trying the next function overload. Structured types ================ In order for ``py::array_t`` to work with structured (record) types, we first need to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE`` macro which expects the type followed by field names: .. code-block:: cpp struct A { int x; double y; }; struct B { int z; A a; }; PYBIND11_NUMPY_DTYPE(A, x, y); PYBIND11_NUMPY_DTYPE(B, z, a); /* now both A and B can be used as template arguments to py::array_t */ Vectorizing functions ===================== Suppose we want to bind a function with the following signature to Python so that it can process arbitrary NumPy array arguments (vectors, matrices, general N-D arrays) in addition to its normal arguments: .. code-block:: cpp double my_func(int x, float y, double z); After including the ``pybind11/numpy.h`` header, this is extremely simple: .. code-block:: cpp m.def("vectorized_func", py::vectorize(my_func)); Invoking the function like below causes 4 calls to be made to ``my_func`` with each of the array elements. The significant advantage of this compared to solutions like ``numpy.vectorize()`` is that the loop over the elements runs entirely on the C++ side and can be crunched down into a tight, optimized loop by the compiler. The result is returned as a NumPy array of type ``numpy.dtype.float64``. .. code-block:: pycon >>> x = np.array([[1, 3],[5, 7]]) >>> y = np.array([[2, 4],[6, 8]]) >>> z = 3 >>> result = vectorized_func(x, y, z) The scalar argument ``z`` is transparently replicated 4 times. The input arrays ``x`` and ``y`` are automatically converted into the right types (they are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and ``numpy.dtype.float32``, respectively) Sometimes we might want to explicitly exclude an argument from the vectorization because it makes little sense to wrap it in a NumPy array. For instance, suppose the function signature was .. code-block:: cpp double my_func(int x, float y, my_custom_type *z); This can be done with a stateful Lambda closure: .. code-block:: cpp // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) m.def("vectorized_func", [](py::array_t x, py::array_t y, my_custom_type *z) { auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; return py::vectorize(stateful_closure)(x, y); } ); In cases where the computation is too complicated to be reduced to ``vectorize``, it will be necessary to create and access the buffer contents manually. The following snippet contains a complete example that shows how this works (the code is somewhat contrived, since it could have been done more simply using ``vectorize``). .. code-block:: cpp #include #include namespace py = pybind11; py::array_t add_arrays(py::array_t input1, py::array_t input2) { auto buf1 = input1.request(), buf2 = input2.request(); if (buf1.ndim != 1 || buf2.ndim != 1) throw std::runtime_error("Number of dimensions must be one"); if (buf1.size != buf2.size) throw std::runtime_error("Input shapes must match"); /* No pointer is passed, so NumPy will allocate the buffer */ auto result = py::array_t(buf1.size); auto buf3 = result.request(); double *ptr1 = (double *) buf1.ptr, *ptr2 = (double *) buf2.ptr, *ptr3 = (double *) buf3.ptr; for (size_t idx = 0; idx < buf1.shape[0]; idx++) ptr3[idx] = ptr1[idx] + ptr2[idx]; return result; } PYBIND11_PLUGIN(test) { py::module m("test"); m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); return m.ptr(); } .. seealso:: The file :file:`tests/test_numpy_vectorize.cpp` contains a complete example that demonstrates using :func:`vectorize` in more detail.