/***************************************************************************** * McPAT/CACTI * SOFTWARE LICENSE AGREEMENT * Copyright 2012 Hewlett-Packard Development Company, L.P. * All Rights Reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” * ***************************************************************************/ #include #include #include #include "area.h" #include "parameter.h" using namespace std; InputParameter * g_ip; TechnologyParameter g_tp; void TechnologyParameter::DeviceType::display(uint32_t indent) { string indent_str(indent, ' '); cout << indent_str << "C_g_ideal = " << setw(12) << C_g_ideal << " F/um" << endl; cout << indent_str << "C_fringe = " << setw(12) << C_fringe << " F/um" << endl; cout << indent_str << "C_overlap = " << setw(12) << C_overlap << " F/um" << endl; cout << indent_str << "C_junc = " << setw(12) << C_junc << " F/um^2" << endl; cout << indent_str << "l_phy = " << setw(12) << l_phy << " um" << endl; cout << indent_str << "l_elec = " << setw(12) << l_elec << " um" << endl; cout << indent_str << "R_nch_on = " << setw(12) << R_nch_on << " ohm-um" << endl; cout << indent_str << "R_pch_on = " << setw(12) << R_pch_on << " ohm-um" << endl; cout << indent_str << "Vdd = " << setw(12) << Vdd << " V" << endl; cout << indent_str << "Vth = " << setw(12) << Vth << " V" << endl; cout << indent_str << "I_on_n = " << setw(12) << I_on_n << " A/um" << endl; cout << indent_str << "I_on_p = " << setw(12) << I_on_p << " A/um" << endl; cout << indent_str << "I_off_n = " << setw(12) << I_off_n << " A/um" << endl; cout << indent_str << "I_off_p = " << setw(12) << I_off_p << " A/um" << endl; cout << indent_str << "C_ox = " << setw(12) << C_ox << " F/um^2" << endl; cout << indent_str << "t_ox = " << setw(12) << t_ox << " um" << endl; cout << indent_str << "n_to_p_eff_curr_drv_ratio = " << n_to_p_eff_curr_drv_ratio << endl; } void TechnologyParameter::InterconnectType::display(uint32_t indent) { string indent_str(indent, ' '); cout << indent_str << "pitch = " << setw(12) << pitch << " um" << endl; cout << indent_str << "R_per_um = " << setw(12) << R_per_um << " ohm/um" << endl; cout << indent_str << "C_per_um = " << setw(12) << C_per_um << " F/um" << endl; } void TechnologyParameter::ScalingFactor::display(uint32_t indent) { string indent_str(indent, ' '); cout << indent_str << "logic_scaling_co_eff = " << setw(12) << logic_scaling_co_eff << endl; cout << indent_str << "curr_core_tx_density = " << setw(12) << core_tx_density << " # of tx/um^2" << endl; } void TechnologyParameter::MemoryType::display(uint32_t indent) { string indent_str(indent, ' '); cout << indent_str << "b_w = " << setw(12) << b_w << " um" << endl; cout << indent_str << "b_h = " << setw(12) << b_h << " um" << endl; cout << indent_str << "cell_a_w = " << setw(12) << cell_a_w << " um" << endl; cout << indent_str << "cell_pmos_w = " << setw(12) << cell_pmos_w << " um" << endl; cout << indent_str << "cell_nmos_w = " << setw(12) << cell_nmos_w << " um" << endl; cout << indent_str << "Vbitpre = " << setw(12) << Vbitpre << " V" << endl; } void TechnologyParameter::display(uint32_t indent) { string indent_str(indent, ' '); cout << indent_str << "ram_wl_stitching_overhead_ = " << setw(12) << ram_wl_stitching_overhead_ << " um" << endl; cout << indent_str << "min_w_nmos_ = " << setw(12) << min_w_nmos_ << " um" << endl; cout << indent_str << "max_w_nmos_ = " << setw(12) << max_w_nmos_ << " um" << endl; cout << indent_str << "unit_len_wire_del = " << setw(12) << unit_len_wire_del << " s/um^2" << endl; cout << indent_str << "FO4 = " << setw(12) << FO4 << " s" << endl; cout << indent_str << "kinv = " << setw(12) << kinv << " s" << endl; cout << indent_str << "vpp = " << setw(12) << vpp << " V" << endl; cout << indent_str << "w_sense_en = " << setw(12) << w_sense_en << " um" << endl; cout << indent_str << "w_sense_n = " << setw(12) << w_sense_n << " um" << endl; cout << indent_str << "w_sense_p = " << setw(12) << w_sense_p << " um" << endl; cout << indent_str << "w_iso = " << setw(12) << w_iso << " um" << endl; cout << indent_str << "w_poly_contact = " << setw(12) << w_poly_contact << " um" << endl; cout << indent_str << "spacing_poly_to_poly = " << setw(12) << spacing_poly_to_poly << " um" << endl; cout << indent_str << "spacing_poly_to_contact = " << setw(12) << spacing_poly_to_contact << " um" << endl; cout << endl; cout << indent_str << "w_comp_inv_p1 = " << setw(12) << w_comp_inv_p1 << " um" << endl; cout << indent_str << "w_comp_inv_p2 = " << setw(12) << w_comp_inv_p2 << " um" << endl; cout << indent_str << "w_comp_inv_p3 = " << setw(12) << w_comp_inv_p3 << " um" << endl; cout << indent_str << "w_comp_inv_n1 = " << setw(12) << w_comp_inv_n1 << " um" << endl; cout << indent_str << "w_comp_inv_n2 = " << setw(12) << w_comp_inv_n2 << " um" << endl; cout << indent_str << "w_comp_inv_n3 = " << setw(12) << w_comp_inv_n3 << " um" << endl; cout << indent_str << "w_eval_inv_p = " << setw(12) << w_eval_inv_p << " um" << endl; cout << indent_str << "w_eval_inv_n = " << setw(12) << w_eval_inv_n << " um" << endl; cout << indent_str << "w_comp_n = " << setw(12) << w_comp_n << " um" << endl; cout << indent_str << "w_comp_p = " << setw(12) << w_comp_p << " um" << endl; cout << endl; cout << indent_str << "dram_cell_I_on = " << setw(12) << dram_cell_I_on << " A/um" << endl; cout << indent_str << "dram_cell_Vdd = " << setw(12) << dram_cell_Vdd << " V" << endl; cout << indent_str << "dram_cell_I_off_worst_case_len_temp = " << setw(12) << dram_cell_I_off_worst_case_len_temp << " A/um" << endl; cout << indent_str << "dram_cell_C = " << setw(12) << dram_cell_C << " F" << endl; cout << indent_str << "gm_sense_amp_latch = " << setw(12) << gm_sense_amp_latch << " F/s" << endl; cout << endl; cout << indent_str << "w_nmos_b_mux = " << setw(12) << w_nmos_b_mux << " um" << endl; cout << indent_str << "w_nmos_sa_mux = " << setw(12) << w_nmos_sa_mux << " um" << endl; cout << indent_str << "w_pmos_bl_precharge = " << setw(12) << w_pmos_bl_precharge << " um" << endl; cout << indent_str << "w_pmos_bl_eq = " << setw(12) << w_pmos_bl_eq << " um" << endl; cout << indent_str << "MIN_GAP_BET_P_AND_N_DIFFS = " << setw(12) << MIN_GAP_BET_P_AND_N_DIFFS << " um" << endl; cout << indent_str << "HPOWERRAIL = " << setw(12) << HPOWERRAIL << " um" << endl; cout << indent_str << "cell_h_def = " << setw(12) << cell_h_def << " um" << endl; cout << endl; cout << indent_str << "SRAM cell transistor: " << endl; sram_cell.display(indent + 2); cout << endl; cout << indent_str << "DRAM access transistor: " << endl; dram_acc.display(indent + 2); cout << endl; cout << indent_str << "DRAM wordline transistor: " << endl; dram_wl.display(indent + 2); cout << endl; cout << indent_str << "peripheral global transistor: " << endl; peri_global.display(indent + 2); cout << endl; cout << indent_str << "wire local" << endl; wire_local.display(indent + 2); cout << endl; cout << indent_str << "wire inside mat" << endl; wire_inside_mat.display(indent + 2); cout << endl; cout << indent_str << "wire outside mat" << endl; wire_outside_mat.display(indent + 2); cout << endl; cout << indent_str << "SRAM" << endl; sram.display(indent + 2); cout << endl; cout << indent_str << "DRAM" << endl; dram.display(indent + 2); } DynamicParameter::DynamicParameter(): use_inp_params(0), cell(), is_valid(true) { } DynamicParameter::DynamicParameter( bool is_tag_, int pure_ram_, int pure_cam_, double Nspd_, unsigned int Ndwl_, unsigned int Ndbl_, unsigned int Ndcm_, unsigned int Ndsam_lev_1_, unsigned int Ndsam_lev_2_, bool is_main_mem_): is_tag(is_tag_), pure_ram(pure_ram_), pure_cam(pure_cam_), tagbits(0), Nspd(Nspd_), Ndwl(Ndwl_), Ndbl(Ndbl_),Ndcm(Ndcm_), Ndsam_lev_1(Ndsam_lev_1_), Ndsam_lev_2(Ndsam_lev_2_), number_way_select_signals_mat(0), V_b_sense(0), use_inp_params(0), is_main_mem(is_main_mem_), cell(), is_valid(false) { ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type; is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram)); unsigned int capacity_per_die = g_ip->cache_sz / NUMBER_STACKED_DIE_LAYERS; // capacity per stacked die layer const TechnologyParameter::InterconnectType & wire_local = g_tp.wire_local; fully_assoc = (g_ip->fully_assoc) ? true : false; if (fully_assoc || pure_cam) { // fully-assocative cache -- ref: CACTi 2.0 report if (Ndwl != 1 || //Ndwl is fixed to 1 for FA Ndcm != 1 || //Ndcm is fixed to 1 for FA Nspd < 1 || Nspd > 1 || //Nspd is fixed to 1 for FA Ndsam_lev_1 != 1 || //Ndsam_lev_1 is fixed to one Ndsam_lev_2 != 1 || //Ndsam_lev_2 is fixed to one Ndbl < 2) { return; } } if ((is_dram) && (!is_tag) && (Ndcm > 1)) { return; // For a DRAM array, each bitline has its own sense-amp } // If it's not an FA tag/data array, Ndwl should be at least two and Ndbl should be // at least two because an array is assumed to have at least one mat. And a mat // is formed out of two horizontal subarrays and two vertical subarrays if (fully_assoc == false && (Ndwl < 1 || Ndbl < 1)) { return; } //***********compute row, col of an subarray if (!(fully_assoc || pure_cam))//Not fully_asso nor cam { // if data array, let tagbits = 0 if (is_tag) { if (g_ip->specific_tag) { tagbits = g_ip->tag_w; } else { tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(capacity_per_die) + _log2(g_ip->tag_assoc*2 - 1) - _log2(g_ip->nbanks); } tagbits = (((tagbits + 3) >> 2) << 2); num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks * g_ip->block_sz * g_ip->tag_assoc * Ndbl * Nspd));// + EPSILON); num_c_subarray = (int)ceil((tagbits * g_ip->tag_assoc * Nspd / Ndwl));// + EPSILON); //burst_length = 1; } else { num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks * g_ip->block_sz * g_ip->data_assoc * Ndbl * Nspd));// + EPSILON); num_c_subarray = (int)ceil((8 * g_ip->block_sz * g_ip->data_assoc * Nspd / Ndwl));// + EPSILON); + EPSILON); // burst_length = g_ip->block_sz * 8 / g_ip->out_w; } if (num_r_subarray < MINSUBARRAYROWS) return; if (num_r_subarray == 0) return; if (num_r_subarray > MAXSUBARRAYROWS) return; if (num_c_subarray < MINSUBARRAYCOLS) return; if (num_c_subarray > MAXSUBARRAYCOLS) return; } else {//either fully-asso or cam if (pure_cam) { if (g_ip->specific_tag) { tagbits = int(ceil(g_ip->tag_w/8.0)*8); } else { tagbits = int(ceil((ADDRESS_BITS + EXTRA_TAG_BITS)/8.0)*8); // cout<<"Pure CAM needs tag width to be specified"<> 2) << 2); tag_num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks*tagbits/8.0 * Ndbl));//TODO: error check input of tagbits and blocksize //TODO: for pure CAM, g_ip->block should be number of entries. //tag_num_c_subarray = (int)(tagbits + EPSILON); tag_num_c_subarray = tagbits; if (tag_num_r_subarray == 0) return; if (tag_num_r_subarray > MAXSUBARRAYROWS) return; if (tag_num_c_subarray < MINSUBARRAYCOLS) return; if (tag_num_c_subarray > MAXSUBARRAYCOLS) return; num_r_subarray = tag_num_r_subarray; } else //fully associative { if (g_ip->specific_tag) { tagbits = g_ip->tag_w; } else { tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(g_ip->block_sz);//TODO: should be the page_offset=log2(page size), but this info is not avail with CACTI, for McPAT this is no problem. } tagbits = (((tagbits + 3) >> 2) << 2); tag_num_r_subarray = (int)(capacity_per_die / (g_ip->nbanks*g_ip->block_sz * Ndbl)); tag_num_c_subarray = (int)ceil((tagbits * Nspd / Ndwl));// + EPSILON); if (tag_num_r_subarray == 0) return; if (tag_num_r_subarray > MAXSUBARRAYROWS) return; if (tag_num_c_subarray < MINSUBARRAYCOLS) return; if (tag_num_c_subarray > MAXSUBARRAYCOLS) return; data_num_r_subarray = tag_num_r_subarray; data_num_c_subarray = 8 * g_ip->block_sz; if (data_num_r_subarray == 0) return; if (data_num_r_subarray > MAXSUBARRAYROWS) return; if (data_num_c_subarray < MINSUBARRAYCOLS) return; if (data_num_c_subarray > MAXSUBARRAYCOLS) return; num_r_subarray = tag_num_r_subarray; } } num_subarrays = Ndwl * Ndbl; //****************end of computation of row, col of an subarray // calculate wire parameters if (fully_assoc || pure_cam) { cam_cell.h = g_tp.cam.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports-1 + g_ip->num_rd_ports + g_ip->num_wr_ports) + 2 * wire_local.pitch*(g_ip->num_search_ports-1) + wire_local.pitch * g_ip->num_se_rd_ports; cam_cell.w = g_tp.cam.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports-1 + g_ip->num_rd_ports + g_ip->num_wr_ports) + 2 * wire_local.pitch*(g_ip->num_search_ports-1) + wire_local.pitch * g_ip->num_se_rd_ports; cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports +g_ip->num_rw_ports-1 + g_ip->num_rd_ports) + 2 * wire_local.pitch*(g_ip->num_search_ports-1); cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports -1 + (g_ip->num_rd_ports - g_ip->num_se_rd_ports) + g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports + 2 * wire_local.pitch*(g_ip->num_search_ports-1); } else { if(is_tag) { cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports); cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_wr_ports + (g_ip->num_rd_ports - g_ip->num_se_rd_ports)) + wire_local.pitch * g_ip->num_se_rd_ports; } else { if (is_dram) { cell.h = g_tp.dram.b_h; cell.w = g_tp.dram.b_w; } else { cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports + g_ip->num_rw_ports - 1 + g_ip->num_rd_ports); cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + (g_ip->num_rd_ports - g_ip->num_se_rd_ports) + g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports; } } } double c_b_metal = cell.h * wire_local.C_per_um; double C_bl; if (!(fully_assoc || pure_cam)) { if (is_dram) { deg_bl_muxing = 1; if (ram_cell_tech_type == comm_dram) { C_bl = num_r_subarray * c_b_metal; V_b_sense = (g_tp.dram_cell_Vdd/2) * g_tp.dram_cell_C / (g_tp.dram_cell_C + C_bl); if (V_b_sense < VBITSENSEMIN) { return; } V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value dram_refresh_period = 64e-3; } else { double Cbitrow_drain_cap = drain_C_(g_tp.dram.cell_a_w, NCH, 1, 0, cell.w, true, true) / 2.0; C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal); V_b_sense = (g_tp.dram_cell_Vdd/2) * g_tp.dram_cell_C /(g_tp.dram_cell_C + C_bl); if (V_b_sense < VBITSENSEMIN) { return; //Sense amp input signal is smaller that minimum allowable sense amp input signal } V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value //v_storage_worst = g_tp.dram_cell_Vdd / 2 - VBITSENSEMIN * (g_tp.dram_cell_C + C_bl) / g_tp.dram_cell_C; //dram_refresh_period = 1.1 * g_tp.dram_cell_C * v_storage_worst / g_tp.dram_cell_I_off_worst_case_len_temp; dram_refresh_period = 0.9 * g_tp.dram_cell_C * VDD_STORAGE_LOSS_FRACTION_WORST * g_tp.dram_cell_Vdd / g_tp.dram_cell_I_off_worst_case_len_temp; } } else { //SRAM V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN; deg_bl_muxing = Ndcm; // "/ 2.0" below is due to the fact that two adjacent access transistors share drain // contacts in a physical layout double Cbitrow_drain_cap = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0; C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal); dram_refresh_period = 0; } } else { c_b_metal = cam_cell.h * wire_local.C_per_um;//IBM and SUN design, SRAM array uses dummy cells to fill the blank space due to mismatch on CAM-RAM V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN; deg_bl_muxing = 1;//FA fix as 1 // "/ 2.0" below is due to the fact that two adjacent access transistors share drain // contacts in a physical layout double Cbitrow_drain_cap = drain_C_(g_tp.cam.cell_a_w, NCH, 1, 0, cam_cell.w, false, true) / 2.0;//TODO: comment out these two lines C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal); dram_refresh_period = 0; } // do/di: data in/out, for fully associative they are the data width for normal read and write // so/si: search data in/out, for fully associative they are the data width for the search ops // for CAM, si=di, but so = matching address. do = data out = di (for normal read/write) // so/si needs broadcase while do/di do not if (fully_assoc || pure_cam) { switch (Ndbl) { case (0): cout << " Invalid Ndbl \n"<int_prefetch_w * g_ip->out_w; deg_sa_mux_l1_non_assoc = Ndsam_lev_1; } else { if (g_ip->fast_access == true) { num_do_b_subbank = g_ip->out_w * g_ip->data_assoc; deg_sa_mux_l1_non_assoc = Ndsam_lev_1; } else { num_do_b_subbank = g_ip->out_w; deg_sa_mux_l1_non_assoc = Ndsam_lev_1 / g_ip->data_assoc; if (deg_sa_mux_l1_non_assoc < 1) { return; } } } } else { num_do_b_subbank = tagbits * g_ip->tag_assoc; if (num_do_b_mat < tagbits) { return; } deg_sa_mux_l1_non_assoc = Ndsam_lev_1; //num_do_b_mat = g_ip->tag_assoc / num_mats_h_dir; } } else { if (fully_assoc) { num_so_b_subbank = 8 * g_ip->block_sz;//TODO:internal perfetch should be considered also for fa num_do_b_subbank = num_so_b_subbank + tag_num_c_subarray; } else { num_so_b_subbank = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data num_do_b_subbank = tag_num_c_subarray; } deg_sa_mux_l1_non_assoc = 1; } deg_senseamp_muxing_non_associativity = deg_sa_mux_l1_non_assoc; if (fully_assoc || pure_cam) { num_act_mats_hor_dir = 1; num_act_mats_hor_dir_sl = num_mats_h_dir;//TODO: this is unnecessary, since search op, num_mats is used } else { num_act_mats_hor_dir = num_do_b_subbank / num_do_b_mat; if (num_act_mats_hor_dir == 0) { return; } } //compute num_do_mat for tag if (is_tag) { if (!(fully_assoc || pure_cam)) { num_do_b_mat = g_ip->tag_assoc / num_act_mats_hor_dir; num_do_b_subbank = num_act_mats_hor_dir * num_do_b_mat; } } if ((g_ip->is_cache == false && is_main_mem == true) || (PAGE_MODE == 1 && is_dram)) { if (num_act_mats_hor_dir * num_do_b_mat * Ndsam_lev_1 * Ndsam_lev_2 != (int)g_ip->page_sz_bits) { return; } } // if (is_tag == false && g_ip->is_cache == true && !fully_assoc && !pure_cam && //TODO: TODO burst transfer should also apply to RAM arrays if (is_tag == false && g_ip->is_main_mem == true && num_act_mats_hor_dir*num_do_b_mat*Ndsam_lev_1*Ndsam_lev_2 < ((int) g_ip->out_w * (int) g_ip->burst_len * (int) g_ip->data_assoc)) { return; } if (num_act_mats_hor_dir > num_mats_h_dir) { return; } //compute di for mat subbank and bank if (!(fully_assoc ||pure_cam)) { if(!is_tag) { if(g_ip->fast_access == true) { num_di_b_mat = num_do_b_mat / g_ip->data_assoc; } else { num_di_b_mat = num_do_b_mat; } } else { num_di_b_mat = tagbits; } } else { if (fully_assoc) { num_di_b_mat = num_do_b_mat; //*num_subarrays/num_mats; bits per mat of CAM/FA is as same as cache, //but inside the mat wire tracks need to be reserved for search data bus num_si_b_mat = tagbits; } else { num_di_b_mat = tagbits; num_si_b_mat = tagbits;//*num_subarrays/num_mats; } } num_di_b_subbank = num_di_b_mat * num_act_mats_hor_dir;//normal cache or normal r/w for FA num_si_b_subbank = num_si_b_mat; //* num_act_mats_hor_dir_sl; inside the data is broadcast int num_addr_b_row_dec = _log2(num_r_subarray); if ((fully_assoc ||pure_cam)) num_addr_b_row_dec +=_log2(num_subarrays/num_mats); int number_subbanks = num_mats / num_act_mats_hor_dir; number_subbanks_decode = _log2(number_subbanks);//TODO: add log2(num_subarray_per_bank) to FA/CAM num_rw_ports = g_ip->num_rw_ports; num_rd_ports = g_ip->num_rd_ports; num_wr_ports = g_ip->num_wr_ports; num_se_rd_ports = g_ip->num_se_rd_ports; num_search_ports = g_ip->num_search_ports; if (is_dram && is_main_mem) { number_addr_bits_mat = MAX((unsigned int) num_addr_b_row_dec, _log2(deg_bl_muxing) + _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2)); } else { number_addr_bits_mat = num_addr_b_row_dec + _log2(deg_bl_muxing) + _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2); } if (!(fully_assoc ||pure_cam)) { if (is_tag) { num_di_b_bank_per_port = tagbits; num_do_b_bank_per_port = g_ip->data_assoc; } else { num_di_b_bank_per_port = g_ip->out_w + g_ip->data_assoc; num_do_b_bank_per_port = g_ip->out_w; } } else { if (fully_assoc) { num_di_b_bank_per_port = g_ip->out_w + tagbits;//TODO: out_w or block_sz? num_si_b_bank_per_port = tagbits; num_do_b_bank_per_port = g_ip->out_w + tagbits; num_so_b_bank_per_port = g_ip->out_w; } else { num_di_b_bank_per_port = tagbits; num_si_b_bank_per_port = tagbits; num_do_b_bank_per_port = tagbits; num_so_b_bank_per_port = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays))); } } if ((!is_tag) && (g_ip->data_assoc > 1) && (!g_ip->fast_access)) { number_way_select_signals_mat = g_ip->data_assoc; } // add ECC adjustment to all data signals that traverse on H-trees. if (g_ip->add_ecc_b_ == true) { num_do_b_mat += (int) (ceil(num_do_b_mat / num_bits_per_ecc_b_)); num_di_b_mat += (int) (ceil(num_di_b_mat / num_bits_per_ecc_b_)); num_di_b_subbank += (int) (ceil(num_di_b_subbank / num_bits_per_ecc_b_)); num_do_b_subbank += (int) (ceil(num_do_b_subbank / num_bits_per_ecc_b_)); num_di_b_bank_per_port += (int) (ceil(num_di_b_bank_per_port / num_bits_per_ecc_b_)); num_do_b_bank_per_port += (int) (ceil(num_do_b_bank_per_port / num_bits_per_ecc_b_)); num_so_b_mat += (int) (ceil(num_so_b_mat / num_bits_per_ecc_b_)); num_si_b_mat += (int) (ceil(num_si_b_mat / num_bits_per_ecc_b_)); num_si_b_subbank += (int) (ceil(num_si_b_subbank / num_bits_per_ecc_b_)); num_so_b_subbank += (int) (ceil(num_so_b_subbank / num_bits_per_ecc_b_)); num_si_b_bank_per_port += (int) (ceil(num_si_b_bank_per_port / num_bits_per_ecc_b_)); num_so_b_bank_per_port += (int) (ceil(num_so_b_bank_per_port / num_bits_per_ecc_b_)); } is_valid = true; }