/* * Copyright (c) 2012-2014, TU Delft * Copyright (c) 2012-2014, TU Eindhoven * Copyright (c) 2012-2014, TU Kaiserslautern * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "CommandAnalysis.h" using std::cerr; using std::endl; using std::max; using namespace Data; int64_t zero_guard(int64_t cycles_in, const char* warning) { // Calculate max(0, cycles_in) int64_t zero = 0; if (warning != nullptr && cycles_in < 0) { // This line is commented out for now, we will attempt to remove the situations where // these warnings trigger later. // cerr << "WARNING: " << warning << endl; } return max(zero, cycles_in); } void CommandAnalysis::handleAct(unsigned bank, int64_t timestamp) { printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::ACT, timestamp, bank); // If command is ACT - update number of acts, bank state of the // target bank, first and latest activation cycle and the memory // state. Update the number of precharged/idle-precharged cycles. // If the bank is already active ignore the command and generate a // warning. if (isPrecharged(bank)) { numberofactsBanks[bank]++; if (nActiveBanks() == 0) { // Here a memory state transition to ACT is happening. Save the // number of cycles in precharge state (increment the counter). first_act_cycle = timestamp; precycles += zero_guard(timestamp - last_pre_cycle, "1 last_pre_cycle is in the future."); idle_pre_update(timestamp, latest_pre_cycle); } bank_state[bank] = BANK_ACTIVE; latest_act_cycle = timestamp; } else { printWarning("Bank is already active!", MemCommand::ACT, timestamp, bank); } } void CommandAnalysis::handleRd(unsigned bank, int64_t timestamp) { printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::RD, timestamp, bank); // If command is RD - update number of reads and read cycle. Check // for active idle cycles (if any). if (isPrecharged(bank)) { printWarning("Bank is not active!", MemCommand::RD, timestamp, bank); } numberofreadsBanks[bank]++; idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_read_cycle = timestamp; } void CommandAnalysis::handleWr(unsigned bank, int64_t timestamp) { printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::WR, timestamp, bank); // If command is WR - update number of writes and write cycle. Check // for active idle cycles (if any). if (isPrecharged(bank)) { printWarning("Bank is not active!", MemCommand::WR, timestamp, bank); } numberofwritesBanks[bank]++; idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_write_cycle = timestamp; } void CommandAnalysis::handleRef(unsigned bank, int64_t timestamp) { printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::REF, timestamp, bank); // If command is REF - update number of refreshes, set bank state of // all banks to ACT, set the last PRE cycles at RFC-RP cycles from // timestamp, set the number of active cycles to RFC-RP and check // for active and precharged cycles and idle active and idle // precharged cycles before refresh. Change memory state to 0. printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", MemCommand::REF, timestamp, bank); numberofrefs++; idle_pre_update(timestamp, latest_pre_cycle); first_act_cycle = timestamp; std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); precycles += zero_guard(timestamp - last_pre_cycle, "2 last_pre_cycle is in the future."); last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; latest_pre_cycle = last_pre_cycle; actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; for (auto &e : actcyclesBanks) { e += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; } for (auto& bs : bank_state) { bs = BANK_PRECHARGED; } } void CommandAnalysis::handleRefB(unsigned bank, int64_t timestamp) { // A REFB command requires a previous PRE command. if (isPrecharged(bank)) { // This previous PRE command handler is also responsible for keeping the // memory state updated. // Here we consider that the memory state is not changed in order to keep // things simple, since the transition from PRE to ACT state takes time. numberofrefbBanks[bank]++; // Length of the refresh: here we have an approximation, we consider tRP // also as act cycles because the bank will be precharged (stable) after // tRP. actcyclesBanks[bank] += memSpec.memTimingSpec.RAS + memSpec.memTimingSpec.RP; } else { printWarning("Bank must be precharged for REFB!", MemCommand::REFB, timestamp, bank); } } void CommandAnalysis::handlePre(unsigned bank, int64_t timestamp) { printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PRE, timestamp, bank); // If command is explicit PRE - update number of precharges, bank // state of the target bank and last and latest precharge cycle. // Calculate the number of active cycles if the memory was in the // active state before, but there is a state transition to PRE now // (i.e., this is the last active bank). // If the bank is already precharged ignore the command and generate a // warning. // Precharge only if the target bank is active if (bank_state[bank] == BANK_ACTIVE) { numberofpresBanks[bank]++; actcyclesBanks[bank] += zero_guard(timestamp - first_act_cycle_banks[bank], "first_act_cycle is in the future (bank)."); // Since we got here, at least one bank is active assert(nActiveBanks() != 0); if (nActiveBanks() == 1) { // This is the last active bank. Therefore, here a memory state // transition to PRE is happening. Let's increment the active cycle // counter. actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); last_pre_cycle = timestamp; idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } bank_state[bank] = BANK_PRECHARGED; latest_pre_cycle = timestamp; } else { printWarning("Bank is already precharged!", MemCommand::PRE, timestamp, bank); } } void CommandAnalysis::handlePreA(unsigned bank, int64_t timestamp) { printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PREA, timestamp, bank); // If command is explicit PREA (precharge all banks) - update // number of precharges by the number of active banks, update the bank // state of all banks to PRE and set the precharge cycle (the cycle in // which the memory state changes from ACT to PRE, aka last_pre_cycle). // Calculate the number of active cycles if the memory was in the // active state before, but there is a state transition to PRE now. if (nActiveBanks() > 0) { // Active banks are being precharged // At least one bank was active, therefore the current memory state is // ACT. Since all banks are being precharged a memory state transition // to PRE is happening. Add to the counter the amount of cycles the // memory remained in the ACT state. actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); last_pre_cycle = timestamp; for (unsigned b = 0; b < num_banks; b++) { if (bank_state[b] == BANK_ACTIVE) { // Active banks are being precharged numberofpresBanks[b] += 1; actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); } } idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); latest_pre_cycle = timestamp; // Reset the state for all banks to precharged. for (auto& bs : bank_state) { bs = BANK_PRECHARGED; } } else { printWarning("All banks are already precharged!", MemCommand::PREA, timestamp, bank); } } void CommandAnalysis::handlePdnFAct(unsigned bank, int64_t timestamp) { // If command is fast-exit active power-down - update number of // power-downs, set the power-down cycle and the memory mode to // fast-exit active power-down. Save states of all the banks from // the cycle before entering active power-down, to be returned to // after powering-up. Update active and active idle cycles. printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_F_ACT, timestamp, bank); f_act_pdns++; last_bank_state = bank_state; pdn_cycle = timestamp; actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); for (unsigned b = 0; b < num_banks; b++) { if (bank_state[b] == BANK_ACTIVE) { actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); } } idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); mem_state = CommandAnalysis::MS_PDN_F_ACT; } void CommandAnalysis::handlePdnSAct(unsigned bank, int64_t timestamp) { // If command is slow-exit active power-down - update number of // power-downs, set the power-down cycle and the memory mode to // slow-exit active power-down. Save states of all the banks from // the cycle before entering active power-down, to be returned to // after powering-up. Update active and active idle cycles. printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_S_ACT, timestamp, bank); s_act_pdns++; last_bank_state = bank_state; pdn_cycle = timestamp; actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); for (unsigned b = 0; b < num_banks; b++) { if (bank_state[b] == BANK_ACTIVE) { actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); } } idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); mem_state = CommandAnalysis::MS_PDN_S_ACT; } void CommandAnalysis::handlePdnFPre(unsigned bank, int64_t timestamp) { // If command is fast-exit precharged power-down - update number of // power-downs, set the power-down cycle and the memory mode to // fast-exit precahrged power-down. Update precharged and precharged // idle cycles. printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_F_PRE, timestamp, bank); f_pre_pdns++; pdn_cycle = timestamp; precycles += zero_guard(timestamp - last_pre_cycle, "3 last_pre_cycle is in the future."); idle_pre_update(timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_PDN_F_PRE; } void CommandAnalysis::handlePdnSPre(unsigned bank, int64_t timestamp) { // If command is slow-exit precharged power-down - update number of // power-downs, set the power-down cycle and the memory mode to // slow-exit precahrged power-down. Update precharged and precharged // idle cycles. printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_S_PRE, timestamp, bank); s_pre_pdns++; pdn_cycle = timestamp; precycles += zero_guard(timestamp - last_pre_cycle, "4 last_pre_cycle is in the future."); idle_pre_update(timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_PDN_S_PRE; } void CommandAnalysis::handlePupAct(int64_t timestamp) { // If command is power-up in the active mode - check the power-down // exit-mode employed (fast or slow), update the number of power-down // and power-up cycles and the latest and first act cycle. Also, reset // all the individual bank states to the respective saved states // before entering power-down. const MemTimingSpec& t = memSpec.memTimingSpec; if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); pup_act_cycles += t.XP; latest_act_cycle = timestamp; } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); if (memSpec.memArchSpec.dll == false) { pup_act_cycles += t.XP; latest_act_cycle = timestamp; } else { pup_act_cycles += t.XPDLL - t.RCD; latest_act_cycle = timestamp + zero_guard(t.XPDLL - (2 * t.RCD), "t.XPDLL - (2 * t.RCD) < 0"); } } else { cerr << "Incorrect use of Active Power-Up!" << endl; } mem_state = MS_NOT_IN_PD; bank_state = last_bank_state; first_act_cycle = timestamp; std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); } void CommandAnalysis::handlePupPre(int64_t timestamp) { // If command is power-up in the precharged mode - check the power-down // exit-mode employed (fast or slow), update the number of power-down // and power-up cycles and the latest and last pre cycle. const MemTimingSpec& t = memSpec.memTimingSpec; if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); pup_pre_cycles += t.XP; latest_pre_cycle = timestamp; } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); if (memSpec.memArchSpec.dll == false) { pup_pre_cycles += t.XP; latest_pre_cycle = timestamp; } else { pup_pre_cycles += t.XPDLL - t.RCD; latest_pre_cycle = timestamp + zero_guard(t.XPDLL - t.RCD - t.RP, "t.XPDLL - t.RCD - t.RP"); } } else { cerr << "Incorrect use of Precharged Power-Up!" << endl; } mem_state = MS_NOT_IN_PD; last_pre_cycle = timestamp; } void CommandAnalysis::handleSREn(unsigned bank, int64_t timestamp) { // If command is self-refresh - update number of self-refreshes, // set memory state to SREF, update precharge and idle precharge // cycles and set the self-refresh cycle. printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", MemCommand::SREN, timestamp, bank); numberofsrefs++; sref_cycle = timestamp; sref_cycle_window = timestamp; sref_ref_pre_cycles_window = 0; sref_ref_act_cycles_window = 0; precycles += zero_guard(timestamp - last_pre_cycle, "5 last_pre_cycle is in the future."); idle_pre_update(timestamp, latest_pre_cycle); mem_state = CommandAnalysis::MS_SREF; } void CommandAnalysis::handleSREx(unsigned bank, int64_t timestamp) { // If command is self-refresh exit - update the number of self-refresh // clock cycles, number of active and precharged auto-refresh clock // cycles during self-refresh and self-refresh exit based on the number // of cycles in the self-refresh mode and auto-refresh duration (RFC). // Set the last and latest precharge cycle accordingly and set the // memory state to 0. const MemTimingSpec& t = memSpec.memTimingSpec; if (mem_state != CommandAnalysis::MS_SREF) { cerr << "Incorrect use of Self-Refresh Power-Up!" << endl; } // The total duration of self-refresh is given by the difference between // the current clock cycle and the clock cycle of entering self-refresh. int64_t sref_duration = timestamp - sref_cycle; // Negative or zero duration should never happen. if (sref_duration <= 0) { printWarning("Invalid Self-Refresh duration!", MemCommand::SREX, timestamp, bank); sref_duration = 0; } // The minimum time that the DRAM must remain in Self-Refresh is CKESR. if (sref_duration < t.CKESR) { printWarning("Self-Refresh duration < CKESR!", MemCommand::SREX, timestamp, bank); } if (sref_duration >= t.RFC) { /* * Self-refresh Exit Context 1 (tSREF >= tRFC): * The memory remained in self-refresh for a certain number of clock * cycles greater than a refresh cycle time (RFC). Consequently, the * initial auto-refresh accomplished. * * * SREN # SREX * | # ^ * | # | * |<------------------------- tSREF ----------...----->| * | # | * | Initial Auto-Refresh # | * v # | * ------------------------------------#-------...-----------------> t * # * <------------- tRFC --------------># * <---- (tRFC - tRP) ----><-- tRP --># * | | * v v * sref_ref_act_cycles sref_ref_pre_cycles * * * Summary: * sref_cycles += tSREF – tRFC * sref_ref_act_cycles += tRFC - tRP * sref_ref_pre_cycles += tRP * spup_ref_act_cycles += 0 * spup_ref_pre_cycles += 0 * */ // The initial auto-refresh consumes (IDD5 − IDD3N) over one refresh // period (RFC) from the start of the self-refresh. sref_ref_act_cycles += t.RFC - t.RP - sref_ref_act_cycles_window; sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window; last_pre_cycle = timestamp; // The IDD6 current is consumed for the time period spent in the // self-refresh mode, which excludes the time spent in finishing the // initial auto-refresh. if (sref_cycle_window > sref_cycle + t.RFC) { sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future."); } else { sref_cycles += zero_guard(timestamp - sref_cycle - t.RFC, "sref_cycle - t.RFC < 0"); } // IDD2N current is consumed when exiting the self-refresh state. if (memSpec.memArchSpec.dll == false) { spup_cycles += t.XS; latest_pre_cycle = timestamp + zero_guard(t.XS - t.RP, "t.XS - t.RP < 0"); } else { spup_cycles += t.XSDLL - t.RCD; latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - t.RP, "t.XSDLL - t.RCD - t.RP < 0"); } } else { // Self-refresh Exit Context 2 (tSREF < tRFC): // Exit self-refresh before the completion of the initial // auto-refresh. // Number of active cycles needed by an auto-refresh. int64_t ref_act_cycles = t.RFC - t.RP; if (sref_duration >= ref_act_cycles) { /* * Self-refresh Exit Context 2A (tSREF < tRFC && tSREF >= tRFC - tRP): * The duration of self-refresh is equal or greater than the number * of active cycles needed by the initial auto-refresh. * * * SREN SREX * | ^ # * | | # * |<------------------ tSREF --------------------->| # * | | # * | Initial Auto-Refresh # * v | # * -----------------------------------------------------------#--> t * # * <------------------------ tRFC --------------------------># * <------------- (tRFC - tRP)--------------><----- tRP ----># * | <-----><-------> * v | | * sref_ref_act_cycles v v * sref_ref_pre_cycles spup_ref_pre_cycles * * * Summary: * sref_cycles += 0 * sref_ref_act_cycles += tRFC - tRP * sref_ref_pre_cycles += tSREF – (tRFC – tRP) * spup_ref_act_cycles += 0 * spup_ref_pre_cycles += tRP – sref_ref_pre_cycles * */ // Number of precharged cycles (zero <= pre_cycles < RP) int64_t pre_cycles = sref_duration - ref_act_cycles - sref_ref_pre_cycles_window; sref_ref_act_cycles += ref_act_cycles - sref_ref_act_cycles_window; sref_ref_pre_cycles += pre_cycles; // Number of precharged cycles during the self-refresh power-up. It // is at maximum tRP (if pre_cycles is zero). int64_t spup_pre = t.RP - pre_cycles; spup_ref_pre_cycles += spup_pre; last_pre_cycle = timestamp + spup_pre; if (memSpec.memArchSpec.dll == false) { spup_cycles += t.XS - spup_pre; latest_pre_cycle = timestamp + zero_guard(t.XS - spup_pre - t.RP, "t.XS - spup_pre - t.RP < 0"); } else { spup_cycles += t.XSDLL - t.RCD - spup_pre; latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_pre - t.RP, "t.XSDLL - t.RCD - spup_pre - t.RP"); } } else { /* * Self-refresh Exit Context 2B (tSREF < tRFC - tRP): * self-refresh duration is shorter than the number of active cycles * needed by the initial auto-refresh. * * * SREN SREX * | ^ # * | | # * |<-------------- tSREF ----------->| # * | | # * | Initial Auto-Refresh # * v | # * ------------------------------------------------------------#--> t * # * <------------------------ tRFC ---------------------------># * <-------------- (tRFC - tRP)-------------><------ tRP ----># * <--------------------------------><------><---------------> * | | | * v v v * sref_ref_act_cycles spup_ref_act_cycles spup_ref_pre_cycles * * * Summary: * sref_cycles += 0 * sref_ref_act_cycles += tSREF * sref_ref_pre_cycles += 0 * spup_ref_act_cycles += (tRFC – tRP) - tSREF * spup_ref_pre_cycles += tRP * */ sref_ref_act_cycles += sref_duration - sref_ref_act_cycles_window; int64_t spup_act = (t.RFC - t.RP) - sref_duration; spup_ref_act_cycles += spup_act; spup_ref_pre_cycles += t.RP; last_pre_cycle = timestamp + spup_act + t.RP; if (memSpec.memArchSpec.dll == false) { spup_cycles += t.XS - spup_act - t.RP; latest_pre_cycle = timestamp + zero_guard(t.XS - spup_act - (2 * t.RP), "t.XS - spup_act - (2 * t.RP) < 0"); } else { spup_cycles += t.XSDLL - t.RCD - spup_act - t.RP; latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_act - (2 * t.RP), "t.XSDLL - t.RCD - spup_act - (2 * t.RP) < 0"); } } } mem_state = MS_NOT_IN_PD; } void CommandAnalysis::handleNopEnd(int64_t timestamp) { // May be optionally used at the end of memory trace for better accuracy // Update all counters based on completion of operations. const MemTimingSpec& t = memSpec.memTimingSpec; for (unsigned b = 0; b < num_banks; b++) { if (bank_state[b] == BANK_ACTIVE) { actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)"); } } if (nActiveBanks() > 0 && mem_state == MS_NOT_IN_PD) { actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future"); idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); } else if (nActiveBanks() == 0 && mem_state == MS_NOT_IN_PD) { precycles += zero_guard(timestamp - last_pre_cycle, "6 last_pre_cycle is in the future"); idle_pre_update(timestamp, latest_pre_cycle); } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); } else if (mem_state == CommandAnalysis::MS_SREF) { auto rfc_minus_rp = (t.RFC - t.RP); if (timestamp > sref_cycle + t.RFC) { if (sref_cycle_window <= sref_cycle + rfc_minus_rp) { sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window; sref_ref_act_cycles_window = rfc_minus_rp; sref_cycle_window = sref_cycle + rfc_minus_rp; } if (sref_cycle_window <= sref_cycle + t.RFC) { sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window; sref_ref_pre_cycles_window = t.RP; sref_cycle_window = sref_cycle + t.RFC; } sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future"); } else if (timestamp > sref_cycle + rfc_minus_rp) { if (sref_cycle_window <= sref_cycle + rfc_minus_rp) { sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window; sref_ref_act_cycles_window = rfc_minus_rp; sref_cycle_window = sref_cycle + rfc_minus_rp; } sref_ref_pre_cycles_window += timestamp - sref_cycle_window; sref_ref_pre_cycles += timestamp - sref_cycle_window; } else { sref_ref_act_cycles_window += timestamp - sref_cycle_window; sref_ref_act_cycles += timestamp - sref_cycle_window; } } }