scheduler.hh (13701:d84e5d2979a7) scheduler.hh (13901:b9329102b1d8)
1/*
2 * Copyright 2018 Google, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met: redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer;
8 * redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution;
11 * neither the name of the copyright holders nor the names of its
12 * contributors may be used to endorse or promote products derived from
13 * this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * Authors: Gabe Black
28 */
29
30#ifndef __SYSTEMC_CORE_SCHEDULER_HH__
31#define __SYSTEMC_CORE_SCHEDULER_HH__
32
33#include <functional>
34#include <map>
1/*
2 * Copyright 2018 Google, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met: redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer;
8 * redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution;
11 * neither the name of the copyright holders nor the names of its
12 * contributors may be used to endorse or promote products derived from
13 * this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * Authors: Gabe Black
28 */
29
30#ifndef __SYSTEMC_CORE_SCHEDULER_HH__
31#define __SYSTEMC_CORE_SCHEDULER_HH__
32
33#include <functional>
34#include <map>
35#include <mutex>
35#include <set>
36#include <vector>
37
38#include "base/logging.hh"
39#include "sim/core.hh"
40#include "sim/eventq.hh"
41#include "systemc/core/channel.hh"
42#include "systemc/core/list.hh"
43#include "systemc/core/process.hh"
44#include "systemc/core/sched_event.hh"
45
46class Fiber;
47
48namespace sc_gem5
49{
50
51class TraceFile;
52
53typedef NodeList<Process> ProcessList;
54typedef NodeList<Channel> ChannelList;
55
56/*
57 * The scheduler supports three different mechanisms, the initialization phase,
58 * delta cycles, and timed notifications.
59 *
60 * INITIALIZATION PHASE
61 *
62 * The initialization phase has three parts:
63 * 1. Run requested channel updates.
64 * 2. Make processes which need to initialize runnable (methods and threads
65 * which didn't have dont_initialize called on them).
66 * 3. Process delta notifications.
67 *
68 * First, the Kernel SimObject calls the update() method during its startup()
69 * callback which handles the requested channel updates. The Kernel also
70 * schedules an event to be run at time 0 with a slightly elevated priority
71 * so that it happens before any "normal" event.
72 *
73 * When that t0 event happens, it calls the schedulers prepareForInit method
74 * which performs step 2 above. That indirectly causes the scheduler's
75 * readyEvent to be scheduled with slightly lowered priority, ensuring it
76 * happens after any "normal" event.
77 *
78 * Because delta notifications are scheduled at the standard priority, all
79 * of those events will happen next, performing step 3 above. Once they finish,
80 * if the readyEvent was scheduled above, there shouldn't be any higher
81 * priority events in front of it. When it runs, it will start the first
82 * evaluate phase of the first delta cycle.
83 *
84 * DELTA CYCLE
85 *
86 * A delta cycle has three phases within it.
87 * 1. The evaluate phase where runnable processes are allowed to run.
88 * 2. The update phase where requested channel updates hapen.
89 * 3. The delta notification phase where delta notifications happen.
90 *
91 * The readyEvent runs all three steps of the delta cycle. It first goes
92 * through the list of runnable processes and executes them until the set is
93 * empty, and then immediately runs the update phase. Since these are all part
94 * of the same event, there's no chance for other events to intervene and
95 * break the required order above.
96 *
97 * During the update phase above, the spec forbids any action which would make
98 * a process runnable. That means that once the update phase finishes, the set
99 * of runnable processes will be empty. There may, however, have been some
100 * delta notifications/timeouts which will have been scheduled during either
101 * the evaluate or update phase above. Those will have been accumulated in the
102 * scheduler, and are now all executed.
103 *
104 * If any processes became runnable during the delta notification phase, the
105 * readyEvent will have been scheduled and will be waiting and ready to run
106 * again, effectively starting the next delta cycle.
107 *
108 * TIMED NOTIFICATION PHASE
109 *
110 * If no processes became runnable, the event queue will continue to process
111 * events until it comes across an event which represents all the timed
112 * notifications which are supposed to happen at a particular time. The object
113 * which tracks them will execute all those notifications, and then destroy
114 * itself. If the readyEvent is now ready to run, the next delta cycle will
115 * start.
116 *
117 * PAUSE/STOP
118 *
119 * To inject a pause from sc_pause which should happen after the current delta
120 * cycle's delta notification phase, an event is scheduled with a lower than
121 * normal priority, but higher than the readyEvent. That ensures that any
122 * delta notifications which are scheduled with normal priority will happen
123 * first, since those are part of the current delta cycle. Then the pause
124 * event will happen before the next readyEvent which would start the next
125 * delta cycle. All of these events are scheduled for the current time, and so
126 * would happen before any timed notifications went off.
127 *
128 * To inject a stop from sc_stop, the delta cycles should stop before even the
129 * delta notifications have happened, but after the evaluate and update phases.
130 * For that, a stop event with slightly higher than normal priority will be
131 * scheduled so that it happens before any of the delta notification events
132 * which are at normal priority.
133 *
134 * MAX RUN TIME
135 *
136 * When sc_start is called, it's possible to pass in a maximum time the
137 * simulation should run to, at which point sc_pause is implicitly called. The
138 * simulation is supposed to run up to the latest timed notification phase
139 * which is less than or equal to the maximum time. In other words it should
140 * run timed notifications at the maximum time, but not the subsequent evaluate
141 * phase. That's implemented by scheduling an event at the max time with a
142 * priority which is lower than all the others except the ready event. Timed
143 * notifications will happen before it fires, but it will override any ready
144 * event and prevent the evaluate phase from starting.
145 */
146
147class Scheduler
148{
149 public:
150 typedef std::list<ScEvent *> ScEvents;
151
152 class TimeSlot : public ::Event
153 {
154 public:
155 TimeSlot() : ::Event(Default_Pri, AutoDelete) {}
156
157 ScEvents events;
158 void process();
159 };
160
161 typedef std::map<Tick, TimeSlot *> TimeSlots;
162
163 Scheduler();
164 ~Scheduler();
165
166 void clear();
167
168 const std::string name() const { return "systemc_scheduler"; }
169
170 uint64_t numCycles() { return _numCycles; }
171 Process *current() { return _current; }
172
173 void initPhase();
174
175 // Register a process with the scheduler.
176 void reg(Process *p);
177
178 // Run the next process, if there is one.
179 void yield();
180
181 // Put a process on the ready list.
182 void ready(Process *p);
183
184 // Mark a process as ready if init is finished, or put it on the list of
185 // processes to be initialized.
186 void resume(Process *p);
187
188 // Remove a process from the ready/init list if it was on one of them, and
189 // return if it was.
190 bool suspend(Process *p);
191
192 // Schedule an update for a given channel.
193 void requestUpdate(Channel *c);
36#include <set>
37#include <vector>
38
39#include "base/logging.hh"
40#include "sim/core.hh"
41#include "sim/eventq.hh"
42#include "systemc/core/channel.hh"
43#include "systemc/core/list.hh"
44#include "systemc/core/process.hh"
45#include "systemc/core/sched_event.hh"
46
47class Fiber;
48
49namespace sc_gem5
50{
51
52class TraceFile;
53
54typedef NodeList<Process> ProcessList;
55typedef NodeList<Channel> ChannelList;
56
57/*
58 * The scheduler supports three different mechanisms, the initialization phase,
59 * delta cycles, and timed notifications.
60 *
61 * INITIALIZATION PHASE
62 *
63 * The initialization phase has three parts:
64 * 1. Run requested channel updates.
65 * 2. Make processes which need to initialize runnable (methods and threads
66 * which didn't have dont_initialize called on them).
67 * 3. Process delta notifications.
68 *
69 * First, the Kernel SimObject calls the update() method during its startup()
70 * callback which handles the requested channel updates. The Kernel also
71 * schedules an event to be run at time 0 with a slightly elevated priority
72 * so that it happens before any "normal" event.
73 *
74 * When that t0 event happens, it calls the schedulers prepareForInit method
75 * which performs step 2 above. That indirectly causes the scheduler's
76 * readyEvent to be scheduled with slightly lowered priority, ensuring it
77 * happens after any "normal" event.
78 *
79 * Because delta notifications are scheduled at the standard priority, all
80 * of those events will happen next, performing step 3 above. Once they finish,
81 * if the readyEvent was scheduled above, there shouldn't be any higher
82 * priority events in front of it. When it runs, it will start the first
83 * evaluate phase of the first delta cycle.
84 *
85 * DELTA CYCLE
86 *
87 * A delta cycle has three phases within it.
88 * 1. The evaluate phase where runnable processes are allowed to run.
89 * 2. The update phase where requested channel updates hapen.
90 * 3. The delta notification phase where delta notifications happen.
91 *
92 * The readyEvent runs all three steps of the delta cycle. It first goes
93 * through the list of runnable processes and executes them until the set is
94 * empty, and then immediately runs the update phase. Since these are all part
95 * of the same event, there's no chance for other events to intervene and
96 * break the required order above.
97 *
98 * During the update phase above, the spec forbids any action which would make
99 * a process runnable. That means that once the update phase finishes, the set
100 * of runnable processes will be empty. There may, however, have been some
101 * delta notifications/timeouts which will have been scheduled during either
102 * the evaluate or update phase above. Those will have been accumulated in the
103 * scheduler, and are now all executed.
104 *
105 * If any processes became runnable during the delta notification phase, the
106 * readyEvent will have been scheduled and will be waiting and ready to run
107 * again, effectively starting the next delta cycle.
108 *
109 * TIMED NOTIFICATION PHASE
110 *
111 * If no processes became runnable, the event queue will continue to process
112 * events until it comes across an event which represents all the timed
113 * notifications which are supposed to happen at a particular time. The object
114 * which tracks them will execute all those notifications, and then destroy
115 * itself. If the readyEvent is now ready to run, the next delta cycle will
116 * start.
117 *
118 * PAUSE/STOP
119 *
120 * To inject a pause from sc_pause which should happen after the current delta
121 * cycle's delta notification phase, an event is scheduled with a lower than
122 * normal priority, but higher than the readyEvent. That ensures that any
123 * delta notifications which are scheduled with normal priority will happen
124 * first, since those are part of the current delta cycle. Then the pause
125 * event will happen before the next readyEvent which would start the next
126 * delta cycle. All of these events are scheduled for the current time, and so
127 * would happen before any timed notifications went off.
128 *
129 * To inject a stop from sc_stop, the delta cycles should stop before even the
130 * delta notifications have happened, but after the evaluate and update phases.
131 * For that, a stop event with slightly higher than normal priority will be
132 * scheduled so that it happens before any of the delta notification events
133 * which are at normal priority.
134 *
135 * MAX RUN TIME
136 *
137 * When sc_start is called, it's possible to pass in a maximum time the
138 * simulation should run to, at which point sc_pause is implicitly called. The
139 * simulation is supposed to run up to the latest timed notification phase
140 * which is less than or equal to the maximum time. In other words it should
141 * run timed notifications at the maximum time, but not the subsequent evaluate
142 * phase. That's implemented by scheduling an event at the max time with a
143 * priority which is lower than all the others except the ready event. Timed
144 * notifications will happen before it fires, but it will override any ready
145 * event and prevent the evaluate phase from starting.
146 */
147
148class Scheduler
149{
150 public:
151 typedef std::list<ScEvent *> ScEvents;
152
153 class TimeSlot : public ::Event
154 {
155 public:
156 TimeSlot() : ::Event(Default_Pri, AutoDelete) {}
157
158 ScEvents events;
159 void process();
160 };
161
162 typedef std::map<Tick, TimeSlot *> TimeSlots;
163
164 Scheduler();
165 ~Scheduler();
166
167 void clear();
168
169 const std::string name() const { return "systemc_scheduler"; }
170
171 uint64_t numCycles() { return _numCycles; }
172 Process *current() { return _current; }
173
174 void initPhase();
175
176 // Register a process with the scheduler.
177 void reg(Process *p);
178
179 // Run the next process, if there is one.
180 void yield();
181
182 // Put a process on the ready list.
183 void ready(Process *p);
184
185 // Mark a process as ready if init is finished, or put it on the list of
186 // processes to be initialized.
187 void resume(Process *p);
188
189 // Remove a process from the ready/init list if it was on one of them, and
190 // return if it was.
191 bool suspend(Process *p);
192
193 // Schedule an update for a given channel.
194 void requestUpdate(Channel *c);
195 // Same as above, but may be called from a different thread.
196 void asyncRequestUpdate(Channel *c);
194
195 // Run the given process immediately, preempting whatever may be running.
196 void
197 runNow(Process *p)
198 {
199 // This function may put a process on the wrong list, ie a thread
200 // the method list. That's fine since that's just a performance
201 // optimization, and the important thing here is how the processes are
202 // ordered.
203
204 // If a process is running, schedule it/us to run again.
205 if (_current)
206 readyListMethods.pushFirst(_current);
207 // Schedule p to run first.
208 readyListMethods.pushFirst(p);
209 yield();
210 }
211
212 // Run this process at the next opportunity.
213 void
214 runNext(Process *p)
215 {
216 // Like above, it's ok if this isn't a method. Putting it on this list
217 // just gives it priority.
218 readyListMethods.pushFirst(p);
219 if (!inEvaluate())
220 scheduleReadyEvent();
221 }
222
223 // Set an event queue for scheduling events.
224 void setEventQueue(EventQueue *_eq) { eq = _eq; }
225
226 // Get the current time according to gem5.
227 Tick getCurTick() { return eq ? eq->getCurTick() : 0; }
228
229 Tick
230 delayed(const ::sc_core::sc_time &delay)
231 {
232 return getCurTick() + delay.value();
233 }
234
235 // For scheduling delayed/timed notifications/timeouts.
236 void
237 schedule(ScEvent *event, const ::sc_core::sc_time &delay)
238 {
239 Tick tick = delayed(delay);
240 if (tick < getCurTick())
241 tick = getCurTick();
242
243 // Delta notification/timeout.
244 if (delay.value() == 0) {
245 event->schedule(deltas, tick);
246 if (!inEvaluate() && !inUpdate())
247 scheduleReadyEvent();
248 return;
249 }
250
251 // Timed notification/timeout.
252 TimeSlot *&ts = timeSlots[tick];
253 if (!ts) {
254 ts = new TimeSlot;
255 schedule(ts, tick);
256 }
257 event->schedule(ts->events, tick);
258 }
259
260 // For descheduling delayed/timed notifications/timeouts.
261 void
262 deschedule(ScEvent *event)
263 {
264 ScEvents *on = event->scheduledOn();
265
266 if (on == &deltas) {
267 event->deschedule();
268 return;
269 }
270
271 // Timed notification/timeout.
272 auto tsit = timeSlots.find(event->when());
273 panic_if(tsit == timeSlots.end(),
274 "Descheduling event at time with no events.");
275 TimeSlot *ts = tsit->second;
276 ScEvents &events = ts->events;
277 assert(on == &events);
278 event->deschedule();
279
280 // If no more events are happening at this time slot, get rid of it.
281 if (events.empty()) {
282 deschedule(ts);
283 timeSlots.erase(tsit);
284 }
285 }
286
287 void
288 completeTimeSlot(TimeSlot *ts)
289 {
290 assert(ts == timeSlots.begin()->second);
291 timeSlots.erase(timeSlots.begin());
292 if (!runToTime && starved())
293 scheduleStarvationEvent();
294 scheduleTimeAdvancesEvent();
295 }
296
297 // Pending activity ignores gem5 activity, much like how a systemc
298 // simulation wouldn't know about asynchronous external events (socket IO
299 // for instance) that might happen before time advances in a pure
300 // systemc simulation. Also the spec lists what specific types of pending
301 // activity needs to be counted, which obviously doesn't include gem5
302 // events.
303
304 // Return whether there's pending systemc activity at this time.
305 bool
306 pendingCurr()
307 {
308 return !readyListMethods.empty() || !readyListThreads.empty() ||
309 !updateList.empty() || !deltas.empty();
310 }
311
312 // Return whether there are pending timed notifications or timeouts.
313 bool
314 pendingFuture()
315 {
316 return !timeSlots.empty();
317 }
318
319 // Return how many ticks there are until the first pending event, if any.
320 Tick
321 timeToPending()
322 {
323 if (pendingCurr())
324 return 0;
325 if (pendingFuture())
326 return timeSlots.begin()->first - getCurTick();
327 return MaxTick - getCurTick();
328 }
329
330 // Run scheduled channel updates.
331 void runUpdate();
332
333 // Run delta events.
334 void runDelta();
335
336 void start(Tick max_tick, bool run_to_time);
337 void oneCycle();
338
339 void schedulePause();
340 void scheduleStop(bool finish_delta);
341
342 enum Status
343 {
344 StatusOther = 0,
345 StatusEvaluate,
346 StatusUpdate,
347 StatusDelta,
348 StatusTiming,
349 StatusPaused,
350 StatusStopped
351 };
352
353 bool elaborationDone() { return _elaborationDone; }
354 void elaborationDone(bool b) { _elaborationDone = b; }
355
356 bool paused() { return status() == StatusPaused; }
357 bool stopped() { return status() == StatusStopped; }
358 bool inEvaluate() { return status() == StatusEvaluate; }
359 bool inUpdate() { return status() == StatusUpdate; }
360 bool inDelta() { return status() == StatusDelta; }
361 bool inTiming() { return status() == StatusTiming; }
362
363 uint64_t changeStamp() { return _changeStamp; }
364 void stepChangeStamp() { _changeStamp++; }
365
366 // Throw upwards, either to sc_main or to the report handler if sc_main
367 // isn't running.
368 void throwUp();
369
370 Status status() { return _status; }
371 void status(Status s) { _status = s; }
372
373 void registerTraceFile(TraceFile *tf) { traceFiles.insert(tf); }
374 void unregisterTraceFile(TraceFile *tf) { traceFiles.erase(tf); }
375
376 private:
377 typedef const EventBase::Priority Priority;
378 static Priority DefaultPriority = EventBase::Default_Pri;
379
380 static Priority StopPriority = DefaultPriority - 1;
381 static Priority PausePriority = DefaultPriority + 1;
382 static Priority MaxTickPriority = DefaultPriority + 2;
383 static Priority ReadyPriority = DefaultPriority + 3;
384 static Priority StarvationPriority = ReadyPriority;
385 static Priority TimeAdvancesPriority = EventBase::Maximum_Pri;
386
387 EventQueue *eq;
388
389 // For gem5 style events.
390 void
391 schedule(::Event *event, Tick tick)
392 {
393 if (initDone)
394 eq->schedule(event, tick);
395 else
396 eventsToSchedule[event] = tick;
397 }
398
399 void schedule(::Event *event) { schedule(event, getCurTick()); }
400
401 void
402 deschedule(::Event *event)
403 {
404 if (initDone)
405 eq->deschedule(event);
406 else
407 eventsToSchedule.erase(event);
408 }
409
410 ScEvents deltas;
411 TimeSlots timeSlots;
412
413 Process *
414 getNextReady()
415 {
416 Process *p = readyListMethods.getNext();
417 return p ? p : readyListThreads.getNext();
418 }
419
420 void runReady();
421 EventWrapper<Scheduler, &Scheduler::runReady> readyEvent;
422 void scheduleReadyEvent();
423
424 void pause();
425 void stop();
426 EventWrapper<Scheduler, &Scheduler::pause> pauseEvent;
427 EventWrapper<Scheduler, &Scheduler::stop> stopEvent;
428
429 const ::sc_core::sc_report *_throwUp;
430
431 bool
432 starved()
433 {
434 return (readyListMethods.empty() && readyListThreads.empty() &&
435 updateList.empty() && deltas.empty() &&
436 (timeSlots.empty() || timeSlots.begin()->first > maxTick) &&
437 initList.empty());
438 }
439 EventWrapper<Scheduler, &Scheduler::pause> starvationEvent;
440 void scheduleStarvationEvent();
441
442 bool _elaborationDone;
443 bool _started;
444 bool _stopNow;
445
446 Status _status;
447
448 Tick maxTick;
449 Tick lastReadyTick;
450 void
451 maxTickFunc()
452 {
453 if (lastReadyTick != getCurTick())
454 _changeStamp++;
455 pause();
456 }
457 EventWrapper<Scheduler, &Scheduler::maxTickFunc> maxTickEvent;
458
459 void timeAdvances() { trace(false); }
460 EventWrapper<Scheduler, &Scheduler::timeAdvances> timeAdvancesEvent;
461 void
462 scheduleTimeAdvancesEvent()
463 {
464 if (!traceFiles.empty() && !timeAdvancesEvent.scheduled())
465 schedule(&timeAdvancesEvent);
466 }
467
468 uint64_t _numCycles;
469 uint64_t _changeStamp;
470
471 Process *_current;
472
473 bool initDone;
474 bool runToTime;
475 bool runOnce;
476
477 ProcessList initList;
478
479 ProcessList readyListMethods;
480 ProcessList readyListThreads;
481
482 ChannelList updateList;
483
197
198 // Run the given process immediately, preempting whatever may be running.
199 void
200 runNow(Process *p)
201 {
202 // This function may put a process on the wrong list, ie a thread
203 // the method list. That's fine since that's just a performance
204 // optimization, and the important thing here is how the processes are
205 // ordered.
206
207 // If a process is running, schedule it/us to run again.
208 if (_current)
209 readyListMethods.pushFirst(_current);
210 // Schedule p to run first.
211 readyListMethods.pushFirst(p);
212 yield();
213 }
214
215 // Run this process at the next opportunity.
216 void
217 runNext(Process *p)
218 {
219 // Like above, it's ok if this isn't a method. Putting it on this list
220 // just gives it priority.
221 readyListMethods.pushFirst(p);
222 if (!inEvaluate())
223 scheduleReadyEvent();
224 }
225
226 // Set an event queue for scheduling events.
227 void setEventQueue(EventQueue *_eq) { eq = _eq; }
228
229 // Get the current time according to gem5.
230 Tick getCurTick() { return eq ? eq->getCurTick() : 0; }
231
232 Tick
233 delayed(const ::sc_core::sc_time &delay)
234 {
235 return getCurTick() + delay.value();
236 }
237
238 // For scheduling delayed/timed notifications/timeouts.
239 void
240 schedule(ScEvent *event, const ::sc_core::sc_time &delay)
241 {
242 Tick tick = delayed(delay);
243 if (tick < getCurTick())
244 tick = getCurTick();
245
246 // Delta notification/timeout.
247 if (delay.value() == 0) {
248 event->schedule(deltas, tick);
249 if (!inEvaluate() && !inUpdate())
250 scheduleReadyEvent();
251 return;
252 }
253
254 // Timed notification/timeout.
255 TimeSlot *&ts = timeSlots[tick];
256 if (!ts) {
257 ts = new TimeSlot;
258 schedule(ts, tick);
259 }
260 event->schedule(ts->events, tick);
261 }
262
263 // For descheduling delayed/timed notifications/timeouts.
264 void
265 deschedule(ScEvent *event)
266 {
267 ScEvents *on = event->scheduledOn();
268
269 if (on == &deltas) {
270 event->deschedule();
271 return;
272 }
273
274 // Timed notification/timeout.
275 auto tsit = timeSlots.find(event->when());
276 panic_if(tsit == timeSlots.end(),
277 "Descheduling event at time with no events.");
278 TimeSlot *ts = tsit->second;
279 ScEvents &events = ts->events;
280 assert(on == &events);
281 event->deschedule();
282
283 // If no more events are happening at this time slot, get rid of it.
284 if (events.empty()) {
285 deschedule(ts);
286 timeSlots.erase(tsit);
287 }
288 }
289
290 void
291 completeTimeSlot(TimeSlot *ts)
292 {
293 assert(ts == timeSlots.begin()->second);
294 timeSlots.erase(timeSlots.begin());
295 if (!runToTime && starved())
296 scheduleStarvationEvent();
297 scheduleTimeAdvancesEvent();
298 }
299
300 // Pending activity ignores gem5 activity, much like how a systemc
301 // simulation wouldn't know about asynchronous external events (socket IO
302 // for instance) that might happen before time advances in a pure
303 // systemc simulation. Also the spec lists what specific types of pending
304 // activity needs to be counted, which obviously doesn't include gem5
305 // events.
306
307 // Return whether there's pending systemc activity at this time.
308 bool
309 pendingCurr()
310 {
311 return !readyListMethods.empty() || !readyListThreads.empty() ||
312 !updateList.empty() || !deltas.empty();
313 }
314
315 // Return whether there are pending timed notifications or timeouts.
316 bool
317 pendingFuture()
318 {
319 return !timeSlots.empty();
320 }
321
322 // Return how many ticks there are until the first pending event, if any.
323 Tick
324 timeToPending()
325 {
326 if (pendingCurr())
327 return 0;
328 if (pendingFuture())
329 return timeSlots.begin()->first - getCurTick();
330 return MaxTick - getCurTick();
331 }
332
333 // Run scheduled channel updates.
334 void runUpdate();
335
336 // Run delta events.
337 void runDelta();
338
339 void start(Tick max_tick, bool run_to_time);
340 void oneCycle();
341
342 void schedulePause();
343 void scheduleStop(bool finish_delta);
344
345 enum Status
346 {
347 StatusOther = 0,
348 StatusEvaluate,
349 StatusUpdate,
350 StatusDelta,
351 StatusTiming,
352 StatusPaused,
353 StatusStopped
354 };
355
356 bool elaborationDone() { return _elaborationDone; }
357 void elaborationDone(bool b) { _elaborationDone = b; }
358
359 bool paused() { return status() == StatusPaused; }
360 bool stopped() { return status() == StatusStopped; }
361 bool inEvaluate() { return status() == StatusEvaluate; }
362 bool inUpdate() { return status() == StatusUpdate; }
363 bool inDelta() { return status() == StatusDelta; }
364 bool inTiming() { return status() == StatusTiming; }
365
366 uint64_t changeStamp() { return _changeStamp; }
367 void stepChangeStamp() { _changeStamp++; }
368
369 // Throw upwards, either to sc_main or to the report handler if sc_main
370 // isn't running.
371 void throwUp();
372
373 Status status() { return _status; }
374 void status(Status s) { _status = s; }
375
376 void registerTraceFile(TraceFile *tf) { traceFiles.insert(tf); }
377 void unregisterTraceFile(TraceFile *tf) { traceFiles.erase(tf); }
378
379 private:
380 typedef const EventBase::Priority Priority;
381 static Priority DefaultPriority = EventBase::Default_Pri;
382
383 static Priority StopPriority = DefaultPriority - 1;
384 static Priority PausePriority = DefaultPriority + 1;
385 static Priority MaxTickPriority = DefaultPriority + 2;
386 static Priority ReadyPriority = DefaultPriority + 3;
387 static Priority StarvationPriority = ReadyPriority;
388 static Priority TimeAdvancesPriority = EventBase::Maximum_Pri;
389
390 EventQueue *eq;
391
392 // For gem5 style events.
393 void
394 schedule(::Event *event, Tick tick)
395 {
396 if (initDone)
397 eq->schedule(event, tick);
398 else
399 eventsToSchedule[event] = tick;
400 }
401
402 void schedule(::Event *event) { schedule(event, getCurTick()); }
403
404 void
405 deschedule(::Event *event)
406 {
407 if (initDone)
408 eq->deschedule(event);
409 else
410 eventsToSchedule.erase(event);
411 }
412
413 ScEvents deltas;
414 TimeSlots timeSlots;
415
416 Process *
417 getNextReady()
418 {
419 Process *p = readyListMethods.getNext();
420 return p ? p : readyListThreads.getNext();
421 }
422
423 void runReady();
424 EventWrapper<Scheduler, &Scheduler::runReady> readyEvent;
425 void scheduleReadyEvent();
426
427 void pause();
428 void stop();
429 EventWrapper<Scheduler, &Scheduler::pause> pauseEvent;
430 EventWrapper<Scheduler, &Scheduler::stop> stopEvent;
431
432 const ::sc_core::sc_report *_throwUp;
433
434 bool
435 starved()
436 {
437 return (readyListMethods.empty() && readyListThreads.empty() &&
438 updateList.empty() && deltas.empty() &&
439 (timeSlots.empty() || timeSlots.begin()->first > maxTick) &&
440 initList.empty());
441 }
442 EventWrapper<Scheduler, &Scheduler::pause> starvationEvent;
443 void scheduleStarvationEvent();
444
445 bool _elaborationDone;
446 bool _started;
447 bool _stopNow;
448
449 Status _status;
450
451 Tick maxTick;
452 Tick lastReadyTick;
453 void
454 maxTickFunc()
455 {
456 if (lastReadyTick != getCurTick())
457 _changeStamp++;
458 pause();
459 }
460 EventWrapper<Scheduler, &Scheduler::maxTickFunc> maxTickEvent;
461
462 void timeAdvances() { trace(false); }
463 EventWrapper<Scheduler, &Scheduler::timeAdvances> timeAdvancesEvent;
464 void
465 scheduleTimeAdvancesEvent()
466 {
467 if (!traceFiles.empty() && !timeAdvancesEvent.scheduled())
468 schedule(&timeAdvancesEvent);
469 }
470
471 uint64_t _numCycles;
472 uint64_t _changeStamp;
473
474 Process *_current;
475
476 bool initDone;
477 bool runToTime;
478 bool runOnce;
479
480 ProcessList initList;
481
482 ProcessList readyListMethods;
483 ProcessList readyListThreads;
484
485 ChannelList updateList;
486
487 ChannelList asyncUpdateList;
488 std::mutex asyncListMutex;
489
484 std::map<::Event *, Tick> eventsToSchedule;
485
486 std::set<TraceFile *> traceFiles;
487
488 void trace(bool delta);
489};
490
491extern Scheduler scheduler;
492
493// A proxy function to avoid having to expose the scheduler in header files.
494Process *getCurrentProcess();
495
496inline void
497Scheduler::TimeSlot::process()
498{
499 scheduler.stepChangeStamp();
500 scheduler.status(StatusTiming);
501
502 try {
503 while (!events.empty())
504 events.front()->run();
505 } catch (...) {
506 if (events.empty())
507 scheduler.completeTimeSlot(this);
508 else
509 scheduler.schedule(this);
510 scheduler.throwUp();
511 }
512
513 scheduler.status(StatusOther);
514 scheduler.completeTimeSlot(this);
515}
516
517const ::sc_core::sc_report reportifyException();
518
519} // namespace sc_gem5
520
521#endif // __SYSTEMC_CORE_SCHEDULER_H__
490 std::map<::Event *, Tick> eventsToSchedule;
491
492 std::set<TraceFile *> traceFiles;
493
494 void trace(bool delta);
495};
496
497extern Scheduler scheduler;
498
499// A proxy function to avoid having to expose the scheduler in header files.
500Process *getCurrentProcess();
501
502inline void
503Scheduler::TimeSlot::process()
504{
505 scheduler.stepChangeStamp();
506 scheduler.status(StatusTiming);
507
508 try {
509 while (!events.empty())
510 events.front()->run();
511 } catch (...) {
512 if (events.empty())
513 scheduler.completeTimeSlot(this);
514 else
515 scheduler.schedule(this);
516 scheduler.throwUp();
517 }
518
519 scheduler.status(StatusOther);
520 scheduler.completeTimeSlot(this);
521}
522
523const ::sc_core::sc_report reportifyException();
524
525} // namespace sc_gem5
526
527#endif // __SYSTEMC_CORE_SCHEDULER_H__