/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/std_cells/BUF.h" #include #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/CellMacros.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" #include "model/timing_graph/ElectricalDelay.h" namespace DSENT { using std::max; BUF::BUF(const String& instance_name_, const TechModel* tech_model_) : StdCell(instance_name_, tech_model_) { initProperties(); } BUF::~BUF() {} void BUF::initProperties() { return; } void BUF::constructModel() { createInputPort("A"); createOutputPort("Y"); createLoad("A_Cap"); createDelay("A_to_Y_delay"); createDriver("Y_Ron", true); ElectricalLoad* a_cap = getLoad("A_Cap"); ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); ElectricalDriver* y_ron = getDriver("Y_Ron"); getNet("A")->addDownstreamNode(a_cap); a_cap->addDownstreamNode(a_to_y_delay); a_to_y_delay->addDownstreamNode(y_ron); y_ron->addDownstreamNode(getNet("Y")); // Create Area result // Create NDD Power result createElectricalAtomicResults(); // Create OR Event Energy Result createElectricalEventAtomicResult("BUF"); getEventInfo("Idle")->setStaticTransitionInfos(); return; } void BUF::updateModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string const String& cell_name = "BUF_X" + (String) drive_strength; // Get timing parameters getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); // Set the cell area getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea")); getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea")); return; } void BUF::evaluateModel() { return; } void BUF::useModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Stadard cell cache string const String& cell_name = "BUF_X" + (String) drive_strength; // Propagate the transition info and get the 0->1 transtion count propagateTransitionInfo(); double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); // Calculate leakage double leakage = 0; leakage += cache->get(cell_name + "->Leakage->!A") * (1 - P_A); leakage += cache->get(cell_name + "->Leakage->A") * P_A; getNddPowerResult("Leakage")->setValue(leakage); // Get VDD double vdd = getTechModel()->get("Vdd"); // Get capacitances double y_b_cap = cache->get(cell_name + "->Cap->Y_b"); double y_cap = cache->get(cell_name + "->Cap->Y"); double y_load_cap = getNet("Y")->getTotalDownstreamCap(); // Calculate BUFEvent energy double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd; getEventResult("BUF")->setValue(energy_per_trans_01 * Y_num_trans_01); return; } void BUF::propagateTransitionInfo() { // Get input signal transition info const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); getOutputPort("Y")->setTransitionInfo(trans_A); return; } // Creates the standard cell, characterizes and abstracts away the details void BUF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) { // Get parameters double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); Map* cache = cell_lib_->getStdCellCache(); // Stadard cell cache string const String& cell_name = "BUF_X" + (String) drive_strength_; Log::printLine("=== " + cell_name + " ==="); // Now actually build the full standard cell model createInputPort("A"); createOutputPort("Y"); createNet("Y_b"); // Adds macros CellMacros::addInverter(this, "INV0", false, true, "A", "Y_b"); CellMacros::addInverter(this, "INV1", false, true, "Y_b", "Y"); // Update macros CellMacros::updateInverter(this, "INV0", drive_strength_ * 0.367); CellMacros::updateInverter(this, "INV1", drive_strength_ * 1.0); // Cache area result double area = 0.0; area += gate_pitch * getTotalHeight() * 1; area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV0_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); cache->set(cell_name + "->ActiveArea", area); Log::printLine(cell_name + "->ActiveArea=" + (String)area); // -------------------------------------------------------------------- // Leakage Model Calculation // -------------------------------------------------------------------- // Cache leakage power results (for every single signal combination) double leakage_0 = 0.0; // !A double leakage_1 = 0.0; // A leakage_0 += getGenProperties()->get("INV0_LeakagePower_0").toDouble(); leakage_0 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_1 += getGenProperties()->get("INV0_LeakagePower_1").toDouble(); leakage_1 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); cache->set(cell_name + "->Leakage->!A", leakage_0); cache->set(cell_name + "->Leakage->A", leakage_1); Log::printLine(cell_name + "->Leakage->!A=" + (String) leakage_0); Log::printLine(cell_name + "->Leakage->A=" + (String) leakage_1); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Get Node Capacitances // -------------------------------------------------------------------- double a_cap = getNet("A")->getTotalDownstreamCap(); double y_b_cap = getNet("Y_b")->getTotalDownstreamCap(); double y_cap = getNet("Y")->getTotalDownstreamCap(); cache->set(cell_name + "->Cap->A", a_cap); cache->set(cell_name + "->Cap->Y_b", y_b_cap); cache->set(cell_name + "->Cap->Y", y_cap); Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap); Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap); Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Build Internal Delay Model // -------------------------------------------------------------------- double y_ron = getDriver("INV1_RonZN")->getOutputRes(); double a_to_y_delay = getDriver("INV0_RonZN")->calculateDelay() + getDriver("INV1_RonZN")->calculateDelay(); cache->set(cell_name + "->DriveRes->Y", y_ron); cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); // -------------------------------------------------------------------- return; } } // namespace DSENT