syscall_emul.hh (14129:7a41ca7e465c) syscall_emul.hh (14130:62df30844a66)
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56///
57/// @file syscall_emul.hh
58///
59/// This file defines objects used to emulate syscalls from the target
60/// application on the host machine.
61
62#if defined(__linux__)
63#include <sys/eventfd.h>
64#include <sys/statfs.h>
65
66#else
67#include <sys/mount.h>
68
69#endif
70
71#ifdef __CYGWIN32__
72#include <sys/fcntl.h>
73
74#endif
75#include <fcntl.h>
76#include <net/if.h>
77#include <poll.h>
78#include <sys/ioctl.h>
79#include <sys/mman.h>
80#include <sys/socket.h>
81#include <sys/stat.h>
82#include <sys/time.h>
83#include <sys/types.h>
84#include <sys/uio.h>
85#include <unistd.h>
86
87#include <cerrno>
88#include <memory>
89#include <string>
90
91#include "arch/generic/tlb.hh"
92#include "arch/utility.hh"
93#include "base/intmath.hh"
94#include "base/loader/object_file.hh"
95#include "base/logging.hh"
96#include "base/trace.hh"
97#include "base/types.hh"
98#include "config/the_isa.hh"
99#include "cpu/base.hh"
100#include "cpu/thread_context.hh"
101#include "mem/page_table.hh"
102#include "params/Process.hh"
103#include "sim/emul_driver.hh"
104#include "sim/futex_map.hh"
105#include "sim/process.hh"
106#include "sim/syscall_debug_macros.hh"
107#include "sim/syscall_desc.hh"
108#include "sim/syscall_emul_buf.hh"
109#include "sim/syscall_return.hh"
110
111#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
112#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
113#endif
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's. They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123void warnUnsupportedOS(std::string syscall_name);
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program. Print a warning only if the appropriate
131/// trace flag is enabled. Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num, ThreadContext *tc);
133
134// Target fallocateFunc() handler.
135SyscallReturn fallocateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
136
137/// Target exit() handler: terminate current context.
138SyscallReturn exitFunc(SyscallDesc *desc, int num, ThreadContext *tc);
139
140/// Target exit_group() handler: terminate simulation. (exit all threads)
141SyscallReturn exitGroupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
142
143/// Target set_tid_address() handler.
144SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num, ThreadContext *tc);
145
146/// Target getpagesize() handler.
147SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
148
149/// Target brk() handler: set brk address.
150SyscallReturn brkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
151
152/// Target close() handler.
153SyscallReturn closeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
154
155/// Target lseek() handler.
156SyscallReturn lseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
157
158/// Target _llseek() handler.
159SyscallReturn _llseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
160
161/// Target munmap() handler.
162SyscallReturn munmapFunc(SyscallDesc *desc, int num, ThreadContext *tc);
163
164/// Target shutdown() handler.
165SyscallReturn shutdownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
166
167/// Target gethostname() handler.
168SyscallReturn gethostnameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
169
170/// Target getcwd() handler.
171SyscallReturn getcwdFunc(SyscallDesc *desc, int num, ThreadContext *tc);
172
173/// Target readlink() handler.
174SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc,
175 int index = 0);
176SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
177
178/// Target unlink() handler.
179SyscallReturn unlinkHelper(SyscallDesc *desc, int num, ThreadContext *tc,
180 int index);
181SyscallReturn unlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
182
183/// Target link() handler
184SyscallReturn linkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
185
186/// Target symlink() handler.
187SyscallReturn symlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
188
189/// Target mkdir() handler.
190SyscallReturn mkdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
191
192/// Target mknod() handler.
193SyscallReturn mknodFunc(SyscallDesc *desc, int num, ThreadContext *tc);
194
195/// Target chdir() handler.
196SyscallReturn chdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
197
198// Target rmdir() handler.
199SyscallReturn rmdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
200
201/// Target rename() handler.
202SyscallReturn renameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
203
204
205/// Target truncate() handler.
206SyscallReturn truncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
207
208
209/// Target ftruncate() handler.
210SyscallReturn ftruncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
211
212
213/// Target truncate64() handler.
214SyscallReturn truncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
215
216/// Target ftruncate64() handler.
217SyscallReturn ftruncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
218
219
220/// Target umask() handler.
221SyscallReturn umaskFunc(SyscallDesc *desc, int num, ThreadContext *tc);
222
223/// Target gettid() handler.
224SyscallReturn gettidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
225
226/// Target chown() handler.
227SyscallReturn chownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
228
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56///
57/// @file syscall_emul.hh
58///
59/// This file defines objects used to emulate syscalls from the target
60/// application on the host machine.
61
62#if defined(__linux__)
63#include <sys/eventfd.h>
64#include <sys/statfs.h>
65
66#else
67#include <sys/mount.h>
68
69#endif
70
71#ifdef __CYGWIN32__
72#include <sys/fcntl.h>
73
74#endif
75#include <fcntl.h>
76#include <net/if.h>
77#include <poll.h>
78#include <sys/ioctl.h>
79#include <sys/mman.h>
80#include <sys/socket.h>
81#include <sys/stat.h>
82#include <sys/time.h>
83#include <sys/types.h>
84#include <sys/uio.h>
85#include <unistd.h>
86
87#include <cerrno>
88#include <memory>
89#include <string>
90
91#include "arch/generic/tlb.hh"
92#include "arch/utility.hh"
93#include "base/intmath.hh"
94#include "base/loader/object_file.hh"
95#include "base/logging.hh"
96#include "base/trace.hh"
97#include "base/types.hh"
98#include "config/the_isa.hh"
99#include "cpu/base.hh"
100#include "cpu/thread_context.hh"
101#include "mem/page_table.hh"
102#include "params/Process.hh"
103#include "sim/emul_driver.hh"
104#include "sim/futex_map.hh"
105#include "sim/process.hh"
106#include "sim/syscall_debug_macros.hh"
107#include "sim/syscall_desc.hh"
108#include "sim/syscall_emul_buf.hh"
109#include "sim/syscall_return.hh"
110
111#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
112#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
113#endif
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's. They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123void warnUnsupportedOS(std::string syscall_name);
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program. Print a warning only if the appropriate
131/// trace flag is enabled. Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num, ThreadContext *tc);
133
134// Target fallocateFunc() handler.
135SyscallReturn fallocateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
136
137/// Target exit() handler: terminate current context.
138SyscallReturn exitFunc(SyscallDesc *desc, int num, ThreadContext *tc);
139
140/// Target exit_group() handler: terminate simulation. (exit all threads)
141SyscallReturn exitGroupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
142
143/// Target set_tid_address() handler.
144SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num, ThreadContext *tc);
145
146/// Target getpagesize() handler.
147SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
148
149/// Target brk() handler: set brk address.
150SyscallReturn brkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
151
152/// Target close() handler.
153SyscallReturn closeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
154
155/// Target lseek() handler.
156SyscallReturn lseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
157
158/// Target _llseek() handler.
159SyscallReturn _llseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
160
161/// Target munmap() handler.
162SyscallReturn munmapFunc(SyscallDesc *desc, int num, ThreadContext *tc);
163
164/// Target shutdown() handler.
165SyscallReturn shutdownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
166
167/// Target gethostname() handler.
168SyscallReturn gethostnameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
169
170/// Target getcwd() handler.
171SyscallReturn getcwdFunc(SyscallDesc *desc, int num, ThreadContext *tc);
172
173/// Target readlink() handler.
174SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc,
175 int index = 0);
176SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
177
178/// Target unlink() handler.
179SyscallReturn unlinkHelper(SyscallDesc *desc, int num, ThreadContext *tc,
180 int index);
181SyscallReturn unlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
182
183/// Target link() handler
184SyscallReturn linkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
185
186/// Target symlink() handler.
187SyscallReturn symlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
188
189/// Target mkdir() handler.
190SyscallReturn mkdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
191
192/// Target mknod() handler.
193SyscallReturn mknodFunc(SyscallDesc *desc, int num, ThreadContext *tc);
194
195/// Target chdir() handler.
196SyscallReturn chdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
197
198// Target rmdir() handler.
199SyscallReturn rmdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
200
201/// Target rename() handler.
202SyscallReturn renameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
203
204
205/// Target truncate() handler.
206SyscallReturn truncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
207
208
209/// Target ftruncate() handler.
210SyscallReturn ftruncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
211
212
213/// Target truncate64() handler.
214SyscallReturn truncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
215
216/// Target ftruncate64() handler.
217SyscallReturn ftruncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
218
219
220/// Target umask() handler.
221SyscallReturn umaskFunc(SyscallDesc *desc, int num, ThreadContext *tc);
222
223/// Target gettid() handler.
224SyscallReturn gettidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
225
226/// Target chown() handler.
227SyscallReturn chownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
228
229/// Target getpgrpFunc() handler.
230SyscallReturn getpgrpFunc(SyscallDesc *desc, int num, ThreadContext *tc);
231
229/// Target setpgid() handler.
230SyscallReturn setpgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
231
232/// Target fchown() handler.
233SyscallReturn fchownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
234
235/// Target dup() handler.
236SyscallReturn dupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
237
238/// Target dup2() handler.
239SyscallReturn dup2Func(SyscallDesc *desc, int num, ThreadContext *tc);
240
241/// Target fcntl() handler.
242SyscallReturn fcntlFunc(SyscallDesc *desc, int num, ThreadContext *tc);
243
244/// Target fcntl64() handler.
245SyscallReturn fcntl64Func(SyscallDesc *desc, int num, ThreadContext *tc);
246
247/// Target setuid() handler.
248SyscallReturn setuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
249
250/// Target pipe() handler.
251SyscallReturn pipeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
252
253/// Internal pipe() handler.
254SyscallReturn pipeImpl(SyscallDesc *desc, int num, ThreadContext *tc,
255 bool pseudo_pipe, bool is_pipe2=false);
256
257/// Target pipe() handler.
258SyscallReturn pipe2Func(SyscallDesc *desc, int num, ThreadContext *tc);
259
260/// Target getpid() handler.
261SyscallReturn getpidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
262
263// Target getpeername() handler.
264SyscallReturn getpeernameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
265
266// Target bind() handler.
267SyscallReturn bindFunc(SyscallDesc *desc, int num, ThreadContext *tc);
268
269// Target listen() handler.
270SyscallReturn listenFunc(SyscallDesc *desc, int num, ThreadContext *tc);
271
272// Target connect() handler.
273SyscallReturn connectFunc(SyscallDesc *desc, int num, ThreadContext *tc);
274
275#if defined(SYS_getdents)
276// Target getdents() handler.
277SyscallReturn getdentsFunc(SyscallDesc *desc, int num, ThreadContext *tc);
278#endif
279
280#if defined(SYS_getdents64)
281// Target getdents() handler.
282SyscallReturn getdents64Func(SyscallDesc *desc, int num, ThreadContext *tc);
283#endif
284
285// Target sendto() handler.
286SyscallReturn sendtoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
287
288// Target recvfrom() handler.
289SyscallReturn recvfromFunc(SyscallDesc *desc, int num, ThreadContext *tc);
290
291// Target recvmsg() handler.
292SyscallReturn recvmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
293
294// Target sendmsg() handler.
295SyscallReturn sendmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
296
297// Target getuid() handler.
298SyscallReturn getuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
299
300/// Target getgid() handler.
301SyscallReturn getgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
302
303/// Target getppid() handler.
304SyscallReturn getppidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
305
306/// Target geteuid() handler.
307SyscallReturn geteuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
308
309/// Target getegid() handler.
310SyscallReturn getegidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
311
312/// Target access() handler
313SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc);
314SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc,
315 int index);
316
317// Target getsockopt() handler.
318SyscallReturn getsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
319
320// Target setsockopt() handler.
321SyscallReturn setsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
322
323// Target getsockname() handler.
324SyscallReturn getsocknameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
325
326/// Futex system call
327/// Implemented by Daniel Sanchez
328/// Used by printf's in multi-threaded apps
329template <class OS>
330SyscallReturn
331futexFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
332{
333 using namespace std;
334
335 int index = 0;
336 auto process = tc->getProcessPtr();
337
338 Addr uaddr = process->getSyscallArg(tc, index);
339 int op = process->getSyscallArg(tc, index);
340 int val = process->getSyscallArg(tc, index);
341 int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
342 Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
343 int val3 = process->getSyscallArg(tc, index);
344
345 /*
346 * Unsupported option that does not affect the correctness of the
347 * application. This is a performance optimization utilized by Linux.
348 */
349 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
350 op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
351
352 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
353
354 if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
355 // Ensure futex system call accessed atomically.
356 BufferArg buf(uaddr, sizeof(int));
357 buf.copyIn(tc->getVirtProxy());
358 int mem_val = *(int*)buf.bufferPtr();
359
360 /*
361 * The value in memory at uaddr is not equal with the expected val
362 * (a different thread must have changed it before the system call was
363 * invoked). In this case, we need to throw an error.
364 */
365 if (val != mem_val)
366 return -OS::TGT_EWOULDBLOCK;
367
368 if (OS::TGT_FUTEX_WAIT) {
369 futex_map.suspend(uaddr, process->tgid(), tc);
370 } else {
371 futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
372 }
373
374 return 0;
375 } else if (OS::TGT_FUTEX_WAKE == op) {
376 return futex_map.wakeup(uaddr, process->tgid(), val);
377 } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
378 return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
379 } else if (OS::TGT_FUTEX_REQUEUE == op ||
380 OS::TGT_FUTEX_CMP_REQUEUE == op) {
381
382 // Ensure futex system call accessed atomically.
383 BufferArg buf(uaddr, sizeof(int));
384 buf.copyIn(tc->getVirtProxy());
385 int mem_val = *(int*)buf.bufferPtr();
386 /*
387 * For CMP_REQUEUE, the whole operation is only started only if
388 * val3 is still the value of the futex pointed to by uaddr.
389 */
390 if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
391 return -OS::TGT_EWOULDBLOCK;
392 return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
393 } else if (OS::TGT_FUTEX_WAKE_OP == op) {
394 /*
395 * The FUTEX_WAKE_OP operation is equivalent to executing the
396 * following code atomically and totally ordered with respect to
397 * other futex operations on any of the two supplied futex words:
398 *
399 * int oldval = *(int *) addr2;
400 * *(int *) addr2 = oldval op oparg;
401 * futex(addr1, FUTEX_WAKE, val, 0, 0, 0);
402 * if (oldval cmp cmparg)
403 * futex(addr2, FUTEX_WAKE, val2, 0, 0, 0);
404 *
405 * (op, oparg, cmp, cmparg are encoded in val3)
406 *
407 * +---+---+-----------+-----------+
408 * |op |cmp| oparg | cmparg |
409 * +---+---+-----------+-----------+
410 * 4 4 12 12 <== # of bits
411 *
412 * reference: http://man7.org/linux/man-pages/man2/futex.2.html
413 *
414 */
415 // get value from simulated-space
416 BufferArg buf(uaddr2, sizeof(int));
417 buf.copyIn(tc->getVirtProxy());
418 int oldval = *(int*)buf.bufferPtr();
419 int newval = oldval;
420 // extract op, oparg, cmp, cmparg from val3
421 int wake_cmparg = val3 & 0xfff;
422 int wake_oparg = (val3 & 0xfff000) >> 12;
423 int wake_cmp = (val3 & 0xf000000) >> 24;
424 int wake_op = (val3 & 0xf0000000) >> 28;
425 if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1)
426 wake_oparg = (1 << wake_oparg);
427 wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT;
428 // perform operation on the value of the second futex
429 if (wake_op == OS::TGT_FUTEX_OP_SET)
430 newval = wake_oparg;
431 else if (wake_op == OS::TGT_FUTEX_OP_ADD)
432 newval += wake_oparg;
433 else if (wake_op == OS::TGT_FUTEX_OP_OR)
434 newval |= wake_oparg;
435 else if (wake_op == OS::TGT_FUTEX_OP_ANDN)
436 newval &= ~wake_oparg;
437 else if (wake_op == OS::TGT_FUTEX_OP_XOR)
438 newval ^= wake_oparg;
439 // copy updated value back to simulated-space
440 *(int*)buf.bufferPtr() = newval;
441 buf.copyOut(tc->getVirtProxy());
442 // perform the first wake-up
443 int woken1 = futex_map.wakeup(uaddr, process->tgid(), val);
444 int woken2 = 0;
445 // calculate the condition of the second wake-up
446 bool is_wake2 = false;
447 if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ)
448 is_wake2 = oldval == wake_cmparg;
449 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE)
450 is_wake2 = oldval != wake_cmparg;
451 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT)
452 is_wake2 = oldval < wake_cmparg;
453 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE)
454 is_wake2 = oldval <= wake_cmparg;
455 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT)
456 is_wake2 = oldval > wake_cmparg;
457 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE)
458 is_wake2 = oldval >= wake_cmparg;
459 // perform the second wake-up
460 if (is_wake2)
461 woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout);
462
463 return woken1 + woken2;
464 }
465 warn("futex: op %d not implemented; ignoring.", op);
466 return -ENOSYS;
467}
468
469
470/// Pseudo Funcs - These functions use a different return convension,
471/// returning a second value in a register other than the normal return register
472SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
473
474/// Target getpidPseudo() handler.
475SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
476
477/// Target getuidPseudo() handler.
478SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
479
480/// Target getgidPseudo() handler.
481SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
482
483
484/// A readable name for 1,000,000, for converting microseconds to seconds.
485const int one_million = 1000000;
486/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
487const int one_billion = 1000000000;
488
489/// Approximate seconds since the epoch (1/1/1970). About a billion,
490/// by my reckoning. We want to keep this a constant (not use the
491/// real-world time) to keep simulations repeatable.
492const unsigned seconds_since_epoch = 1000000000;
493
494/// Helper function to convert current elapsed time to seconds and
495/// microseconds.
496template <class T1, class T2>
497void
498getElapsedTimeMicro(T1 &sec, T2 &usec)
499{
500 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
501 sec = elapsed_usecs / one_million;
502 usec = elapsed_usecs % one_million;
503}
504
505/// Helper function to convert current elapsed time to seconds and
506/// nanoseconds.
507template <class T1, class T2>
508void
509getElapsedTimeNano(T1 &sec, T2 &nsec)
510{
511 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
512 sec = elapsed_nsecs / one_billion;
513 nsec = elapsed_nsecs % one_billion;
514}
515
516//////////////////////////////////////////////////////////////////////
517//
518// The following emulation functions are generic, but need to be
519// templated to account for differences in types, constants, etc.
520//
521//////////////////////////////////////////////////////////////////////
522
523 typedef struct statfs hst_statfs;
524#if NO_STAT64
525 typedef struct stat hst_stat;
526 typedef struct stat hst_stat64;
527#else
528 typedef struct stat hst_stat;
529 typedef struct stat64 hst_stat64;
530#endif
531
532//// Helper function to convert a host stat buffer to a target stat
533//// buffer. Also copies the target buffer out to the simulated
534//// memory space. Used by stat(), fstat(), and lstat().
535
536template <typename target_stat, typename host_stat>
537void
538convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
539{
540 using namespace TheISA;
541
542 if (fakeTTY)
543 tgt->st_dev = 0xA;
544 else
545 tgt->st_dev = host->st_dev;
546 tgt->st_dev = TheISA::htog(tgt->st_dev);
547 tgt->st_ino = host->st_ino;
548 tgt->st_ino = TheISA::htog(tgt->st_ino);
549 tgt->st_mode = host->st_mode;
550 if (fakeTTY) {
551 // Claim to be a character device
552 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
553 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
554 }
555 tgt->st_mode = TheISA::htog(tgt->st_mode);
556 tgt->st_nlink = host->st_nlink;
557 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
558 tgt->st_uid = host->st_uid;
559 tgt->st_uid = TheISA::htog(tgt->st_uid);
560 tgt->st_gid = host->st_gid;
561 tgt->st_gid = TheISA::htog(tgt->st_gid);
562 if (fakeTTY)
563 tgt->st_rdev = 0x880d;
564 else
565 tgt->st_rdev = host->st_rdev;
566 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
567 tgt->st_size = host->st_size;
568 tgt->st_size = TheISA::htog(tgt->st_size);
569 tgt->st_atimeX = host->st_atime;
570 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
571 tgt->st_mtimeX = host->st_mtime;
572 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
573 tgt->st_ctimeX = host->st_ctime;
574 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
575 // Force the block size to be 8KB. This helps to ensure buffered io works
576 // consistently across different hosts.
577 tgt->st_blksize = 0x2000;
578 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
579 tgt->st_blocks = host->st_blocks;
580 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
581}
582
583// Same for stat64
584
585template <typename target_stat, typename host_stat64>
586void
587convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
588{
589 using namespace TheISA;
590
591 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
592#if defined(STAT_HAVE_NSEC)
593 tgt->st_atime_nsec = host->st_atime_nsec;
594 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
595 tgt->st_mtime_nsec = host->st_mtime_nsec;
596 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
597 tgt->st_ctime_nsec = host->st_ctime_nsec;
598 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
599#else
600 tgt->st_atime_nsec = 0;
601 tgt->st_mtime_nsec = 0;
602 tgt->st_ctime_nsec = 0;
603#endif
604}
605
606// Here are a couple of convenience functions
607template<class OS>
608void
609copyOutStatBuf(PortProxy &mem, Addr addr,
610 hst_stat *host, bool fakeTTY = false)
611{
612 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
613 tgt_stat_buf tgt(addr);
614 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
615 tgt.copyOut(mem);
616}
617
618template<class OS>
619void
620copyOutStat64Buf(PortProxy &mem, Addr addr,
621 hst_stat64 *host, bool fakeTTY = false)
622{
623 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
624 tgt_stat_buf tgt(addr);
625 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
626 tgt.copyOut(mem);
627}
628
629template <class OS>
630void
631copyOutStatfsBuf(PortProxy &mem, Addr addr,
632 hst_statfs *host)
633{
634 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
635
636 tgt->f_type = TheISA::htog(host->f_type);
637#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
638 tgt->f_bsize = TheISA::htog(host->f_iosize);
639#else
640 tgt->f_bsize = TheISA::htog(host->f_bsize);
641#endif
642 tgt->f_blocks = TheISA::htog(host->f_blocks);
643 tgt->f_bfree = TheISA::htog(host->f_bfree);
644 tgt->f_bavail = TheISA::htog(host->f_bavail);
645 tgt->f_files = TheISA::htog(host->f_files);
646 tgt->f_ffree = TheISA::htog(host->f_ffree);
647 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
648#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
649 tgt->f_namelen = TheISA::htog(host->f_namemax);
650 tgt->f_frsize = TheISA::htog(host->f_bsize);
651#elif defined(__APPLE__)
652 tgt->f_namelen = 0;
653 tgt->f_frsize = 0;
654#else
655 tgt->f_namelen = TheISA::htog(host->f_namelen);
656 tgt->f_frsize = TheISA::htog(host->f_frsize);
657#endif
658#if defined(__linux__)
659 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
660#else
661 /*
662 * The fields are different sizes per OS. Don't bother with
663 * f_spare or f_reserved on non-Linux for now.
664 */
665 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
666#endif
667
668 tgt.copyOut(mem);
669}
670
671/// Target ioctl() handler. For the most part, programs call ioctl()
672/// only to find out if their stdout is a tty, to determine whether to
673/// do line or block buffering. We always claim that output fds are
674/// not TTYs to provide repeatable results.
675template <class OS>
676SyscallReturn
677ioctlFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
678{
679 int index = 0;
680 auto p = tc->getProcessPtr();
681
682 int tgt_fd = p->getSyscallArg(tc, index);
683 unsigned req = p->getSyscallArg(tc, index);
684
685 DPRINTF_SYSCALL(Verbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
686
687 if (OS::isTtyReq(req))
688 return -ENOTTY;
689
690 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
691 if (dfdp) {
692 EmulatedDriver *emul_driver = dfdp->getDriver();
693 if (emul_driver)
694 return emul_driver->ioctl(tc, req);
695 }
696
697 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
698 if (sfdp) {
699 int status;
700
701 switch (req) {
702 case SIOCGIFCONF: {
703 Addr conf_addr = p->getSyscallArg(tc, index);
704 BufferArg conf_arg(conf_addr, sizeof(ifconf));
705 conf_arg.copyIn(tc->getVirtProxy());
706
707 ifconf *conf = (ifconf*)conf_arg.bufferPtr();
708 Addr ifc_buf_addr = (Addr)conf->ifc_buf;
709 BufferArg ifc_buf_arg(ifc_buf_addr, conf->ifc_len);
710 ifc_buf_arg.copyIn(tc->getVirtProxy());
711
712 conf->ifc_buf = (char*)ifc_buf_arg.bufferPtr();
713
714 status = ioctl(sfdp->getSimFD(), req, conf_arg.bufferPtr());
715 if (status != -1) {
716 conf->ifc_buf = (char*)ifc_buf_addr;
717 ifc_buf_arg.copyOut(tc->getVirtProxy());
718 conf_arg.copyOut(tc->getVirtProxy());
719 }
720
721 return status;
722 }
723 case SIOCGIFFLAGS:
724#if defined(__linux__)
725 case SIOCGIFINDEX:
726#endif
727 case SIOCGIFNETMASK:
728 case SIOCGIFADDR:
729#if defined(__linux__)
730 case SIOCGIFHWADDR:
731#endif
732 case SIOCGIFMTU: {
733 Addr req_addr = p->getSyscallArg(tc, index);
734 BufferArg req_arg(req_addr, sizeof(ifreq));
735 req_arg.copyIn(tc->getVirtProxy());
736
737 status = ioctl(sfdp->getSimFD(), req, req_arg.bufferPtr());
738 if (status != -1)
739 req_arg.copyOut(tc->getVirtProxy());
740 return status;
741 }
742 }
743 }
744
745 /**
746 * For lack of a better return code, return ENOTTY. Ideally, we should
747 * return something better here, but at least we issue the warning.
748 */
749 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
750 tgt_fd, req, tc->pcState());
751 return -ENOTTY;
752}
753
754template <class OS>
755SyscallReturn
756openImpl(SyscallDesc *desc, int callnum, ThreadContext *tc, bool isopenat)
757{
758 int index = 0;
759 auto p = tc->getProcessPtr();
760 int tgt_dirfd = -1;
761
762 /**
763 * If using the openat variant, read in the target directory file
764 * descriptor from the simulated process.
765 */
766 if (isopenat)
767 tgt_dirfd = p->getSyscallArg(tc, index);
768
769 /**
770 * Retrieve the simulated process' memory proxy and then read in the path
771 * string from that memory space into the host's working memory space.
772 */
773 std::string path;
774 if (!tc->getVirtProxy().tryReadString(path, p->getSyscallArg(tc, index)))
775 return -EFAULT;
776
777#ifdef __CYGWIN32__
778 int host_flags = O_BINARY;
779#else
780 int host_flags = 0;
781#endif
782 /**
783 * Translate target flags into host flags. Flags exist which are not
784 * ported between architectures which can cause check failures.
785 */
786 int tgt_flags = p->getSyscallArg(tc, index);
787 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
788 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
789 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
790 host_flags |= OS::openFlagTable[i].hostFlag;
791 }
792 }
793 if (tgt_flags) {
794 warn("open%s: cannot decode flags 0x%x",
795 isopenat ? "at" : "", tgt_flags);
796 }
797#ifdef __CYGWIN32__
798 host_flags |= O_BINARY;
799#endif
800
801 int mode = p->getSyscallArg(tc, index);
802
803 /**
804 * If the simulated process called open or openat with AT_FDCWD specified,
805 * take the current working directory value which was passed into the
806 * process class as a Python parameter and append the current path to
807 * create a full path.
808 * Otherwise, openat with a valid target directory file descriptor has
809 * been called. If the path option, which was passed in as a parameter,
810 * is not absolute, retrieve the directory file descriptor's path and
811 * prepend it to the path passed in as a parameter.
812 * In every case, we should have a full path (which is relevant to the
813 * host) to work with after this block has been passed.
814 */
815 std::string redir_path = path;
816 std::string abs_path = path;
817 if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) {
818 abs_path = p->absolutePath(path, true);
819 redir_path = p->checkPathRedirect(path);
820 } else if (!startswith(path, "/")) {
821 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
822 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
823 if (!ffdp)
824 return -EBADF;
825 abs_path = ffdp->getFileName() + path;
826 redir_path = p->checkPathRedirect(abs_path);
827 }
828
829 /**
830 * Since this is an emulated environment, we create pseudo file
831 * descriptors for device requests that have been registered with
832 * the process class through Python; this allows us to create a file
833 * descriptor for subsequent ioctl or mmap calls.
834 */
835 if (startswith(abs_path, "/dev/")) {
836 std::string filename = abs_path.substr(strlen("/dev/"));
837 EmulatedDriver *drv = p->findDriver(filename);
838 if (drv) {
839 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
840 "driver open with path[%s]\n",
841 isopenat ? "at" : "", abs_path.c_str());
842 return drv->open(tc, mode, host_flags);
843 }
844 /**
845 * Fall through here for pass through to host devices, such
846 * as /dev/zero
847 */
848 }
849
850 /**
851 * We make several attempts resolve a call to open.
852 *
853 * 1) Resolve any path redirection before hand. This will set the path
854 * up with variable 'redir_path' which may contain a modified path or
855 * the original path value. This should already be done in prior code.
856 * 2) Try to handle the access using 'special_paths'. Some special_paths
857 * and files cannot be called on the host and need to be handled as
858 * special cases inside the simulator. These special_paths are handled by
859 * C++ routines to provide output back to userspace.
860 * 3) If the full path that was created above does not match any of the
861 * special cases, pass it through to the open call on the __HOST__ to let
862 * the host open the file on our behalf. Again, the openImpl tries to
863 * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the
864 * faux-filesystem files). The faux-filesystem is dynamically created
865 * during simulator configuration using Python functions.
866 * 4) If the host cannot open the file, the open attempt failed in "3)".
867 * Return the host's error code back through the system call to the
868 * simulated process. If running a debug trace, also notify the user that
869 * the open call failed.
870 *
871 * Any success will set sim_fd to something other than -1 and skip the
872 * next conditions effectively bypassing them.
873 */
874 int sim_fd = -1;
875 std::string used_path;
876 std::vector<std::string> special_paths =
877 { "/proc/meminfo/", "/system/", "/platform/", "/etc/passwd" };
878 for (auto entry : special_paths) {
879 if (startswith(path, entry)) {
880 sim_fd = OS::openSpecialFile(abs_path, p, tc);
881 used_path = abs_path;
882 }
883 }
884 if (sim_fd == -1) {
885 sim_fd = open(redir_path.c_str(), host_flags, mode);
886 used_path = redir_path;
887 }
888 if (sim_fd == -1) {
889 int local = -errno;
890 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s "
891 "(inferred from:%s)\n", isopenat ? "at" : "",
892 used_path.c_str(), path.c_str());
893 return local;
894 }
895
896 /**
897 * The file was opened successfully and needs to be recorded in the
898 * process' file descriptor array so that it can be retrieved later.
899 * The target file descriptor that is chosen will be the lowest unused
900 * file descriptor.
901 * Return the indirect target file descriptor back to the simulated
902 * process to act as a handle for the opened file.
903 */
904 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
905 int tgt_fd = p->fds->allocFD(ffdp);
906 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n"
907 "(inferred from:%s)\n", isopenat ? "at" : "",
908 sim_fd, tgt_fd, used_path.c_str(), path.c_str());
909 return tgt_fd;
910}
911
912/// Target open() handler.
913template <class OS>
914SyscallReturn
915openFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
916{
917 return openImpl<OS>(desc, callnum, tc, false);
918}
919
920/// Target openat() handler.
921template <class OS>
922SyscallReturn
923openatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
924{
925 return openImpl<OS>(desc, callnum, tc, true);
926}
927
928/// Target unlinkat() handler.
929template <class OS>
930SyscallReturn
931unlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
932{
933 int index = 0;
934 auto process = tc->getProcessPtr();
935 int dirfd = process->getSyscallArg(tc, index);
936 if (dirfd != OS::TGT_AT_FDCWD)
937 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
938
939 return unlinkHelper(desc, callnum, tc, 1);
940}
941
942/// Target facessat() handler
943template <class OS>
944SyscallReturn
945faccessatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
946{
947 int index = 0;
948 auto process = tc->getProcessPtr();
949 int dirfd = process->getSyscallArg(tc, index);
950 if (dirfd != OS::TGT_AT_FDCWD)
951 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
952 return accessFunc(desc, callnum, tc, 1);
953}
954
955/// Target readlinkat() handler
956template <class OS>
957SyscallReturn
958readlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
959{
960 int index = 0;
961 auto process = tc->getProcessPtr();
962 int dirfd = process->getSyscallArg(tc, index);
963 if (dirfd != OS::TGT_AT_FDCWD)
964 warn("openat: first argument not AT_FDCWD; unlikely to work");
965 return readlinkFunc(desc, callnum, tc, 1);
966}
967
968/// Target renameat() handler.
969template <class OS>
970SyscallReturn
971renameatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
972{
973 int index = 0;
974 auto process = tc->getProcessPtr();
975
976 int olddirfd = process->getSyscallArg(tc, index);
977 if (olddirfd != OS::TGT_AT_FDCWD)
978 warn("renameat: first argument not AT_FDCWD; unlikely to work");
979
980 std::string old_name;
981
982 if (!tc->getVirtProxy().tryReadString(old_name,
983 process->getSyscallArg(tc, index)))
984 return -EFAULT;
985
986 int newdirfd = process->getSyscallArg(tc, index);
987 if (newdirfd != OS::TGT_AT_FDCWD)
988 warn("renameat: third argument not AT_FDCWD; unlikely to work");
989
990 std::string new_name;
991
992 if (!tc->getVirtProxy().tryReadString(new_name,
993 process->getSyscallArg(tc, index)))
994 return -EFAULT;
995
996 // Adjust path for cwd and redirection
997 old_name = process->checkPathRedirect(old_name);
998 new_name = process->checkPathRedirect(new_name);
999
1000 int result = rename(old_name.c_str(), new_name.c_str());
1001 return (result == -1) ? -errno : result;
1002}
1003
1004/// Target sysinfo() handler.
1005template <class OS>
1006SyscallReturn
1007sysinfoFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1008{
1009 int index = 0;
1010 auto process = tc->getProcessPtr();
1011
1012 TypedBufferArg<typename OS::tgt_sysinfo>
1013 sysinfo(process->getSyscallArg(tc, index));
1014
1015 sysinfo->uptime = seconds_since_epoch;
1016 sysinfo->totalram = process->system->memSize();
1017 sysinfo->mem_unit = 1;
1018
1019 sysinfo.copyOut(tc->getVirtProxy());
1020
1021 return 0;
1022}
1023
1024/// Target chmod() handler.
1025template <class OS>
1026SyscallReturn
1027chmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1028{
1029 std::string path;
1030 auto process = tc->getProcessPtr();
1031
1032 int index = 0;
1033 if (!tc->getVirtProxy().tryReadString(path,
1034 process->getSyscallArg(tc, index))) {
1035 return -EFAULT;
1036 }
1037
1038 uint32_t mode = process->getSyscallArg(tc, index);
1039 mode_t hostMode = 0;
1040
1041 // XXX translate mode flags via OS::something???
1042 hostMode = mode;
1043
1044 // Adjust path for cwd and redirection
1045 path = process->checkPathRedirect(path);
1046
1047 // do the chmod
1048 int result = chmod(path.c_str(), hostMode);
1049 if (result < 0)
1050 return -errno;
1051
1052 return 0;
1053}
1054
1055template <class OS>
1056SyscallReturn
1057pollFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1058{
1059 int index = 0;
1060 auto p = tc->getProcessPtr();
1061 Addr fdsPtr = p->getSyscallArg(tc, index);
1062 int nfds = p->getSyscallArg(tc, index);
1063 int tmout = p->getSyscallArg(tc, index);
1064
1065 BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
1066 fdsBuf.copyIn(tc->getVirtProxy());
1067
1068 /**
1069 * Record the target file descriptors in a local variable. We need to
1070 * replace them with host file descriptors but we need a temporary copy
1071 * for later. Afterwards, replace each target file descriptor in the
1072 * poll_fd array with its host_fd.
1073 */
1074 int temp_tgt_fds[nfds];
1075 for (index = 0; index < nfds; index++) {
1076 temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1077 auto tgt_fd = temp_tgt_fds[index];
1078 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1079 if (!hbfdp)
1080 return -EBADF;
1081 auto host_fd = hbfdp->getSimFD();
1082 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1083 }
1084
1085 /**
1086 * We cannot allow an infinite poll to occur or it will inevitably cause
1087 * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1088 * a non-negative value, however it also makes no sense to poll on the
1089 * underlying host for any other time than tmout a zero timeout.
1090 */
1091 int status;
1092 if (tmout < 0) {
1093 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1094 if (status == 0) {
1095 /**
1096 * If blocking indefinitely, check the signal list to see if a
1097 * signal would break the poll out of the retry cycle and try
1098 * to return the signal interrupt instead.
1099 */
1100 System *sysh = tc->getSystemPtr();
1101 std::list<BasicSignal>::iterator it;
1102 for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1103 if (it->receiver == p)
1104 return -EINTR;
1105 return SyscallReturn::retry();
1106 }
1107 } else
1108 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1109
1110 if (status == -1)
1111 return -errno;
1112
1113 /**
1114 * Replace each host_fd in the returned poll_fd array with its original
1115 * target file descriptor.
1116 */
1117 for (index = 0; index < nfds; index++) {
1118 auto tgt_fd = temp_tgt_fds[index];
1119 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1120 }
1121
1122 /**
1123 * Copy out the pollfd struct because the host may have updated fields
1124 * in the structure.
1125 */
1126 fdsBuf.copyOut(tc->getVirtProxy());
1127
1128 return status;
1129}
1130
1131/// Target fchmod() handler.
1132template <class OS>
1133SyscallReturn
1134fchmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1135{
1136 int index = 0;
1137 auto p = tc->getProcessPtr();
1138 int tgt_fd = p->getSyscallArg(tc, index);
1139 uint32_t mode = p->getSyscallArg(tc, index);
1140
1141 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1142 if (!ffdp)
1143 return -EBADF;
1144 int sim_fd = ffdp->getSimFD();
1145
1146 mode_t hostMode = mode;
1147
1148 int result = fchmod(sim_fd, hostMode);
1149
1150 return (result < 0) ? -errno : 0;
1151}
1152
1153/// Target mremap() handler.
1154template <class OS>
1155SyscallReturn
1156mremapFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1157{
1158 int index = 0;
1159 auto process = tc->getProcessPtr();
1160 Addr start = process->getSyscallArg(tc, index);
1161 uint64_t old_length = process->getSyscallArg(tc, index);
1162 uint64_t new_length = process->getSyscallArg(tc, index);
1163 uint64_t flags = process->getSyscallArg(tc, index);
1164 uint64_t provided_address = 0;
1165 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1166
1167 if (use_provided_address)
1168 provided_address = process->getSyscallArg(tc, index);
1169
1170 if ((start % TheISA::PageBytes != 0) ||
1171 (provided_address % TheISA::PageBytes != 0)) {
1172 warn("mremap failing: arguments not page aligned");
1173 return -EINVAL;
1174 }
1175
1176 new_length = roundUp(new_length, TheISA::PageBytes);
1177
1178 if (new_length > old_length) {
1179 std::shared_ptr<MemState> mem_state = process->memState;
1180 Addr mmap_end = mem_state->getMmapEnd();
1181
1182 if ((start + old_length) == mmap_end &&
1183 (!use_provided_address || provided_address == start)) {
1184 // This case cannot occur when growing downward, as
1185 // start is greater than or equal to mmap_end.
1186 uint64_t diff = new_length - old_length;
1187 process->allocateMem(mmap_end, diff);
1188 mem_state->setMmapEnd(mmap_end + diff);
1189 return start;
1190 } else {
1191 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1192 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1193 return -ENOMEM;
1194 } else {
1195 uint64_t new_start = provided_address;
1196 if (!use_provided_address) {
1197 new_start = process->mmapGrowsDown() ?
1198 mmap_end - new_length : mmap_end;
1199 mmap_end = process->mmapGrowsDown() ?
1200 new_start : mmap_end + new_length;
1201 mem_state->setMmapEnd(mmap_end);
1202 }
1203
1204 process->pTable->remap(start, old_length, new_start);
1205 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1206 new_start, new_start + new_length,
1207 new_length - old_length);
1208 // add on the remaining unallocated pages
1209 process->allocateMem(new_start + old_length,
1210 new_length - old_length,
1211 use_provided_address /* clobber */);
1212 if (use_provided_address &&
1213 ((new_start + new_length > mem_state->getMmapEnd() &&
1214 !process->mmapGrowsDown()) ||
1215 (new_start < mem_state->getMmapEnd() &&
1216 process->mmapGrowsDown()))) {
1217 // something fishy going on here, at least notify the user
1218 // @todo: increase mmap_end?
1219 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1220 }
1221 warn("returning %08p as start\n", new_start);
1222 return new_start;
1223 }
1224 }
1225 } else {
1226 if (use_provided_address && provided_address != start)
1227 process->pTable->remap(start, new_length, provided_address);
1228 process->pTable->unmap(start + new_length, old_length - new_length);
1229 return use_provided_address ? provided_address : start;
1230 }
1231}
1232
1233/// Target stat() handler.
1234template <class OS>
1235SyscallReturn
1236statFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1237{
1238 std::string path;
1239 auto process = tc->getProcessPtr();
1240
1241 int index = 0;
1242 if (!tc->getVirtProxy().tryReadString(path,
1243 process->getSyscallArg(tc, index))) {
1244 return -EFAULT;
1245 }
1246 Addr bufPtr = process->getSyscallArg(tc, index);
1247
1248 // Adjust path for cwd and redirection
1249 path = process->checkPathRedirect(path);
1250
1251 struct stat hostBuf;
1252 int result = stat(path.c_str(), &hostBuf);
1253
1254 if (result < 0)
1255 return -errno;
1256
1257 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1258
1259 return 0;
1260}
1261
1262
1263/// Target stat64() handler.
1264template <class OS>
1265SyscallReturn
1266stat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1267{
1268 std::string path;
1269 auto process = tc->getProcessPtr();
1270
1271 int index = 0;
1272 if (!tc->getVirtProxy().tryReadString(path,
1273 process->getSyscallArg(tc, index)))
1274 return -EFAULT;
1275 Addr bufPtr = process->getSyscallArg(tc, index);
1276
1277 // Adjust path for cwd and redirection
1278 path = process->checkPathRedirect(path);
1279
1280#if NO_STAT64
1281 struct stat hostBuf;
1282 int result = stat(path.c_str(), &hostBuf);
1283#else
1284 struct stat64 hostBuf;
1285 int result = stat64(path.c_str(), &hostBuf);
1286#endif
1287
1288 if (result < 0)
1289 return -errno;
1290
1291 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1292
1293 return 0;
1294}
1295
1296
1297/// Target fstatat64() handler.
1298template <class OS>
1299SyscallReturn
1300fstatat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1301{
1302 int index = 0;
1303 auto process = tc->getProcessPtr();
1304 int dirfd = process->getSyscallArg(tc, index);
1305 if (dirfd != OS::TGT_AT_FDCWD)
1306 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1307
1308 std::string path;
1309 if (!tc->getVirtProxy().tryReadString(path,
1310 process->getSyscallArg(tc, index)))
1311 return -EFAULT;
1312 Addr bufPtr = process->getSyscallArg(tc, index);
1313
1314 // Adjust path for cwd and redirection
1315 path = process->checkPathRedirect(path);
1316
1317#if NO_STAT64
1318 struct stat hostBuf;
1319 int result = stat(path.c_str(), &hostBuf);
1320#else
1321 struct stat64 hostBuf;
1322 int result = stat64(path.c_str(), &hostBuf);
1323#endif
1324
1325 if (result < 0)
1326 return -errno;
1327
1328 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1329
1330 return 0;
1331}
1332
1333
1334/// Target fstat64() handler.
1335template <class OS>
1336SyscallReturn
1337fstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1338{
1339 int index = 0;
1340 auto p = tc->getProcessPtr();
1341 int tgt_fd = p->getSyscallArg(tc, index);
1342 Addr bufPtr = p->getSyscallArg(tc, index);
1343
1344 auto ffdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1345 if (!ffdp)
1346 return -EBADF;
1347 int sim_fd = ffdp->getSimFD();
1348
1349#if NO_STAT64
1350 struct stat hostBuf;
1351 int result = fstat(sim_fd, &hostBuf);
1352#else
1353 struct stat64 hostBuf;
1354 int result = fstat64(sim_fd, &hostBuf);
1355#endif
1356
1357 if (result < 0)
1358 return -errno;
1359
1360 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1361
1362 return 0;
1363}
1364
1365
1366/// Target lstat() handler.
1367template <class OS>
1368SyscallReturn
1369lstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1370{
1371 std::string path;
1372 auto process = tc->getProcessPtr();
1373
1374 int index = 0;
1375 if (!tc->getVirtProxy().tryReadString(path,
1376 process->getSyscallArg(tc, index))) {
1377 return -EFAULT;
1378 }
1379 Addr bufPtr = process->getSyscallArg(tc, index);
1380
1381 // Adjust path for cwd and redirection
1382 path = process->checkPathRedirect(path);
1383
1384 struct stat hostBuf;
1385 int result = lstat(path.c_str(), &hostBuf);
1386
1387 if (result < 0)
1388 return -errno;
1389
1390 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1391
1392 return 0;
1393}
1394
1395/// Target lstat64() handler.
1396template <class OS>
1397SyscallReturn
1398lstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1399{
1400 std::string path;
1401 auto process = tc->getProcessPtr();
1402
1403 int index = 0;
1404 if (!tc->getVirtProxy().tryReadString(path,
1405 process->getSyscallArg(tc, index))) {
1406 return -EFAULT;
1407 }
1408 Addr bufPtr = process->getSyscallArg(tc, index);
1409
1410 // Adjust path for cwd and redirection
1411 path = process->checkPathRedirect(path);
1412
1413#if NO_STAT64
1414 struct stat hostBuf;
1415 int result = lstat(path.c_str(), &hostBuf);
1416#else
1417 struct stat64 hostBuf;
1418 int result = lstat64(path.c_str(), &hostBuf);
1419#endif
1420
1421 if (result < 0)
1422 return -errno;
1423
1424 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1425
1426 return 0;
1427}
1428
1429/// Target fstat() handler.
1430template <class OS>
1431SyscallReturn
1432fstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1433{
1434 int index = 0;
1435 auto p = tc->getProcessPtr();
1436 int tgt_fd = p->getSyscallArg(tc, index);
1437 Addr bufPtr = p->getSyscallArg(tc, index);
1438
1439 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1440
1441 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1442 if (!ffdp)
1443 return -EBADF;
1444 int sim_fd = ffdp->getSimFD();
1445
1446 struct stat hostBuf;
1447 int result = fstat(sim_fd, &hostBuf);
1448
1449 if (result < 0)
1450 return -errno;
1451
1452 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1453
1454 return 0;
1455}
1456
1457/// Target statfs() handler.
1458template <class OS>
1459SyscallReturn
1460statfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1461{
1462#if defined(__linux__)
1463 std::string path;
1464 auto process = tc->getProcessPtr();
1465
1466 int index = 0;
1467 if (!tc->getVirtProxy().tryReadString(path,
1468 process->getSyscallArg(tc, index))) {
1469 return -EFAULT;
1470 }
1471 Addr bufPtr = process->getSyscallArg(tc, index);
1472
1473 // Adjust path for cwd and redirection
1474 path = process->checkPathRedirect(path);
1475
1476 struct statfs hostBuf;
1477 int result = statfs(path.c_str(), &hostBuf);
1478
1479 if (result < 0)
1480 return -errno;
1481
1482 copyOutStatfsBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1483 return 0;
1484#else
1485 warnUnsupportedOS("statfs");
1486 return -1;
1487#endif
1488}
1489
1490template <class OS>
1491SyscallReturn
1492cloneFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1493{
1494 int index = 0;
1495
1496 auto p = tc->getProcessPtr();
1497 RegVal flags = p->getSyscallArg(tc, index);
1498 RegVal newStack = p->getSyscallArg(tc, index);
1499 Addr ptidPtr = p->getSyscallArg(tc, index);
1500
1501#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1502 /**
1503 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1504 * The flag defines the list of clone() arguments in the following
1505 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1506 */
1507 Addr tlsPtr = p->getSyscallArg(tc, index);
1508 Addr ctidPtr = p->getSyscallArg(tc, index);
1509#else
1510 Addr ctidPtr = p->getSyscallArg(tc, index);
1511 Addr tlsPtr = p->getSyscallArg(tc, index);
1512#endif
1513
1514 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1515 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1516 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1517 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1518 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1519 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1520 return -EINVAL;
1521
1522 ThreadContext *ctc;
1523 if (!(ctc = p->findFreeContext())) {
1524 DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1525 "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1526 return -EAGAIN;
1527 }
1528
1529 /**
1530 * Note that ProcessParams is generated by swig and there are no other
1531 * examples of how to create anything but this default constructor. The
1532 * fields are manually initialized instead of passing parameters to the
1533 * constructor.
1534 */
1535 ProcessParams *pp = new ProcessParams();
1536 pp->executable.assign(*(new std::string(p->progName())));
1537 pp->cmd.push_back(*(new std::string(p->progName())));
1538 pp->system = p->system;
1539 pp->cwd.assign(p->tgtCwd);
1540 pp->input.assign("stdin");
1541 pp->output.assign("stdout");
1542 pp->errout.assign("stderr");
1543 pp->uid = p->uid();
1544 pp->euid = p->euid();
1545 pp->gid = p->gid();
1546 pp->egid = p->egid();
1547
1548 /* Find the first free PID that's less than the maximum */
1549 std::set<int> const& pids = p->system->PIDs;
1550 int temp_pid = *pids.begin();
1551 do {
1552 temp_pid++;
1553 } while (pids.find(temp_pid) != pids.end());
1554 if (temp_pid >= System::maxPID)
1555 fatal("temp_pid is too large: %d", temp_pid);
1556
1557 pp->pid = temp_pid;
1558 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1559 pp->useArchPT = p->useArchPT;
1560 pp->kvmInSE = p->kvmInSE;
1561 Process *cp = pp->create();
1562 delete pp;
1563
1564 Process *owner = ctc->getProcessPtr();
1565 ctc->setProcessPtr(cp);
1566 cp->assignThreadContext(ctc->contextId());
1567 owner->revokeThreadContext(ctc->contextId());
1568
1569 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1570 BufferArg ptidBuf(ptidPtr, sizeof(long));
1571 long *ptid = (long *)ptidBuf.bufferPtr();
1572 *ptid = cp->pid();
1573 ptidBuf.copyOut(tc->getVirtProxy());
1574 }
1575
1576 if (flags & OS::TGT_CLONE_THREAD) {
1577 cp->pTable->shared = true;
1578 cp->useForClone = true;
1579 }
1580 cp->initState();
1581 p->clone(tc, ctc, cp, flags);
1582
1583 if (flags & OS::TGT_CLONE_THREAD) {
1584 delete cp->sigchld;
1585 cp->sigchld = p->sigchld;
1586 } else if (flags & OS::TGT_SIGCHLD) {
1587 *cp->sigchld = true;
1588 }
1589
1590 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1591 BufferArg ctidBuf(ctidPtr, sizeof(long));
1592 long *ctid = (long *)ctidBuf.bufferPtr();
1593 *ctid = cp->pid();
1594 ctidBuf.copyOut(ctc->getVirtProxy());
1595 }
1596
1597 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1598 cp->childClearTID = (uint64_t)ctidPtr;
1599
1600 ctc->clearArchRegs();
1601
1602 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1603
1604 cp->setSyscallReturn(ctc, 0);
1605
1606#if THE_ISA == ALPHA_ISA
1607 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1608#elif THE_ISA == SPARC_ISA
1609 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1610 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1611#endif
1612
1613 if (p->kvmInSE) {
1614#if THE_ISA == X86_ISA
1615 ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX));
1616#else
1617 panic("KVM CPU model is not supported for this ISA");
1618#endif
1619 } else {
1620 TheISA::PCState cpc = tc->pcState();
1621 cpc.advance();
1622 ctc->pcState(cpc);
1623 }
1624 ctc->activate();
1625
1626 return cp->pid();
1627}
1628
1629/// Target fstatfs() handler.
1630template <class OS>
1631SyscallReturn
1632fstatfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1633{
1634 int index = 0;
1635 auto p = tc->getProcessPtr();
1636 int tgt_fd = p->getSyscallArg(tc, index);
1637 Addr bufPtr = p->getSyscallArg(tc, index);
1638
1639 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1640 if (!ffdp)
1641 return -EBADF;
1642 int sim_fd = ffdp->getSimFD();
1643
1644 struct statfs hostBuf;
1645 int result = fstatfs(sim_fd, &hostBuf);
1646
1647 if (result < 0)
1648 return -errno;
1649
1650 copyOutStatfsBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1651
1652 return 0;
1653}
1654
1655/// Target readv() handler.
1656template <class OS>
1657SyscallReturn
1658readvFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1659{
1660 int index = 0;
1661 auto p = tc->getProcessPtr();
1662 int tgt_fd = p->getSyscallArg(tc, index);
1663
1664 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1665 if (!ffdp)
1666 return -EBADF;
1667 int sim_fd = ffdp->getSimFD();
1668
1669 PortProxy &prox = tc->getVirtProxy();
1670 uint64_t tiov_base = p->getSyscallArg(tc, index);
1671 size_t count = p->getSyscallArg(tc, index);
1672 typename OS::tgt_iovec tiov[count];
1673 struct iovec hiov[count];
1674 for (size_t i = 0; i < count; ++i) {
1675 prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1676 &tiov[i], sizeof(typename OS::tgt_iovec));
1677 hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1678 hiov[i].iov_base = new char [hiov[i].iov_len];
1679 }
1680
1681 int result = readv(sim_fd, hiov, count);
1682 int local_errno = errno;
1683
1684 for (size_t i = 0; i < count; ++i) {
1685 if (result != -1) {
1686 prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1687 hiov[i].iov_base, hiov[i].iov_len);
1688 }
1689 delete [] (char *)hiov[i].iov_base;
1690 }
1691
1692 return (result == -1) ? -local_errno : result;
1693}
1694
1695/// Target writev() handler.
1696template <class OS>
1697SyscallReturn
1698writevFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1699{
1700 int index = 0;
1701 auto p = tc->getProcessPtr();
1702 int tgt_fd = p->getSyscallArg(tc, index);
1703
1704 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1705 if (!hbfdp)
1706 return -EBADF;
1707 int sim_fd = hbfdp->getSimFD();
1708
1709 PortProxy &prox = tc->getVirtProxy();
1710 uint64_t tiov_base = p->getSyscallArg(tc, index);
1711 size_t count = p->getSyscallArg(tc, index);
1712 struct iovec hiov[count];
1713 for (size_t i = 0; i < count; ++i) {
1714 typename OS::tgt_iovec tiov;
1715
1716 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1717 &tiov, sizeof(typename OS::tgt_iovec));
1718 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1719 hiov[i].iov_base = new char [hiov[i].iov_len];
1720 prox.readBlob(TheISA::gtoh(tiov.iov_base), hiov[i].iov_base,
1721 hiov[i].iov_len);
1722 }
1723
1724 int result = writev(sim_fd, hiov, count);
1725
1726 for (size_t i = 0; i < count; ++i)
1727 delete [] (char *)hiov[i].iov_base;
1728
1729 return (result == -1) ? -errno : result;
1730}
1731
1732/// Real mmap handler.
1733template <class OS>
1734SyscallReturn
1735mmapImpl(SyscallDesc *desc, int num, ThreadContext *tc, bool is_mmap2)
1736{
1737 int index = 0;
1738 auto p = tc->getProcessPtr();
1739 Addr start = p->getSyscallArg(tc, index);
1740 uint64_t length = p->getSyscallArg(tc, index);
1741 int prot = p->getSyscallArg(tc, index);
1742 int tgt_flags = p->getSyscallArg(tc, index);
1743 int tgt_fd = p->getSyscallArg(tc, index);
1744 int offset = p->getSyscallArg(tc, index);
1745
1746 if (is_mmap2)
1747 offset *= TheISA::PageBytes;
1748
1749 if (start & (TheISA::PageBytes - 1) ||
1750 offset & (TheISA::PageBytes - 1) ||
1751 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1752 tgt_flags & OS::TGT_MAP_SHARED) ||
1753 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1754 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1755 !length) {
1756 return -EINVAL;
1757 }
1758
1759 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1760 // With shared mmaps, there are two cases to consider:
1761 // 1) anonymous: writes should modify the mapping and this should be
1762 // visible to observers who share the mapping. Currently, it's
1763 // difficult to update the shared mapping because there's no
1764 // structure which maintains information about the which virtual
1765 // memory areas are shared. If that structure existed, it would be
1766 // possible to make the translations point to the same frames.
1767 // 2) file-backed: writes should modify the mapping and the file
1768 // which is backed by the mapping. The shared mapping problem is the
1769 // same as what was mentioned about the anonymous mappings. For
1770 // file-backed mappings, the writes to the file are difficult
1771 // because it requires syncing what the mapping holds with the file
1772 // that resides on the host system. So, any write on a real system
1773 // would cause the change to be propagated to the file mapping at
1774 // some point in the future (the inode is tracked along with the
1775 // mapping). This isn't guaranteed to always happen, but it usually
1776 // works well enough. The guarantee is provided by the msync system
1777 // call. We could force the change through with shared mappings with
1778 // a call to msync, but that again would require more information
1779 // than we currently maintain.
1780 warn("mmap: writing to shared mmap region is currently "
1781 "unsupported. The write succeeds on the target, but it "
1782 "will not be propagated to the host or shared mappings");
1783 }
1784
1785 length = roundUp(length, TheISA::PageBytes);
1786
1787 int sim_fd = -1;
1788 uint8_t *pmap = nullptr;
1789 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1790 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1791
1792 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1793 if (dfdp) {
1794 EmulatedDriver *emul_driver = dfdp->getDriver();
1795 return emul_driver->mmap(tc, start, length, prot, tgt_flags,
1796 tgt_fd, offset);
1797 }
1798
1799 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1800 if (!ffdp)
1801 return -EBADF;
1802 sim_fd = ffdp->getSimFD();
1803
1804 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1805 sim_fd, offset);
1806
1807 if (pmap == (decltype(pmap))-1) {
1808 warn("mmap: failed to map file into host address space");
1809 return -errno;
1810 }
1811 }
1812
1813 // Extend global mmap region if necessary. Note that we ignore the
1814 // start address unless MAP_FIXED is specified.
1815 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1816 std::shared_ptr<MemState> mem_state = p->memState;
1817 Addr mmap_end = mem_state->getMmapEnd();
1818
1819 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1820 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1821
1822 mem_state->setMmapEnd(mmap_end);
1823 }
1824
1825 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1826 start, start + length - 1);
1827
1828 // We only allow mappings to overwrite existing mappings if
1829 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1830 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1831 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1832 if (clobber) {
1833 for (auto tc : p->system->threadContexts) {
1834 // If we might be overwriting old mappings, we need to
1835 // invalidate potentially stale mappings out of the TLBs.
1836 tc->getDTBPtr()->flushAll();
1837 tc->getITBPtr()->flushAll();
1838 }
1839 }
1840
1841 // Allocate physical memory and map it in. If the page table is already
1842 // mapped and clobber is not set, the simulator will issue throw a
1843 // fatal and bail out of the simulation.
1844 p->allocateMem(start, length, clobber);
1845
1846 // Transfer content into target address space.
1847 PortProxy &tp = tc->getVirtProxy();
1848 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1849 // In general, we should zero the mapped area for anonymous mappings,
1850 // with something like:
1851 // tp.memsetBlob(start, 0, length);
1852 // However, given that we don't support sparse mappings, and
1853 // some applications can map a couple of gigabytes of space
1854 // (intending sparse usage), that can get painfully expensive.
1855 // Fortunately, since we don't properly implement munmap either,
1856 // there's no danger of remapping used memory, so for now all
1857 // newly mapped memory should already be zeroed so we can skip it.
1858 } else {
1859 // It is possible to mmap an area larger than a file, however
1860 // accessing unmapped portions the system triggers a "Bus error"
1861 // on the host. We must know when to stop copying the file from
1862 // the host into the target address space.
1863 struct stat file_stat;
1864 if (fstat(sim_fd, &file_stat) > 0)
1865 fatal("mmap: cannot stat file");
1866
1867 // Copy the portion of the file that is resident. This requires
1868 // checking both the mmap size and the filesize that we are
1869 // trying to mmap into this space; the mmap size also depends
1870 // on the specified offset into the file.
1871 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1872 length);
1873 tp.writeBlob(start, pmap, size);
1874
1875 // Cleanup the mmap region before exiting this function.
1876 munmap(pmap, length);
1877
1878 // Maintain the symbol table for dynamic executables.
1879 // The loader will call mmap to map the images into its address
1880 // space and we intercept that here. We can verify that we are
1881 // executing inside the loader by checking the program counter value.
1882 // XXX: with multiprogrammed workloads or multi-node configurations,
1883 // this will not work since there is a single global symbol table.
1884 ObjectFile *interpreter = p->getInterpreter();
1885 if (interpreter) {
1886 Addr text_start = interpreter->textBase();
1887 Addr text_end = text_start + interpreter->textSize();
1888
1889 Addr pc = tc->pcState().pc();
1890
1891 if (pc >= text_start && pc < text_end) {
1892 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1893 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1894 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1895
1896 if (lib) {
1897 lib->loadAllSymbols(debugSymbolTable,
1898 lib->textBase(), start);
1899 }
1900 }
1901 }
1902
1903 // Note that we do not zero out the remainder of the mapping. This
1904 // is done by a real system, but it probably will not affect
1905 // execution (hopefully).
1906 }
1907
1908 return start;
1909}
1910
1911template <class OS>
1912SyscallReturn
1913pwrite64Func(SyscallDesc *desc, int num, ThreadContext *tc)
1914{
1915 int index = 0;
1916 auto p = tc->getProcessPtr();
1917 int tgt_fd = p->getSyscallArg(tc, index);
1918 Addr bufPtr = p->getSyscallArg(tc, index);
1919 int nbytes = p->getSyscallArg(tc, index);
1920 int offset = p->getSyscallArg(tc, index);
1921
1922 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1923 if (!ffdp)
1924 return -EBADF;
1925 int sim_fd = ffdp->getSimFD();
1926
1927 BufferArg bufArg(bufPtr, nbytes);
1928 bufArg.copyIn(tc->getVirtProxy());
1929
1930 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1931
1932 return (bytes_written == -1) ? -errno : bytes_written;
1933}
1934
1935/// Target mmap() handler.
1936template <class OS>
1937SyscallReturn
1938mmapFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1939{
1940 return mmapImpl<OS>(desc, num, tc, false);
1941}
1942
1943/// Target mmap2() handler.
1944template <class OS>
1945SyscallReturn
1946mmap2Func(SyscallDesc *desc, int num, ThreadContext *tc)
1947{
1948 return mmapImpl<OS>(desc, num, tc, true);
1949}
1950
1951/// Target getrlimit() handler.
1952template <class OS>
1953SyscallReturn
1954getrlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1955{
1956 int index = 0;
1957 auto process = tc->getProcessPtr();
1958 unsigned resource = process->getSyscallArg(tc, index);
1959 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1960
1961 switch (resource) {
1962 case OS::TGT_RLIMIT_STACK:
1963 // max stack size in bytes: make up a number (8MB for now)
1964 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1965 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1966 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1967 break;
1968
1969 case OS::TGT_RLIMIT_DATA:
1970 // max data segment size in bytes: make up a number
1971 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1972 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1973 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1974 break;
1975
1976 case OS::TGT_RLIMIT_NPROC:
1977 rlp->rlim_cur = rlp->rlim_max = tc->getSystemPtr()->numContexts();
1978 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1979 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1980 break;
1981
1982 default:
1983 warn("getrlimit: unimplemented resource %d", resource);
1984 return -EINVAL;
1985 break;
1986 }
1987
1988 rlp.copyOut(tc->getVirtProxy());
1989 return 0;
1990}
1991
1992template <class OS>
1993SyscallReturn
1994prlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1995{
1996 int index = 0;
1997 auto process = tc->getProcessPtr();
1998 if (process->getSyscallArg(tc, index) != 0)
1999 {
2000 warn("prlimit: ignoring rlimits for nonzero pid");
2001 return -EPERM;
2002 }
2003 int resource = process->getSyscallArg(tc, index);
2004 Addr n = process->getSyscallArg(tc, index);
2005 if (n != 0)
2006 warn("prlimit: ignoring new rlimit");
2007 Addr o = process->getSyscallArg(tc, index);
2008 if (o != 0)
2009 {
2010 TypedBufferArg<typename OS::rlimit> rlp(o);
2011 switch (resource) {
2012 case OS::TGT_RLIMIT_STACK:
2013 // max stack size in bytes: make up a number (8MB for now)
2014 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2015 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2016 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2017 break;
2018 case OS::TGT_RLIMIT_DATA:
2019 // max data segment size in bytes: make up a number
2020 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
2021 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2022 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2023 break;
2024 default:
2025 warn("prlimit: unimplemented resource %d", resource);
2026 return -EINVAL;
2027 break;
2028 }
2029 rlp.copyOut(tc->getVirtProxy());
2030 }
2031 return 0;
2032}
2033
2034/// Target clock_gettime() function.
2035template <class OS>
2036SyscallReturn
2037clock_gettimeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2038{
2039 int index = 1;
2040 auto p = tc->getProcessPtr();
2041 //int clk_id = p->getSyscallArg(tc, index);
2042 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2043
2044 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
2045 tp->tv_sec += seconds_since_epoch;
2046 tp->tv_sec = TheISA::htog(tp->tv_sec);
2047 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
2048
2049 tp.copyOut(tc->getVirtProxy());
2050
2051 return 0;
2052}
2053
2054/// Target clock_getres() function.
2055template <class OS>
2056SyscallReturn
2057clock_getresFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2058{
2059 int index = 1;
2060 auto p = tc->getProcessPtr();
2061 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2062
2063 // Set resolution at ns, which is what clock_gettime() returns
2064 tp->tv_sec = 0;
2065 tp->tv_nsec = 1;
2066
2067 tp.copyOut(tc->getVirtProxy());
2068
2069 return 0;
2070}
2071
2072/// Target gettimeofday() handler.
2073template <class OS>
2074SyscallReturn
2075gettimeofdayFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2076{
2077 int index = 0;
2078 auto process = tc->getProcessPtr();
2079 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
2080
2081 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
2082 tp->tv_sec += seconds_since_epoch;
2083 tp->tv_sec = TheISA::htog(tp->tv_sec);
2084 tp->tv_usec = TheISA::htog(tp->tv_usec);
2085
2086 tp.copyOut(tc->getVirtProxy());
2087
2088 return 0;
2089}
2090
2091
2092/// Target utimes() handler.
2093template <class OS>
2094SyscallReturn
2095utimesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2096{
2097 std::string path;
2098 auto process = tc->getProcessPtr();
2099
2100 int index = 0;
2101 if (!tc->getVirtProxy().tryReadString(path,
2102 process->getSyscallArg(tc, index))) {
2103 return -EFAULT;
2104 }
2105
2106 TypedBufferArg<typename OS::timeval [2]>
2107 tp(process->getSyscallArg(tc, index));
2108 tp.copyIn(tc->getVirtProxy());
2109
2110 struct timeval hostTimeval[2];
2111 for (int i = 0; i < 2; ++i) {
2112 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2113 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2114 }
2115
2116 // Adjust path for cwd and redirection
2117 path = process->checkPathRedirect(path);
2118
2119 int result = utimes(path.c_str(), hostTimeval);
2120
2121 if (result < 0)
2122 return -errno;
2123
2124 return 0;
2125}
2126
2127template <class OS>
2128SyscallReturn
2129execveFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2130{
2131 desc->setFlags(0);
2132 auto p = tc->getProcessPtr();
2133
2134 int index = 0;
2135 std::string path;
2136 PortProxy & mem_proxy = tc->getVirtProxy();
2137 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2138 return -EFAULT;
2139
2140 if (access(path.c_str(), F_OK) == -1)
2141 return -EACCES;
2142
2143 auto read_in = [](std::vector<std::string> &vect,
2144 PortProxy &mem_proxy, Addr mem_loc)
2145 {
2146 for (int inc = 0; ; inc++) {
2147 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2148 b.copyIn(mem_proxy);
2149
2150 if (!*(Addr*)b.bufferPtr())
2151 break;
2152
2153 vect.push_back(std::string());
2154 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2155 }
2156 };
2157
2158 /**
2159 * Note that ProcessParams is generated by swig and there are no other
2160 * examples of how to create anything but this default constructor. The
2161 * fields are manually initialized instead of passing parameters to the
2162 * constructor.
2163 */
2164 ProcessParams *pp = new ProcessParams();
2165 pp->executable = path;
2166 Addr argv_mem_loc = p->getSyscallArg(tc, index);
2167 read_in(pp->cmd, mem_proxy, argv_mem_loc);
2168 Addr envp_mem_loc = p->getSyscallArg(tc, index);
2169 read_in(pp->env, mem_proxy, envp_mem_loc);
2170 pp->uid = p->uid();
2171 pp->egid = p->egid();
2172 pp->euid = p->euid();
2173 pp->gid = p->gid();
2174 pp->ppid = p->ppid();
2175 pp->pid = p->pid();
2176 pp->input.assign("cin");
2177 pp->output.assign("cout");
2178 pp->errout.assign("cerr");
2179 pp->cwd.assign(p->tgtCwd);
2180 pp->system = p->system;
2181 /**
2182 * Prevent process object creation with identical PIDs (which will trip
2183 * a fatal check in Process constructor). The execve call is supposed to
2184 * take over the currently executing process' identity but replace
2185 * whatever it is doing with a new process image. Instead of hijacking
2186 * the process object in the simulator, we create a new process object
2187 * and bind to the previous process' thread below (hijacking the thread).
2188 */
2189 p->system->PIDs.erase(p->pid());
2190 Process *new_p = pp->create();
2191 delete pp;
2192
2193 /**
2194 * Work through the file descriptor array and close any files marked
2195 * close-on-exec.
2196 */
2197 new_p->fds = p->fds;
2198 for (int i = 0; i < new_p->fds->getSize(); i++) {
2199 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2200 if (fdep && fdep->getCOE())
2201 new_p->fds->closeFDEntry(i);
2202 }
2203
2204 *new_p->sigchld = true;
2205
2206 delete p;
2207 tc->clearArchRegs();
2208 tc->setProcessPtr(new_p);
2209 new_p->assignThreadContext(tc->contextId());
2210 new_p->initState();
2211 tc->activate();
2212 TheISA::PCState pcState = tc->pcState();
2213 tc->setNPC(pcState.instAddr());
2214
2215 desc->setFlags(SyscallDesc::SuppressReturnValue);
2216 return 0;
2217}
2218
2219/// Target getrusage() function.
2220template <class OS>
2221SyscallReturn
2222getrusageFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2223{
2224 int index = 0;
2225 auto process = tc->getProcessPtr();
2226 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2227 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2228
2229 rup->ru_utime.tv_sec = 0;
2230 rup->ru_utime.tv_usec = 0;
2231 rup->ru_stime.tv_sec = 0;
2232 rup->ru_stime.tv_usec = 0;
2233 rup->ru_maxrss = 0;
2234 rup->ru_ixrss = 0;
2235 rup->ru_idrss = 0;
2236 rup->ru_isrss = 0;
2237 rup->ru_minflt = 0;
2238 rup->ru_majflt = 0;
2239 rup->ru_nswap = 0;
2240 rup->ru_inblock = 0;
2241 rup->ru_oublock = 0;
2242 rup->ru_msgsnd = 0;
2243 rup->ru_msgrcv = 0;
2244 rup->ru_nsignals = 0;
2245 rup->ru_nvcsw = 0;
2246 rup->ru_nivcsw = 0;
2247
2248 switch (who) {
2249 case OS::TGT_RUSAGE_SELF:
2250 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2251 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2252 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2253 break;
2254
2255 case OS::TGT_RUSAGE_CHILDREN:
2256 // do nothing. We have no child processes, so they take no time.
2257 break;
2258
2259 default:
2260 // don't really handle THREAD or CHILDREN, but just warn and
2261 // plow ahead
2262 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2263 who);
2264 }
2265
2266 rup.copyOut(tc->getVirtProxy());
2267
2268 return 0;
2269}
2270
2271/// Target times() function.
2272template <class OS>
2273SyscallReturn
2274timesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2275{
2276 int index = 0;
2277 auto process = tc->getProcessPtr();
2278 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2279
2280 // Fill in the time structure (in clocks)
2281 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2282 bufp->tms_utime = clocks;
2283 bufp->tms_stime = 0;
2284 bufp->tms_cutime = 0;
2285 bufp->tms_cstime = 0;
2286
2287 // Convert to host endianness
2288 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2289
2290 // Write back
2291 bufp.copyOut(tc->getVirtProxy());
2292
2293 // Return clock ticks since system boot
2294 return clocks;
2295}
2296
2297/// Target time() function.
2298template <class OS>
2299SyscallReturn
2300timeFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2301{
2302 typename OS::time_t sec, usec;
2303 getElapsedTimeMicro(sec, usec);
2304 sec += seconds_since_epoch;
2305
2306 int index = 0;
2307 auto process = tc->getProcessPtr();
2308 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2309 if (taddr != 0) {
2310 typename OS::time_t t = sec;
2311 t = TheISA::htog(t);
2312 PortProxy &p = tc->getVirtProxy();
2313 p.writeBlob(taddr, &t, (int)sizeof(typename OS::time_t));
2314 }
2315 return sec;
2316}
2317
2318template <class OS>
2319SyscallReturn
2320tgkillFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2321{
2322 int index = 0;
2323 auto process = tc->getProcessPtr();
2324 int tgid = process->getSyscallArg(tc, index);
2325 int tid = process->getSyscallArg(tc, index);
2326 int sig = process->getSyscallArg(tc, index);
2327
2328 /**
2329 * This system call is intended to allow killing a specific thread
2330 * within an arbitrary thread group if sanctioned with permission checks.
2331 * It's usually true that threads share the termination signal as pointed
2332 * out by the pthread_kill man page and this seems to be the intended
2333 * usage. Due to this being an emulated environment, assume the following:
2334 * Threads are allowed to call tgkill because the EUID for all threads
2335 * should be the same. There is no signal handling mechanism for kernel
2336 * registration of signal handlers since signals are poorly supported in
2337 * emulation mode. Since signal handlers cannot be registered, all
2338 * threads within in a thread group must share the termination signal.
2339 * We never exhaust PIDs so there's no chance of finding the wrong one
2340 * due to PID rollover.
2341 */
2342
2343 System *sys = tc->getSystemPtr();
2344 Process *tgt_proc = nullptr;
2345 for (int i = 0; i < sys->numContexts(); i++) {
2346 Process *temp = sys->threadContexts[i]->getProcessPtr();
2347 if (temp->pid() == tid) {
2348 tgt_proc = temp;
2349 break;
2350 }
2351 }
2352
2353 if (sig != 0 || sig != OS::TGT_SIGABRT)
2354 return -EINVAL;
2355
2356 if (tgt_proc == nullptr)
2357 return -ESRCH;
2358
2359 if (tgid != -1 && tgt_proc->tgid() != tgid)
2360 return -ESRCH;
2361
2362 if (sig == OS::TGT_SIGABRT)
2363 exitGroupFunc(desc, 252, tc);
2364
2365 return 0;
2366}
2367
2368template <class OS>
2369SyscallReturn
2370socketFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2371{
2372 int index = 0;
2373 auto p = tc->getProcessPtr();
2374 int domain = p->getSyscallArg(tc, index);
2375 int type = p->getSyscallArg(tc, index);
2376 int prot = p->getSyscallArg(tc, index);
2377
2378 int sim_fd = socket(domain, type, prot);
2379 if (sim_fd == -1)
2380 return -errno;
2381
2382 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2383 int tgt_fd = p->fds->allocFD(sfdp);
2384
2385 return tgt_fd;
2386}
2387
2388template <class OS>
2389SyscallReturn
2390socketpairFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2391{
2392 int index = 0;
2393 auto p = tc->getProcessPtr();
2394 int domain = p->getSyscallArg(tc, index);
2395 int type = p->getSyscallArg(tc, index);
2396 int prot = p->getSyscallArg(tc, index);
2397 Addr svPtr = p->getSyscallArg(tc, index);
2398
2399 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2400 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2401 if (status == -1)
2402 return -errno;
2403
2404 int *fds = (int *)svBuf.bufferPtr();
2405
2406 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2407 fds[0] = p->fds->allocFD(sfdp1);
2408 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2409 fds[1] = p->fds->allocFD(sfdp2);
2410 svBuf.copyOut(tc->getVirtProxy());
2411
2412 return status;
2413}
2414
2415template <class OS>
2416SyscallReturn
2417selectFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2418{
2419 int retval;
2420
2421 int index = 0;
2422 auto p = tc->getProcessPtr();
2423 int nfds_t = p->getSyscallArg(tc, index);
2424 Addr fds_read_ptr = p->getSyscallArg(tc, index);
2425 Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2426 Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2427 Addr time_val_ptr = p->getSyscallArg(tc, index);
2428
2429 TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2430 TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2431 TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2432 TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2433
2434 /**
2435 * Host fields. Notice that these use the definitions from the system
2436 * headers instead of the gem5 headers and libraries. If the host and
2437 * target have different header file definitions, this will not work.
2438 */
2439 fd_set rd_h;
2440 FD_ZERO(&rd_h);
2441 fd_set wr_h;
2442 FD_ZERO(&wr_h);
2443 fd_set ex_h;
2444 FD_ZERO(&ex_h);
2445
2446 /**
2447 * Copy in the fd_set from the target.
2448 */
2449 if (fds_read_ptr)
2450 rd_t.copyIn(tc->getVirtProxy());
2451 if (fds_writ_ptr)
2452 wr_t.copyIn(tc->getVirtProxy());
2453 if (fds_excp_ptr)
2454 ex_t.copyIn(tc->getVirtProxy());
2455
2456 /**
2457 * We need to translate the target file descriptor set into a host file
2458 * descriptor set. This involves both our internal process fd array
2459 * and the fd_set defined in Linux header files. The nfds field also
2460 * needs to be updated as it will be only target specific after
2461 * retrieving it from the target; the nfds value is expected to be the
2462 * highest file descriptor that needs to be checked, so we need to extend
2463 * it out for nfds_h when we do the update.
2464 */
2465 int nfds_h = 0;
2466 std::map<int, int> trans_map;
2467 auto try_add_host_set = [&](fd_set *tgt_set_entry,
2468 fd_set *hst_set_entry,
2469 int iter) -> bool
2470 {
2471 /**
2472 * By this point, we know that we are looking at a valid file
2473 * descriptor set on the target. We need to check if the target file
2474 * descriptor value passed in as iter is part of the set.
2475 */
2476 if (FD_ISSET(iter, tgt_set_entry)) {
2477 /**
2478 * We know that the target file descriptor belongs to the set,
2479 * but we do not yet know if the file descriptor is valid or
2480 * that we have a host mapping. Check that now.
2481 */
2482 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2483 if (!hbfdp)
2484 return true;
2485 auto sim_fd = hbfdp->getSimFD();
2486
2487 /**
2488 * Add the sim_fd to tgt_fd translation into trans_map for use
2489 * later when we need to zero the target fd_set structures and
2490 * then update them with hits returned from the host select call.
2491 */
2492 trans_map[sim_fd] = iter;
2493
2494 /**
2495 * We know that the host file descriptor exists so now we check
2496 * if we need to update the max count for nfds_h before passing
2497 * the duplicated structure into the host.
2498 */
2499 nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2500
2501 /**
2502 * Add the host file descriptor to the set that we are going to
2503 * pass into the host.
2504 */
2505 FD_SET(sim_fd, hst_set_entry);
2506 }
2507 return false;
2508 };
2509
2510 for (int i = 0; i < nfds_t; i++) {
2511 if (fds_read_ptr) {
2512 bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2513 if (ebadf) return -EBADF;
2514 }
2515 if (fds_writ_ptr) {
2516 bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2517 if (ebadf) return -EBADF;
2518 }
2519 if (fds_excp_ptr) {
2520 bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2521 if (ebadf) return -EBADF;
2522 }
2523 }
2524
2525 if (time_val_ptr) {
2526 /**
2527 * It might be possible to decrement the timeval based on some
2528 * derivation of wall clock determined from elapsed simulator ticks
2529 * but that seems like overkill. Rather, we just set the timeval with
2530 * zero timeout. (There is no reason to block during the simulation
2531 * as it only decreases simulator performance.)
2532 */
2533 tp->tv_sec = 0;
2534 tp->tv_usec = 0;
2535
2536 retval = select(nfds_h,
2537 fds_read_ptr ? &rd_h : nullptr,
2538 fds_writ_ptr ? &wr_h : nullptr,
2539 fds_excp_ptr ? &ex_h : nullptr,
2540 (timeval*)&*tp);
2541 } else {
2542 /**
2543 * If the timeval pointer is null, setup a new timeval structure to
2544 * pass into the host select call. Unfortunately, we will need to
2545 * manually check the return value and throw a retry fault if the
2546 * return value is zero. Allowing the system call to block will
2547 * likely deadlock the event queue.
2548 */
2549 struct timeval tv = { 0, 0 };
2550
2551 retval = select(nfds_h,
2552 fds_read_ptr ? &rd_h : nullptr,
2553 fds_writ_ptr ? &wr_h : nullptr,
2554 fds_excp_ptr ? &ex_h : nullptr,
2555 &tv);
2556
2557 if (retval == 0) {
2558 /**
2559 * If blocking indefinitely, check the signal list to see if a
2560 * signal would break the poll out of the retry cycle and try to
2561 * return the signal interrupt instead.
2562 */
2563 for (auto sig : tc->getSystemPtr()->signalList)
2564 if (sig.receiver == p)
2565 return -EINTR;
2566 return SyscallReturn::retry();
2567 }
2568 }
2569
2570 if (retval == -1)
2571 return -errno;
2572
2573 FD_ZERO((fd_set*)&*rd_t);
2574 FD_ZERO((fd_set*)&*wr_t);
2575 FD_ZERO((fd_set*)&*ex_t);
2576
2577 /**
2578 * We need to translate the host file descriptor set into a target file
2579 * descriptor set. This involves both our internal process fd array
2580 * and the fd_set defined in header files.
2581 */
2582 for (int i = 0; i < nfds_h; i++) {
2583 if (fds_read_ptr) {
2584 if (FD_ISSET(i, &rd_h))
2585 FD_SET(trans_map[i], (fd_set*)&*rd_t);
2586 }
2587
2588 if (fds_writ_ptr) {
2589 if (FD_ISSET(i, &wr_h))
2590 FD_SET(trans_map[i], (fd_set*)&*wr_t);
2591 }
2592
2593 if (fds_excp_ptr) {
2594 if (FD_ISSET(i, &ex_h))
2595 FD_SET(trans_map[i], (fd_set*)&*ex_t);
2596 }
2597 }
2598
2599 if (fds_read_ptr)
2600 rd_t.copyOut(tc->getVirtProxy());
2601 if (fds_writ_ptr)
2602 wr_t.copyOut(tc->getVirtProxy());
2603 if (fds_excp_ptr)
2604 ex_t.copyOut(tc->getVirtProxy());
2605 if (time_val_ptr)
2606 tp.copyOut(tc->getVirtProxy());
2607
2608 return retval;
2609}
2610
2611template <class OS>
2612SyscallReturn
2613readFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2614{
2615 int index = 0;
2616 auto p = tc->getProcessPtr();
2617 int tgt_fd = p->getSyscallArg(tc, index);
2618 Addr buf_ptr = p->getSyscallArg(tc, index);
2619 int nbytes = p->getSyscallArg(tc, index);
2620
2621 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2622 if (!hbfdp)
2623 return -EBADF;
2624 int sim_fd = hbfdp->getSimFD();
2625
2626 struct pollfd pfd;
2627 pfd.fd = sim_fd;
2628 pfd.events = POLLIN | POLLPRI;
2629 if ((poll(&pfd, 1, 0) == 0)
2630 && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2631 return SyscallReturn::retry();
2632
2633 BufferArg buf_arg(buf_ptr, nbytes);
2634 int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2635
2636 if (bytes_read > 0)
2637 buf_arg.copyOut(tc->getVirtProxy());
2638
2639 return (bytes_read == -1) ? -errno : bytes_read;
2640}
2641
2642template <class OS>
2643SyscallReturn
2644writeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2645{
2646 int index = 0;
2647 auto p = tc->getProcessPtr();
2648 int tgt_fd = p->getSyscallArg(tc, index);
2649 Addr buf_ptr = p->getSyscallArg(tc, index);
2650 int nbytes = p->getSyscallArg(tc, index);
2651
2652 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2653 if (!hbfdp)
2654 return -EBADF;
2655 int sim_fd = hbfdp->getSimFD();
2656
2657 BufferArg buf_arg(buf_ptr, nbytes);
2658 buf_arg.copyIn(tc->getVirtProxy());
2659
2660 struct pollfd pfd;
2661 pfd.fd = sim_fd;
2662 pfd.events = POLLOUT;
2663
2664 /**
2665 * We don't want to poll on /dev/random. The kernel will not enable the
2666 * file descriptor for writing unless the entropy in the system falls
2667 * below write_wakeup_threshold. This is not guaranteed to happen
2668 * depending on host settings.
2669 */
2670 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2671 if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2672 if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2673 return SyscallReturn::retry();
2674 }
2675
2676 int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2677
2678 if (bytes_written != -1)
2679 fsync(sim_fd);
2680
2681 return (bytes_written == -1) ? -errno : bytes_written;
2682}
2683
2684template <class OS>
2685SyscallReturn
2686wait4Func(SyscallDesc *desc, int num, ThreadContext *tc)
2687{
2688 int index = 0;
2689 auto p = tc->getProcessPtr();
2690 pid_t pid = p->getSyscallArg(tc, index);
2691 Addr statPtr = p->getSyscallArg(tc, index);
2692 int options = p->getSyscallArg(tc, index);
2693 Addr rusagePtr = p->getSyscallArg(tc, index);
2694
2695 if (rusagePtr)
2696 DPRINTF_SYSCALL(Verbose, "wait4: rusage pointer provided %lx, however "
2697 "functionality not supported. Ignoring rusage pointer.\n",
2698 rusagePtr);
2699
2700 /**
2701 * Currently, wait4 is only implemented so that it will wait for children
2702 * exit conditions which are denoted by a SIGCHLD signals posted into the
2703 * system signal list. We return no additional information via any of the
2704 * parameters supplied to wait4. If nothing is found in the system signal
2705 * list, we will wait indefinitely for SIGCHLD to post by retrying the
2706 * call.
2707 */
2708 System *sysh = tc->getSystemPtr();
2709 std::list<BasicSignal>::iterator iter;
2710 for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2711 if (iter->receiver == p) {
2712 if (pid < -1) {
2713 if ((iter->sender->pgid() == -pid)
2714 && (iter->signalValue == OS::TGT_SIGCHLD))
2715 goto success;
2716 } else if (pid == -1) {
2717 if (iter->signalValue == OS::TGT_SIGCHLD)
2718 goto success;
2719 } else if (pid == 0) {
2720 if ((iter->sender->pgid() == p->pgid())
2721 && (iter->signalValue == OS::TGT_SIGCHLD))
2722 goto success;
2723 } else {
2724 if ((iter->sender->pid() == pid)
2725 && (iter->signalValue == OS::TGT_SIGCHLD))
2726 goto success;
2727 }
2728 }
2729 }
2730
2731 return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2732
2733success:
2734 // Set status to EXITED for WIFEXITED evaluations.
2735 const int EXITED = 0;
2736 BufferArg statusBuf(statPtr, sizeof(int));
2737 *(int *)statusBuf.bufferPtr() = EXITED;
2738 statusBuf.copyOut(tc->getVirtProxy());
2739
2740 // Return the child PID.
2741 pid_t retval = iter->sender->pid();
2742 sysh->signalList.erase(iter);
2743 return retval;
2744}
2745
2746template <class OS>
2747SyscallReturn
2748acceptFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2749{
2750 struct sockaddr sa;
2751 socklen_t addrLen;
2752 int host_fd;
2753 int index = 0;
2754 auto p = tc->getProcessPtr();
2755 int tgt_fd = p->getSyscallArg(tc, index);
2756 Addr addrPtr = p->getSyscallArg(tc, index);
2757 Addr lenPtr = p->getSyscallArg(tc, index);
2758
2759 BufferArg *lenBufPtr = nullptr;
2760 BufferArg *addrBufPtr = nullptr;
2761
2762 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2763 if (!sfdp)
2764 return -EBADF;
2765 int sim_fd = sfdp->getSimFD();
2766
2767 /**
2768 * We poll the socket file descriptor first to guarantee that we do not
2769 * block on our accept call. The socket can be opened without the
2770 * non-blocking flag (it blocks). This will cause deadlocks between
2771 * communicating processes.
2772 */
2773 struct pollfd pfd;
2774 pfd.fd = sim_fd;
2775 pfd.events = POLLIN | POLLPRI;
2776 if ((poll(&pfd, 1, 0) == 0)
2777 && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2778 return SyscallReturn::retry();
2779
2780 if (lenPtr) {
2781 lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2782 lenBufPtr->copyIn(tc->getVirtProxy());
2783 memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2784 sizeof(socklen_t));
2785 }
2786
2787 if (addrPtr) {
2788 addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2789 addrBufPtr->copyIn(tc->getVirtProxy());
2790 memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2791 sizeof(struct sockaddr));
2792 }
2793
2794 host_fd = accept(sim_fd, &sa, &addrLen);
2795
2796 if (host_fd == -1)
2797 return -errno;
2798
2799 if (addrPtr) {
2800 memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2801 addrBufPtr->copyOut(tc->getVirtProxy());
2802 delete(addrBufPtr);
2803 }
2804
2805 if (lenPtr) {
2806 *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2807 lenBufPtr->copyOut(tc->getVirtProxy());
2808 delete(lenBufPtr);
2809 }
2810
2811 auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2812 sfdp->_type, sfdp->_protocol);
2813 return p->fds->allocFD(afdp);
2814}
2815
2816/// Target eventfd() function.
2817template <class OS>
2818SyscallReturn
2819eventfdFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2820{
2821#if defined(__linux__)
2822 int index = 0;
2823 auto p = tc->getProcessPtr();
2824 unsigned initval = p->getSyscallArg(tc, index);
2825 int in_flags = p->getSyscallArg(tc, index);
2826
2827 int sim_fd = eventfd(initval, in_flags);
2828 if (sim_fd == -1)
2829 return -errno;
2830
2831 bool cloexec = in_flags & OS::TGT_O_CLOEXEC;
2832
2833 int flags = cloexec ? OS::TGT_O_CLOEXEC : 0;
2834 flags |= (in_flags & OS::TGT_O_NONBLOCK) ? OS::TGT_O_NONBLOCK : 0;
2835
2836 auto hbfdp = std::make_shared<HBFDEntry>(flags, sim_fd, cloexec);
2837 int tgt_fd = p->fds->allocFD(hbfdp);
2838 return tgt_fd;
2839#else
2840 warnUnsupportedOS("eventfd");
2841 return -1;
2842#endif
2843}
2844
2845#endif // __SIM_SYSCALL_EMUL_HH__
232/// Target setpgid() handler.
233SyscallReturn setpgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
234
235/// Target fchown() handler.
236SyscallReturn fchownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
237
238/// Target dup() handler.
239SyscallReturn dupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
240
241/// Target dup2() handler.
242SyscallReturn dup2Func(SyscallDesc *desc, int num, ThreadContext *tc);
243
244/// Target fcntl() handler.
245SyscallReturn fcntlFunc(SyscallDesc *desc, int num, ThreadContext *tc);
246
247/// Target fcntl64() handler.
248SyscallReturn fcntl64Func(SyscallDesc *desc, int num, ThreadContext *tc);
249
250/// Target setuid() handler.
251SyscallReturn setuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
252
253/// Target pipe() handler.
254SyscallReturn pipeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
255
256/// Internal pipe() handler.
257SyscallReturn pipeImpl(SyscallDesc *desc, int num, ThreadContext *tc,
258 bool pseudo_pipe, bool is_pipe2=false);
259
260/// Target pipe() handler.
261SyscallReturn pipe2Func(SyscallDesc *desc, int num, ThreadContext *tc);
262
263/// Target getpid() handler.
264SyscallReturn getpidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
265
266// Target getpeername() handler.
267SyscallReturn getpeernameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
268
269// Target bind() handler.
270SyscallReturn bindFunc(SyscallDesc *desc, int num, ThreadContext *tc);
271
272// Target listen() handler.
273SyscallReturn listenFunc(SyscallDesc *desc, int num, ThreadContext *tc);
274
275// Target connect() handler.
276SyscallReturn connectFunc(SyscallDesc *desc, int num, ThreadContext *tc);
277
278#if defined(SYS_getdents)
279// Target getdents() handler.
280SyscallReturn getdentsFunc(SyscallDesc *desc, int num, ThreadContext *tc);
281#endif
282
283#if defined(SYS_getdents64)
284// Target getdents() handler.
285SyscallReturn getdents64Func(SyscallDesc *desc, int num, ThreadContext *tc);
286#endif
287
288// Target sendto() handler.
289SyscallReturn sendtoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
290
291// Target recvfrom() handler.
292SyscallReturn recvfromFunc(SyscallDesc *desc, int num, ThreadContext *tc);
293
294// Target recvmsg() handler.
295SyscallReturn recvmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
296
297// Target sendmsg() handler.
298SyscallReturn sendmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
299
300// Target getuid() handler.
301SyscallReturn getuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
302
303/// Target getgid() handler.
304SyscallReturn getgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
305
306/// Target getppid() handler.
307SyscallReturn getppidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
308
309/// Target geteuid() handler.
310SyscallReturn geteuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
311
312/// Target getegid() handler.
313SyscallReturn getegidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
314
315/// Target access() handler
316SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc);
317SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc,
318 int index);
319
320// Target getsockopt() handler.
321SyscallReturn getsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
322
323// Target setsockopt() handler.
324SyscallReturn setsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
325
326// Target getsockname() handler.
327SyscallReturn getsocknameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
328
329/// Futex system call
330/// Implemented by Daniel Sanchez
331/// Used by printf's in multi-threaded apps
332template <class OS>
333SyscallReturn
334futexFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
335{
336 using namespace std;
337
338 int index = 0;
339 auto process = tc->getProcessPtr();
340
341 Addr uaddr = process->getSyscallArg(tc, index);
342 int op = process->getSyscallArg(tc, index);
343 int val = process->getSyscallArg(tc, index);
344 int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
345 Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
346 int val3 = process->getSyscallArg(tc, index);
347
348 /*
349 * Unsupported option that does not affect the correctness of the
350 * application. This is a performance optimization utilized by Linux.
351 */
352 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
353 op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
354
355 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
356
357 if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
358 // Ensure futex system call accessed atomically.
359 BufferArg buf(uaddr, sizeof(int));
360 buf.copyIn(tc->getVirtProxy());
361 int mem_val = *(int*)buf.bufferPtr();
362
363 /*
364 * The value in memory at uaddr is not equal with the expected val
365 * (a different thread must have changed it before the system call was
366 * invoked). In this case, we need to throw an error.
367 */
368 if (val != mem_val)
369 return -OS::TGT_EWOULDBLOCK;
370
371 if (OS::TGT_FUTEX_WAIT) {
372 futex_map.suspend(uaddr, process->tgid(), tc);
373 } else {
374 futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
375 }
376
377 return 0;
378 } else if (OS::TGT_FUTEX_WAKE == op) {
379 return futex_map.wakeup(uaddr, process->tgid(), val);
380 } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
381 return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
382 } else if (OS::TGT_FUTEX_REQUEUE == op ||
383 OS::TGT_FUTEX_CMP_REQUEUE == op) {
384
385 // Ensure futex system call accessed atomically.
386 BufferArg buf(uaddr, sizeof(int));
387 buf.copyIn(tc->getVirtProxy());
388 int mem_val = *(int*)buf.bufferPtr();
389 /*
390 * For CMP_REQUEUE, the whole operation is only started only if
391 * val3 is still the value of the futex pointed to by uaddr.
392 */
393 if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
394 return -OS::TGT_EWOULDBLOCK;
395 return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
396 } else if (OS::TGT_FUTEX_WAKE_OP == op) {
397 /*
398 * The FUTEX_WAKE_OP operation is equivalent to executing the
399 * following code atomically and totally ordered with respect to
400 * other futex operations on any of the two supplied futex words:
401 *
402 * int oldval = *(int *) addr2;
403 * *(int *) addr2 = oldval op oparg;
404 * futex(addr1, FUTEX_WAKE, val, 0, 0, 0);
405 * if (oldval cmp cmparg)
406 * futex(addr2, FUTEX_WAKE, val2, 0, 0, 0);
407 *
408 * (op, oparg, cmp, cmparg are encoded in val3)
409 *
410 * +---+---+-----------+-----------+
411 * |op |cmp| oparg | cmparg |
412 * +---+---+-----------+-----------+
413 * 4 4 12 12 <== # of bits
414 *
415 * reference: http://man7.org/linux/man-pages/man2/futex.2.html
416 *
417 */
418 // get value from simulated-space
419 BufferArg buf(uaddr2, sizeof(int));
420 buf.copyIn(tc->getVirtProxy());
421 int oldval = *(int*)buf.bufferPtr();
422 int newval = oldval;
423 // extract op, oparg, cmp, cmparg from val3
424 int wake_cmparg = val3 & 0xfff;
425 int wake_oparg = (val3 & 0xfff000) >> 12;
426 int wake_cmp = (val3 & 0xf000000) >> 24;
427 int wake_op = (val3 & 0xf0000000) >> 28;
428 if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1)
429 wake_oparg = (1 << wake_oparg);
430 wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT;
431 // perform operation on the value of the second futex
432 if (wake_op == OS::TGT_FUTEX_OP_SET)
433 newval = wake_oparg;
434 else if (wake_op == OS::TGT_FUTEX_OP_ADD)
435 newval += wake_oparg;
436 else if (wake_op == OS::TGT_FUTEX_OP_OR)
437 newval |= wake_oparg;
438 else if (wake_op == OS::TGT_FUTEX_OP_ANDN)
439 newval &= ~wake_oparg;
440 else if (wake_op == OS::TGT_FUTEX_OP_XOR)
441 newval ^= wake_oparg;
442 // copy updated value back to simulated-space
443 *(int*)buf.bufferPtr() = newval;
444 buf.copyOut(tc->getVirtProxy());
445 // perform the first wake-up
446 int woken1 = futex_map.wakeup(uaddr, process->tgid(), val);
447 int woken2 = 0;
448 // calculate the condition of the second wake-up
449 bool is_wake2 = false;
450 if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ)
451 is_wake2 = oldval == wake_cmparg;
452 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE)
453 is_wake2 = oldval != wake_cmparg;
454 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT)
455 is_wake2 = oldval < wake_cmparg;
456 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE)
457 is_wake2 = oldval <= wake_cmparg;
458 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT)
459 is_wake2 = oldval > wake_cmparg;
460 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE)
461 is_wake2 = oldval >= wake_cmparg;
462 // perform the second wake-up
463 if (is_wake2)
464 woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout);
465
466 return woken1 + woken2;
467 }
468 warn("futex: op %d not implemented; ignoring.", op);
469 return -ENOSYS;
470}
471
472
473/// Pseudo Funcs - These functions use a different return convension,
474/// returning a second value in a register other than the normal return register
475SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
476
477/// Target getpidPseudo() handler.
478SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
479
480/// Target getuidPseudo() handler.
481SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
482
483/// Target getgidPseudo() handler.
484SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
485
486
487/// A readable name for 1,000,000, for converting microseconds to seconds.
488const int one_million = 1000000;
489/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
490const int one_billion = 1000000000;
491
492/// Approximate seconds since the epoch (1/1/1970). About a billion,
493/// by my reckoning. We want to keep this a constant (not use the
494/// real-world time) to keep simulations repeatable.
495const unsigned seconds_since_epoch = 1000000000;
496
497/// Helper function to convert current elapsed time to seconds and
498/// microseconds.
499template <class T1, class T2>
500void
501getElapsedTimeMicro(T1 &sec, T2 &usec)
502{
503 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
504 sec = elapsed_usecs / one_million;
505 usec = elapsed_usecs % one_million;
506}
507
508/// Helper function to convert current elapsed time to seconds and
509/// nanoseconds.
510template <class T1, class T2>
511void
512getElapsedTimeNano(T1 &sec, T2 &nsec)
513{
514 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
515 sec = elapsed_nsecs / one_billion;
516 nsec = elapsed_nsecs % one_billion;
517}
518
519//////////////////////////////////////////////////////////////////////
520//
521// The following emulation functions are generic, but need to be
522// templated to account for differences in types, constants, etc.
523//
524//////////////////////////////////////////////////////////////////////
525
526 typedef struct statfs hst_statfs;
527#if NO_STAT64
528 typedef struct stat hst_stat;
529 typedef struct stat hst_stat64;
530#else
531 typedef struct stat hst_stat;
532 typedef struct stat64 hst_stat64;
533#endif
534
535//// Helper function to convert a host stat buffer to a target stat
536//// buffer. Also copies the target buffer out to the simulated
537//// memory space. Used by stat(), fstat(), and lstat().
538
539template <typename target_stat, typename host_stat>
540void
541convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
542{
543 using namespace TheISA;
544
545 if (fakeTTY)
546 tgt->st_dev = 0xA;
547 else
548 tgt->st_dev = host->st_dev;
549 tgt->st_dev = TheISA::htog(tgt->st_dev);
550 tgt->st_ino = host->st_ino;
551 tgt->st_ino = TheISA::htog(tgt->st_ino);
552 tgt->st_mode = host->st_mode;
553 if (fakeTTY) {
554 // Claim to be a character device
555 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
556 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
557 }
558 tgt->st_mode = TheISA::htog(tgt->st_mode);
559 tgt->st_nlink = host->st_nlink;
560 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
561 tgt->st_uid = host->st_uid;
562 tgt->st_uid = TheISA::htog(tgt->st_uid);
563 tgt->st_gid = host->st_gid;
564 tgt->st_gid = TheISA::htog(tgt->st_gid);
565 if (fakeTTY)
566 tgt->st_rdev = 0x880d;
567 else
568 tgt->st_rdev = host->st_rdev;
569 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
570 tgt->st_size = host->st_size;
571 tgt->st_size = TheISA::htog(tgt->st_size);
572 tgt->st_atimeX = host->st_atime;
573 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
574 tgt->st_mtimeX = host->st_mtime;
575 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
576 tgt->st_ctimeX = host->st_ctime;
577 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
578 // Force the block size to be 8KB. This helps to ensure buffered io works
579 // consistently across different hosts.
580 tgt->st_blksize = 0x2000;
581 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
582 tgt->st_blocks = host->st_blocks;
583 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
584}
585
586// Same for stat64
587
588template <typename target_stat, typename host_stat64>
589void
590convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
591{
592 using namespace TheISA;
593
594 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
595#if defined(STAT_HAVE_NSEC)
596 tgt->st_atime_nsec = host->st_atime_nsec;
597 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
598 tgt->st_mtime_nsec = host->st_mtime_nsec;
599 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
600 tgt->st_ctime_nsec = host->st_ctime_nsec;
601 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
602#else
603 tgt->st_atime_nsec = 0;
604 tgt->st_mtime_nsec = 0;
605 tgt->st_ctime_nsec = 0;
606#endif
607}
608
609// Here are a couple of convenience functions
610template<class OS>
611void
612copyOutStatBuf(PortProxy &mem, Addr addr,
613 hst_stat *host, bool fakeTTY = false)
614{
615 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
616 tgt_stat_buf tgt(addr);
617 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
618 tgt.copyOut(mem);
619}
620
621template<class OS>
622void
623copyOutStat64Buf(PortProxy &mem, Addr addr,
624 hst_stat64 *host, bool fakeTTY = false)
625{
626 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
627 tgt_stat_buf tgt(addr);
628 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
629 tgt.copyOut(mem);
630}
631
632template <class OS>
633void
634copyOutStatfsBuf(PortProxy &mem, Addr addr,
635 hst_statfs *host)
636{
637 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
638
639 tgt->f_type = TheISA::htog(host->f_type);
640#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
641 tgt->f_bsize = TheISA::htog(host->f_iosize);
642#else
643 tgt->f_bsize = TheISA::htog(host->f_bsize);
644#endif
645 tgt->f_blocks = TheISA::htog(host->f_blocks);
646 tgt->f_bfree = TheISA::htog(host->f_bfree);
647 tgt->f_bavail = TheISA::htog(host->f_bavail);
648 tgt->f_files = TheISA::htog(host->f_files);
649 tgt->f_ffree = TheISA::htog(host->f_ffree);
650 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
651#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
652 tgt->f_namelen = TheISA::htog(host->f_namemax);
653 tgt->f_frsize = TheISA::htog(host->f_bsize);
654#elif defined(__APPLE__)
655 tgt->f_namelen = 0;
656 tgt->f_frsize = 0;
657#else
658 tgt->f_namelen = TheISA::htog(host->f_namelen);
659 tgt->f_frsize = TheISA::htog(host->f_frsize);
660#endif
661#if defined(__linux__)
662 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
663#else
664 /*
665 * The fields are different sizes per OS. Don't bother with
666 * f_spare or f_reserved on non-Linux for now.
667 */
668 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
669#endif
670
671 tgt.copyOut(mem);
672}
673
674/// Target ioctl() handler. For the most part, programs call ioctl()
675/// only to find out if their stdout is a tty, to determine whether to
676/// do line or block buffering. We always claim that output fds are
677/// not TTYs to provide repeatable results.
678template <class OS>
679SyscallReturn
680ioctlFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
681{
682 int index = 0;
683 auto p = tc->getProcessPtr();
684
685 int tgt_fd = p->getSyscallArg(tc, index);
686 unsigned req = p->getSyscallArg(tc, index);
687
688 DPRINTF_SYSCALL(Verbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
689
690 if (OS::isTtyReq(req))
691 return -ENOTTY;
692
693 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
694 if (dfdp) {
695 EmulatedDriver *emul_driver = dfdp->getDriver();
696 if (emul_driver)
697 return emul_driver->ioctl(tc, req);
698 }
699
700 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
701 if (sfdp) {
702 int status;
703
704 switch (req) {
705 case SIOCGIFCONF: {
706 Addr conf_addr = p->getSyscallArg(tc, index);
707 BufferArg conf_arg(conf_addr, sizeof(ifconf));
708 conf_arg.copyIn(tc->getVirtProxy());
709
710 ifconf *conf = (ifconf*)conf_arg.bufferPtr();
711 Addr ifc_buf_addr = (Addr)conf->ifc_buf;
712 BufferArg ifc_buf_arg(ifc_buf_addr, conf->ifc_len);
713 ifc_buf_arg.copyIn(tc->getVirtProxy());
714
715 conf->ifc_buf = (char*)ifc_buf_arg.bufferPtr();
716
717 status = ioctl(sfdp->getSimFD(), req, conf_arg.bufferPtr());
718 if (status != -1) {
719 conf->ifc_buf = (char*)ifc_buf_addr;
720 ifc_buf_arg.copyOut(tc->getVirtProxy());
721 conf_arg.copyOut(tc->getVirtProxy());
722 }
723
724 return status;
725 }
726 case SIOCGIFFLAGS:
727#if defined(__linux__)
728 case SIOCGIFINDEX:
729#endif
730 case SIOCGIFNETMASK:
731 case SIOCGIFADDR:
732#if defined(__linux__)
733 case SIOCGIFHWADDR:
734#endif
735 case SIOCGIFMTU: {
736 Addr req_addr = p->getSyscallArg(tc, index);
737 BufferArg req_arg(req_addr, sizeof(ifreq));
738 req_arg.copyIn(tc->getVirtProxy());
739
740 status = ioctl(sfdp->getSimFD(), req, req_arg.bufferPtr());
741 if (status != -1)
742 req_arg.copyOut(tc->getVirtProxy());
743 return status;
744 }
745 }
746 }
747
748 /**
749 * For lack of a better return code, return ENOTTY. Ideally, we should
750 * return something better here, but at least we issue the warning.
751 */
752 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
753 tgt_fd, req, tc->pcState());
754 return -ENOTTY;
755}
756
757template <class OS>
758SyscallReturn
759openImpl(SyscallDesc *desc, int callnum, ThreadContext *tc, bool isopenat)
760{
761 int index = 0;
762 auto p = tc->getProcessPtr();
763 int tgt_dirfd = -1;
764
765 /**
766 * If using the openat variant, read in the target directory file
767 * descriptor from the simulated process.
768 */
769 if (isopenat)
770 tgt_dirfd = p->getSyscallArg(tc, index);
771
772 /**
773 * Retrieve the simulated process' memory proxy and then read in the path
774 * string from that memory space into the host's working memory space.
775 */
776 std::string path;
777 if (!tc->getVirtProxy().tryReadString(path, p->getSyscallArg(tc, index)))
778 return -EFAULT;
779
780#ifdef __CYGWIN32__
781 int host_flags = O_BINARY;
782#else
783 int host_flags = 0;
784#endif
785 /**
786 * Translate target flags into host flags. Flags exist which are not
787 * ported between architectures which can cause check failures.
788 */
789 int tgt_flags = p->getSyscallArg(tc, index);
790 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
791 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
792 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
793 host_flags |= OS::openFlagTable[i].hostFlag;
794 }
795 }
796 if (tgt_flags) {
797 warn("open%s: cannot decode flags 0x%x",
798 isopenat ? "at" : "", tgt_flags);
799 }
800#ifdef __CYGWIN32__
801 host_flags |= O_BINARY;
802#endif
803
804 int mode = p->getSyscallArg(tc, index);
805
806 /**
807 * If the simulated process called open or openat with AT_FDCWD specified,
808 * take the current working directory value which was passed into the
809 * process class as a Python parameter and append the current path to
810 * create a full path.
811 * Otherwise, openat with a valid target directory file descriptor has
812 * been called. If the path option, which was passed in as a parameter,
813 * is not absolute, retrieve the directory file descriptor's path and
814 * prepend it to the path passed in as a parameter.
815 * In every case, we should have a full path (which is relevant to the
816 * host) to work with after this block has been passed.
817 */
818 std::string redir_path = path;
819 std::string abs_path = path;
820 if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) {
821 abs_path = p->absolutePath(path, true);
822 redir_path = p->checkPathRedirect(path);
823 } else if (!startswith(path, "/")) {
824 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
825 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
826 if (!ffdp)
827 return -EBADF;
828 abs_path = ffdp->getFileName() + path;
829 redir_path = p->checkPathRedirect(abs_path);
830 }
831
832 /**
833 * Since this is an emulated environment, we create pseudo file
834 * descriptors for device requests that have been registered with
835 * the process class through Python; this allows us to create a file
836 * descriptor for subsequent ioctl or mmap calls.
837 */
838 if (startswith(abs_path, "/dev/")) {
839 std::string filename = abs_path.substr(strlen("/dev/"));
840 EmulatedDriver *drv = p->findDriver(filename);
841 if (drv) {
842 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
843 "driver open with path[%s]\n",
844 isopenat ? "at" : "", abs_path.c_str());
845 return drv->open(tc, mode, host_flags);
846 }
847 /**
848 * Fall through here for pass through to host devices, such
849 * as /dev/zero
850 */
851 }
852
853 /**
854 * We make several attempts resolve a call to open.
855 *
856 * 1) Resolve any path redirection before hand. This will set the path
857 * up with variable 'redir_path' which may contain a modified path or
858 * the original path value. This should already be done in prior code.
859 * 2) Try to handle the access using 'special_paths'. Some special_paths
860 * and files cannot be called on the host and need to be handled as
861 * special cases inside the simulator. These special_paths are handled by
862 * C++ routines to provide output back to userspace.
863 * 3) If the full path that was created above does not match any of the
864 * special cases, pass it through to the open call on the __HOST__ to let
865 * the host open the file on our behalf. Again, the openImpl tries to
866 * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the
867 * faux-filesystem files). The faux-filesystem is dynamically created
868 * during simulator configuration using Python functions.
869 * 4) If the host cannot open the file, the open attempt failed in "3)".
870 * Return the host's error code back through the system call to the
871 * simulated process. If running a debug trace, also notify the user that
872 * the open call failed.
873 *
874 * Any success will set sim_fd to something other than -1 and skip the
875 * next conditions effectively bypassing them.
876 */
877 int sim_fd = -1;
878 std::string used_path;
879 std::vector<std::string> special_paths =
880 { "/proc/meminfo/", "/system/", "/platform/", "/etc/passwd" };
881 for (auto entry : special_paths) {
882 if (startswith(path, entry)) {
883 sim_fd = OS::openSpecialFile(abs_path, p, tc);
884 used_path = abs_path;
885 }
886 }
887 if (sim_fd == -1) {
888 sim_fd = open(redir_path.c_str(), host_flags, mode);
889 used_path = redir_path;
890 }
891 if (sim_fd == -1) {
892 int local = -errno;
893 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s "
894 "(inferred from:%s)\n", isopenat ? "at" : "",
895 used_path.c_str(), path.c_str());
896 return local;
897 }
898
899 /**
900 * The file was opened successfully and needs to be recorded in the
901 * process' file descriptor array so that it can be retrieved later.
902 * The target file descriptor that is chosen will be the lowest unused
903 * file descriptor.
904 * Return the indirect target file descriptor back to the simulated
905 * process to act as a handle for the opened file.
906 */
907 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
908 int tgt_fd = p->fds->allocFD(ffdp);
909 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n"
910 "(inferred from:%s)\n", isopenat ? "at" : "",
911 sim_fd, tgt_fd, used_path.c_str(), path.c_str());
912 return tgt_fd;
913}
914
915/// Target open() handler.
916template <class OS>
917SyscallReturn
918openFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
919{
920 return openImpl<OS>(desc, callnum, tc, false);
921}
922
923/// Target openat() handler.
924template <class OS>
925SyscallReturn
926openatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
927{
928 return openImpl<OS>(desc, callnum, tc, true);
929}
930
931/// Target unlinkat() handler.
932template <class OS>
933SyscallReturn
934unlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
935{
936 int index = 0;
937 auto process = tc->getProcessPtr();
938 int dirfd = process->getSyscallArg(tc, index);
939 if (dirfd != OS::TGT_AT_FDCWD)
940 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
941
942 return unlinkHelper(desc, callnum, tc, 1);
943}
944
945/// Target facessat() handler
946template <class OS>
947SyscallReturn
948faccessatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
949{
950 int index = 0;
951 auto process = tc->getProcessPtr();
952 int dirfd = process->getSyscallArg(tc, index);
953 if (dirfd != OS::TGT_AT_FDCWD)
954 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
955 return accessFunc(desc, callnum, tc, 1);
956}
957
958/// Target readlinkat() handler
959template <class OS>
960SyscallReturn
961readlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
962{
963 int index = 0;
964 auto process = tc->getProcessPtr();
965 int dirfd = process->getSyscallArg(tc, index);
966 if (dirfd != OS::TGT_AT_FDCWD)
967 warn("openat: first argument not AT_FDCWD; unlikely to work");
968 return readlinkFunc(desc, callnum, tc, 1);
969}
970
971/// Target renameat() handler.
972template <class OS>
973SyscallReturn
974renameatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
975{
976 int index = 0;
977 auto process = tc->getProcessPtr();
978
979 int olddirfd = process->getSyscallArg(tc, index);
980 if (olddirfd != OS::TGT_AT_FDCWD)
981 warn("renameat: first argument not AT_FDCWD; unlikely to work");
982
983 std::string old_name;
984
985 if (!tc->getVirtProxy().tryReadString(old_name,
986 process->getSyscallArg(tc, index)))
987 return -EFAULT;
988
989 int newdirfd = process->getSyscallArg(tc, index);
990 if (newdirfd != OS::TGT_AT_FDCWD)
991 warn("renameat: third argument not AT_FDCWD; unlikely to work");
992
993 std::string new_name;
994
995 if (!tc->getVirtProxy().tryReadString(new_name,
996 process->getSyscallArg(tc, index)))
997 return -EFAULT;
998
999 // Adjust path for cwd and redirection
1000 old_name = process->checkPathRedirect(old_name);
1001 new_name = process->checkPathRedirect(new_name);
1002
1003 int result = rename(old_name.c_str(), new_name.c_str());
1004 return (result == -1) ? -errno : result;
1005}
1006
1007/// Target sysinfo() handler.
1008template <class OS>
1009SyscallReturn
1010sysinfoFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1011{
1012 int index = 0;
1013 auto process = tc->getProcessPtr();
1014
1015 TypedBufferArg<typename OS::tgt_sysinfo>
1016 sysinfo(process->getSyscallArg(tc, index));
1017
1018 sysinfo->uptime = seconds_since_epoch;
1019 sysinfo->totalram = process->system->memSize();
1020 sysinfo->mem_unit = 1;
1021
1022 sysinfo.copyOut(tc->getVirtProxy());
1023
1024 return 0;
1025}
1026
1027/// Target chmod() handler.
1028template <class OS>
1029SyscallReturn
1030chmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1031{
1032 std::string path;
1033 auto process = tc->getProcessPtr();
1034
1035 int index = 0;
1036 if (!tc->getVirtProxy().tryReadString(path,
1037 process->getSyscallArg(tc, index))) {
1038 return -EFAULT;
1039 }
1040
1041 uint32_t mode = process->getSyscallArg(tc, index);
1042 mode_t hostMode = 0;
1043
1044 // XXX translate mode flags via OS::something???
1045 hostMode = mode;
1046
1047 // Adjust path for cwd and redirection
1048 path = process->checkPathRedirect(path);
1049
1050 // do the chmod
1051 int result = chmod(path.c_str(), hostMode);
1052 if (result < 0)
1053 return -errno;
1054
1055 return 0;
1056}
1057
1058template <class OS>
1059SyscallReturn
1060pollFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1061{
1062 int index = 0;
1063 auto p = tc->getProcessPtr();
1064 Addr fdsPtr = p->getSyscallArg(tc, index);
1065 int nfds = p->getSyscallArg(tc, index);
1066 int tmout = p->getSyscallArg(tc, index);
1067
1068 BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
1069 fdsBuf.copyIn(tc->getVirtProxy());
1070
1071 /**
1072 * Record the target file descriptors in a local variable. We need to
1073 * replace them with host file descriptors but we need a temporary copy
1074 * for later. Afterwards, replace each target file descriptor in the
1075 * poll_fd array with its host_fd.
1076 */
1077 int temp_tgt_fds[nfds];
1078 for (index = 0; index < nfds; index++) {
1079 temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1080 auto tgt_fd = temp_tgt_fds[index];
1081 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1082 if (!hbfdp)
1083 return -EBADF;
1084 auto host_fd = hbfdp->getSimFD();
1085 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1086 }
1087
1088 /**
1089 * We cannot allow an infinite poll to occur or it will inevitably cause
1090 * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1091 * a non-negative value, however it also makes no sense to poll on the
1092 * underlying host for any other time than tmout a zero timeout.
1093 */
1094 int status;
1095 if (tmout < 0) {
1096 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1097 if (status == 0) {
1098 /**
1099 * If blocking indefinitely, check the signal list to see if a
1100 * signal would break the poll out of the retry cycle and try
1101 * to return the signal interrupt instead.
1102 */
1103 System *sysh = tc->getSystemPtr();
1104 std::list<BasicSignal>::iterator it;
1105 for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1106 if (it->receiver == p)
1107 return -EINTR;
1108 return SyscallReturn::retry();
1109 }
1110 } else
1111 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1112
1113 if (status == -1)
1114 return -errno;
1115
1116 /**
1117 * Replace each host_fd in the returned poll_fd array with its original
1118 * target file descriptor.
1119 */
1120 for (index = 0; index < nfds; index++) {
1121 auto tgt_fd = temp_tgt_fds[index];
1122 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1123 }
1124
1125 /**
1126 * Copy out the pollfd struct because the host may have updated fields
1127 * in the structure.
1128 */
1129 fdsBuf.copyOut(tc->getVirtProxy());
1130
1131 return status;
1132}
1133
1134/// Target fchmod() handler.
1135template <class OS>
1136SyscallReturn
1137fchmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1138{
1139 int index = 0;
1140 auto p = tc->getProcessPtr();
1141 int tgt_fd = p->getSyscallArg(tc, index);
1142 uint32_t mode = p->getSyscallArg(tc, index);
1143
1144 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1145 if (!ffdp)
1146 return -EBADF;
1147 int sim_fd = ffdp->getSimFD();
1148
1149 mode_t hostMode = mode;
1150
1151 int result = fchmod(sim_fd, hostMode);
1152
1153 return (result < 0) ? -errno : 0;
1154}
1155
1156/// Target mremap() handler.
1157template <class OS>
1158SyscallReturn
1159mremapFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1160{
1161 int index = 0;
1162 auto process = tc->getProcessPtr();
1163 Addr start = process->getSyscallArg(tc, index);
1164 uint64_t old_length = process->getSyscallArg(tc, index);
1165 uint64_t new_length = process->getSyscallArg(tc, index);
1166 uint64_t flags = process->getSyscallArg(tc, index);
1167 uint64_t provided_address = 0;
1168 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1169
1170 if (use_provided_address)
1171 provided_address = process->getSyscallArg(tc, index);
1172
1173 if ((start % TheISA::PageBytes != 0) ||
1174 (provided_address % TheISA::PageBytes != 0)) {
1175 warn("mremap failing: arguments not page aligned");
1176 return -EINVAL;
1177 }
1178
1179 new_length = roundUp(new_length, TheISA::PageBytes);
1180
1181 if (new_length > old_length) {
1182 std::shared_ptr<MemState> mem_state = process->memState;
1183 Addr mmap_end = mem_state->getMmapEnd();
1184
1185 if ((start + old_length) == mmap_end &&
1186 (!use_provided_address || provided_address == start)) {
1187 // This case cannot occur when growing downward, as
1188 // start is greater than or equal to mmap_end.
1189 uint64_t diff = new_length - old_length;
1190 process->allocateMem(mmap_end, diff);
1191 mem_state->setMmapEnd(mmap_end + diff);
1192 return start;
1193 } else {
1194 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1195 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1196 return -ENOMEM;
1197 } else {
1198 uint64_t new_start = provided_address;
1199 if (!use_provided_address) {
1200 new_start = process->mmapGrowsDown() ?
1201 mmap_end - new_length : mmap_end;
1202 mmap_end = process->mmapGrowsDown() ?
1203 new_start : mmap_end + new_length;
1204 mem_state->setMmapEnd(mmap_end);
1205 }
1206
1207 process->pTable->remap(start, old_length, new_start);
1208 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1209 new_start, new_start + new_length,
1210 new_length - old_length);
1211 // add on the remaining unallocated pages
1212 process->allocateMem(new_start + old_length,
1213 new_length - old_length,
1214 use_provided_address /* clobber */);
1215 if (use_provided_address &&
1216 ((new_start + new_length > mem_state->getMmapEnd() &&
1217 !process->mmapGrowsDown()) ||
1218 (new_start < mem_state->getMmapEnd() &&
1219 process->mmapGrowsDown()))) {
1220 // something fishy going on here, at least notify the user
1221 // @todo: increase mmap_end?
1222 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1223 }
1224 warn("returning %08p as start\n", new_start);
1225 return new_start;
1226 }
1227 }
1228 } else {
1229 if (use_provided_address && provided_address != start)
1230 process->pTable->remap(start, new_length, provided_address);
1231 process->pTable->unmap(start + new_length, old_length - new_length);
1232 return use_provided_address ? provided_address : start;
1233 }
1234}
1235
1236/// Target stat() handler.
1237template <class OS>
1238SyscallReturn
1239statFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1240{
1241 std::string path;
1242 auto process = tc->getProcessPtr();
1243
1244 int index = 0;
1245 if (!tc->getVirtProxy().tryReadString(path,
1246 process->getSyscallArg(tc, index))) {
1247 return -EFAULT;
1248 }
1249 Addr bufPtr = process->getSyscallArg(tc, index);
1250
1251 // Adjust path for cwd and redirection
1252 path = process->checkPathRedirect(path);
1253
1254 struct stat hostBuf;
1255 int result = stat(path.c_str(), &hostBuf);
1256
1257 if (result < 0)
1258 return -errno;
1259
1260 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1261
1262 return 0;
1263}
1264
1265
1266/// Target stat64() handler.
1267template <class OS>
1268SyscallReturn
1269stat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1270{
1271 std::string path;
1272 auto process = tc->getProcessPtr();
1273
1274 int index = 0;
1275 if (!tc->getVirtProxy().tryReadString(path,
1276 process->getSyscallArg(tc, index)))
1277 return -EFAULT;
1278 Addr bufPtr = process->getSyscallArg(tc, index);
1279
1280 // Adjust path for cwd and redirection
1281 path = process->checkPathRedirect(path);
1282
1283#if NO_STAT64
1284 struct stat hostBuf;
1285 int result = stat(path.c_str(), &hostBuf);
1286#else
1287 struct stat64 hostBuf;
1288 int result = stat64(path.c_str(), &hostBuf);
1289#endif
1290
1291 if (result < 0)
1292 return -errno;
1293
1294 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1295
1296 return 0;
1297}
1298
1299
1300/// Target fstatat64() handler.
1301template <class OS>
1302SyscallReturn
1303fstatat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1304{
1305 int index = 0;
1306 auto process = tc->getProcessPtr();
1307 int dirfd = process->getSyscallArg(tc, index);
1308 if (dirfd != OS::TGT_AT_FDCWD)
1309 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1310
1311 std::string path;
1312 if (!tc->getVirtProxy().tryReadString(path,
1313 process->getSyscallArg(tc, index)))
1314 return -EFAULT;
1315 Addr bufPtr = process->getSyscallArg(tc, index);
1316
1317 // Adjust path for cwd and redirection
1318 path = process->checkPathRedirect(path);
1319
1320#if NO_STAT64
1321 struct stat hostBuf;
1322 int result = stat(path.c_str(), &hostBuf);
1323#else
1324 struct stat64 hostBuf;
1325 int result = stat64(path.c_str(), &hostBuf);
1326#endif
1327
1328 if (result < 0)
1329 return -errno;
1330
1331 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1332
1333 return 0;
1334}
1335
1336
1337/// Target fstat64() handler.
1338template <class OS>
1339SyscallReturn
1340fstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1341{
1342 int index = 0;
1343 auto p = tc->getProcessPtr();
1344 int tgt_fd = p->getSyscallArg(tc, index);
1345 Addr bufPtr = p->getSyscallArg(tc, index);
1346
1347 auto ffdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1348 if (!ffdp)
1349 return -EBADF;
1350 int sim_fd = ffdp->getSimFD();
1351
1352#if NO_STAT64
1353 struct stat hostBuf;
1354 int result = fstat(sim_fd, &hostBuf);
1355#else
1356 struct stat64 hostBuf;
1357 int result = fstat64(sim_fd, &hostBuf);
1358#endif
1359
1360 if (result < 0)
1361 return -errno;
1362
1363 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1364
1365 return 0;
1366}
1367
1368
1369/// Target lstat() handler.
1370template <class OS>
1371SyscallReturn
1372lstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1373{
1374 std::string path;
1375 auto process = tc->getProcessPtr();
1376
1377 int index = 0;
1378 if (!tc->getVirtProxy().tryReadString(path,
1379 process->getSyscallArg(tc, index))) {
1380 return -EFAULT;
1381 }
1382 Addr bufPtr = process->getSyscallArg(tc, index);
1383
1384 // Adjust path for cwd and redirection
1385 path = process->checkPathRedirect(path);
1386
1387 struct stat hostBuf;
1388 int result = lstat(path.c_str(), &hostBuf);
1389
1390 if (result < 0)
1391 return -errno;
1392
1393 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1394
1395 return 0;
1396}
1397
1398/// Target lstat64() handler.
1399template <class OS>
1400SyscallReturn
1401lstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1402{
1403 std::string path;
1404 auto process = tc->getProcessPtr();
1405
1406 int index = 0;
1407 if (!tc->getVirtProxy().tryReadString(path,
1408 process->getSyscallArg(tc, index))) {
1409 return -EFAULT;
1410 }
1411 Addr bufPtr = process->getSyscallArg(tc, index);
1412
1413 // Adjust path for cwd and redirection
1414 path = process->checkPathRedirect(path);
1415
1416#if NO_STAT64
1417 struct stat hostBuf;
1418 int result = lstat(path.c_str(), &hostBuf);
1419#else
1420 struct stat64 hostBuf;
1421 int result = lstat64(path.c_str(), &hostBuf);
1422#endif
1423
1424 if (result < 0)
1425 return -errno;
1426
1427 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1428
1429 return 0;
1430}
1431
1432/// Target fstat() handler.
1433template <class OS>
1434SyscallReturn
1435fstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1436{
1437 int index = 0;
1438 auto p = tc->getProcessPtr();
1439 int tgt_fd = p->getSyscallArg(tc, index);
1440 Addr bufPtr = p->getSyscallArg(tc, index);
1441
1442 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1443
1444 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1445 if (!ffdp)
1446 return -EBADF;
1447 int sim_fd = ffdp->getSimFD();
1448
1449 struct stat hostBuf;
1450 int result = fstat(sim_fd, &hostBuf);
1451
1452 if (result < 0)
1453 return -errno;
1454
1455 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1456
1457 return 0;
1458}
1459
1460/// Target statfs() handler.
1461template <class OS>
1462SyscallReturn
1463statfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1464{
1465#if defined(__linux__)
1466 std::string path;
1467 auto process = tc->getProcessPtr();
1468
1469 int index = 0;
1470 if (!tc->getVirtProxy().tryReadString(path,
1471 process->getSyscallArg(tc, index))) {
1472 return -EFAULT;
1473 }
1474 Addr bufPtr = process->getSyscallArg(tc, index);
1475
1476 // Adjust path for cwd and redirection
1477 path = process->checkPathRedirect(path);
1478
1479 struct statfs hostBuf;
1480 int result = statfs(path.c_str(), &hostBuf);
1481
1482 if (result < 0)
1483 return -errno;
1484
1485 copyOutStatfsBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1486 return 0;
1487#else
1488 warnUnsupportedOS("statfs");
1489 return -1;
1490#endif
1491}
1492
1493template <class OS>
1494SyscallReturn
1495cloneFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1496{
1497 int index = 0;
1498
1499 auto p = tc->getProcessPtr();
1500 RegVal flags = p->getSyscallArg(tc, index);
1501 RegVal newStack = p->getSyscallArg(tc, index);
1502 Addr ptidPtr = p->getSyscallArg(tc, index);
1503
1504#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1505 /**
1506 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1507 * The flag defines the list of clone() arguments in the following
1508 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1509 */
1510 Addr tlsPtr = p->getSyscallArg(tc, index);
1511 Addr ctidPtr = p->getSyscallArg(tc, index);
1512#else
1513 Addr ctidPtr = p->getSyscallArg(tc, index);
1514 Addr tlsPtr = p->getSyscallArg(tc, index);
1515#endif
1516
1517 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1518 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1519 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1520 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1521 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1522 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1523 return -EINVAL;
1524
1525 ThreadContext *ctc;
1526 if (!(ctc = p->findFreeContext())) {
1527 DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1528 "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1529 return -EAGAIN;
1530 }
1531
1532 /**
1533 * Note that ProcessParams is generated by swig and there are no other
1534 * examples of how to create anything but this default constructor. The
1535 * fields are manually initialized instead of passing parameters to the
1536 * constructor.
1537 */
1538 ProcessParams *pp = new ProcessParams();
1539 pp->executable.assign(*(new std::string(p->progName())));
1540 pp->cmd.push_back(*(new std::string(p->progName())));
1541 pp->system = p->system;
1542 pp->cwd.assign(p->tgtCwd);
1543 pp->input.assign("stdin");
1544 pp->output.assign("stdout");
1545 pp->errout.assign("stderr");
1546 pp->uid = p->uid();
1547 pp->euid = p->euid();
1548 pp->gid = p->gid();
1549 pp->egid = p->egid();
1550
1551 /* Find the first free PID that's less than the maximum */
1552 std::set<int> const& pids = p->system->PIDs;
1553 int temp_pid = *pids.begin();
1554 do {
1555 temp_pid++;
1556 } while (pids.find(temp_pid) != pids.end());
1557 if (temp_pid >= System::maxPID)
1558 fatal("temp_pid is too large: %d", temp_pid);
1559
1560 pp->pid = temp_pid;
1561 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1562 pp->useArchPT = p->useArchPT;
1563 pp->kvmInSE = p->kvmInSE;
1564 Process *cp = pp->create();
1565 delete pp;
1566
1567 Process *owner = ctc->getProcessPtr();
1568 ctc->setProcessPtr(cp);
1569 cp->assignThreadContext(ctc->contextId());
1570 owner->revokeThreadContext(ctc->contextId());
1571
1572 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1573 BufferArg ptidBuf(ptidPtr, sizeof(long));
1574 long *ptid = (long *)ptidBuf.bufferPtr();
1575 *ptid = cp->pid();
1576 ptidBuf.copyOut(tc->getVirtProxy());
1577 }
1578
1579 if (flags & OS::TGT_CLONE_THREAD) {
1580 cp->pTable->shared = true;
1581 cp->useForClone = true;
1582 }
1583 cp->initState();
1584 p->clone(tc, ctc, cp, flags);
1585
1586 if (flags & OS::TGT_CLONE_THREAD) {
1587 delete cp->sigchld;
1588 cp->sigchld = p->sigchld;
1589 } else if (flags & OS::TGT_SIGCHLD) {
1590 *cp->sigchld = true;
1591 }
1592
1593 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1594 BufferArg ctidBuf(ctidPtr, sizeof(long));
1595 long *ctid = (long *)ctidBuf.bufferPtr();
1596 *ctid = cp->pid();
1597 ctidBuf.copyOut(ctc->getVirtProxy());
1598 }
1599
1600 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1601 cp->childClearTID = (uint64_t)ctidPtr;
1602
1603 ctc->clearArchRegs();
1604
1605 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1606
1607 cp->setSyscallReturn(ctc, 0);
1608
1609#if THE_ISA == ALPHA_ISA
1610 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1611#elif THE_ISA == SPARC_ISA
1612 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1613 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1614#endif
1615
1616 if (p->kvmInSE) {
1617#if THE_ISA == X86_ISA
1618 ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX));
1619#else
1620 panic("KVM CPU model is not supported for this ISA");
1621#endif
1622 } else {
1623 TheISA::PCState cpc = tc->pcState();
1624 cpc.advance();
1625 ctc->pcState(cpc);
1626 }
1627 ctc->activate();
1628
1629 return cp->pid();
1630}
1631
1632/// Target fstatfs() handler.
1633template <class OS>
1634SyscallReturn
1635fstatfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1636{
1637 int index = 0;
1638 auto p = tc->getProcessPtr();
1639 int tgt_fd = p->getSyscallArg(tc, index);
1640 Addr bufPtr = p->getSyscallArg(tc, index);
1641
1642 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1643 if (!ffdp)
1644 return -EBADF;
1645 int sim_fd = ffdp->getSimFD();
1646
1647 struct statfs hostBuf;
1648 int result = fstatfs(sim_fd, &hostBuf);
1649
1650 if (result < 0)
1651 return -errno;
1652
1653 copyOutStatfsBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1654
1655 return 0;
1656}
1657
1658/// Target readv() handler.
1659template <class OS>
1660SyscallReturn
1661readvFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1662{
1663 int index = 0;
1664 auto p = tc->getProcessPtr();
1665 int tgt_fd = p->getSyscallArg(tc, index);
1666
1667 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1668 if (!ffdp)
1669 return -EBADF;
1670 int sim_fd = ffdp->getSimFD();
1671
1672 PortProxy &prox = tc->getVirtProxy();
1673 uint64_t tiov_base = p->getSyscallArg(tc, index);
1674 size_t count = p->getSyscallArg(tc, index);
1675 typename OS::tgt_iovec tiov[count];
1676 struct iovec hiov[count];
1677 for (size_t i = 0; i < count; ++i) {
1678 prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1679 &tiov[i], sizeof(typename OS::tgt_iovec));
1680 hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1681 hiov[i].iov_base = new char [hiov[i].iov_len];
1682 }
1683
1684 int result = readv(sim_fd, hiov, count);
1685 int local_errno = errno;
1686
1687 for (size_t i = 0; i < count; ++i) {
1688 if (result != -1) {
1689 prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1690 hiov[i].iov_base, hiov[i].iov_len);
1691 }
1692 delete [] (char *)hiov[i].iov_base;
1693 }
1694
1695 return (result == -1) ? -local_errno : result;
1696}
1697
1698/// Target writev() handler.
1699template <class OS>
1700SyscallReturn
1701writevFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1702{
1703 int index = 0;
1704 auto p = tc->getProcessPtr();
1705 int tgt_fd = p->getSyscallArg(tc, index);
1706
1707 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1708 if (!hbfdp)
1709 return -EBADF;
1710 int sim_fd = hbfdp->getSimFD();
1711
1712 PortProxy &prox = tc->getVirtProxy();
1713 uint64_t tiov_base = p->getSyscallArg(tc, index);
1714 size_t count = p->getSyscallArg(tc, index);
1715 struct iovec hiov[count];
1716 for (size_t i = 0; i < count; ++i) {
1717 typename OS::tgt_iovec tiov;
1718
1719 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1720 &tiov, sizeof(typename OS::tgt_iovec));
1721 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1722 hiov[i].iov_base = new char [hiov[i].iov_len];
1723 prox.readBlob(TheISA::gtoh(tiov.iov_base), hiov[i].iov_base,
1724 hiov[i].iov_len);
1725 }
1726
1727 int result = writev(sim_fd, hiov, count);
1728
1729 for (size_t i = 0; i < count; ++i)
1730 delete [] (char *)hiov[i].iov_base;
1731
1732 return (result == -1) ? -errno : result;
1733}
1734
1735/// Real mmap handler.
1736template <class OS>
1737SyscallReturn
1738mmapImpl(SyscallDesc *desc, int num, ThreadContext *tc, bool is_mmap2)
1739{
1740 int index = 0;
1741 auto p = tc->getProcessPtr();
1742 Addr start = p->getSyscallArg(tc, index);
1743 uint64_t length = p->getSyscallArg(tc, index);
1744 int prot = p->getSyscallArg(tc, index);
1745 int tgt_flags = p->getSyscallArg(tc, index);
1746 int tgt_fd = p->getSyscallArg(tc, index);
1747 int offset = p->getSyscallArg(tc, index);
1748
1749 if (is_mmap2)
1750 offset *= TheISA::PageBytes;
1751
1752 if (start & (TheISA::PageBytes - 1) ||
1753 offset & (TheISA::PageBytes - 1) ||
1754 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1755 tgt_flags & OS::TGT_MAP_SHARED) ||
1756 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1757 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1758 !length) {
1759 return -EINVAL;
1760 }
1761
1762 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1763 // With shared mmaps, there are two cases to consider:
1764 // 1) anonymous: writes should modify the mapping and this should be
1765 // visible to observers who share the mapping. Currently, it's
1766 // difficult to update the shared mapping because there's no
1767 // structure which maintains information about the which virtual
1768 // memory areas are shared. If that structure existed, it would be
1769 // possible to make the translations point to the same frames.
1770 // 2) file-backed: writes should modify the mapping and the file
1771 // which is backed by the mapping. The shared mapping problem is the
1772 // same as what was mentioned about the anonymous mappings. For
1773 // file-backed mappings, the writes to the file are difficult
1774 // because it requires syncing what the mapping holds with the file
1775 // that resides on the host system. So, any write on a real system
1776 // would cause the change to be propagated to the file mapping at
1777 // some point in the future (the inode is tracked along with the
1778 // mapping). This isn't guaranteed to always happen, but it usually
1779 // works well enough. The guarantee is provided by the msync system
1780 // call. We could force the change through with shared mappings with
1781 // a call to msync, but that again would require more information
1782 // than we currently maintain.
1783 warn("mmap: writing to shared mmap region is currently "
1784 "unsupported. The write succeeds on the target, but it "
1785 "will not be propagated to the host or shared mappings");
1786 }
1787
1788 length = roundUp(length, TheISA::PageBytes);
1789
1790 int sim_fd = -1;
1791 uint8_t *pmap = nullptr;
1792 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1793 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1794
1795 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1796 if (dfdp) {
1797 EmulatedDriver *emul_driver = dfdp->getDriver();
1798 return emul_driver->mmap(tc, start, length, prot, tgt_flags,
1799 tgt_fd, offset);
1800 }
1801
1802 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1803 if (!ffdp)
1804 return -EBADF;
1805 sim_fd = ffdp->getSimFD();
1806
1807 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1808 sim_fd, offset);
1809
1810 if (pmap == (decltype(pmap))-1) {
1811 warn("mmap: failed to map file into host address space");
1812 return -errno;
1813 }
1814 }
1815
1816 // Extend global mmap region if necessary. Note that we ignore the
1817 // start address unless MAP_FIXED is specified.
1818 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1819 std::shared_ptr<MemState> mem_state = p->memState;
1820 Addr mmap_end = mem_state->getMmapEnd();
1821
1822 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1823 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1824
1825 mem_state->setMmapEnd(mmap_end);
1826 }
1827
1828 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1829 start, start + length - 1);
1830
1831 // We only allow mappings to overwrite existing mappings if
1832 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1833 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1834 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1835 if (clobber) {
1836 for (auto tc : p->system->threadContexts) {
1837 // If we might be overwriting old mappings, we need to
1838 // invalidate potentially stale mappings out of the TLBs.
1839 tc->getDTBPtr()->flushAll();
1840 tc->getITBPtr()->flushAll();
1841 }
1842 }
1843
1844 // Allocate physical memory and map it in. If the page table is already
1845 // mapped and clobber is not set, the simulator will issue throw a
1846 // fatal and bail out of the simulation.
1847 p->allocateMem(start, length, clobber);
1848
1849 // Transfer content into target address space.
1850 PortProxy &tp = tc->getVirtProxy();
1851 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1852 // In general, we should zero the mapped area for anonymous mappings,
1853 // with something like:
1854 // tp.memsetBlob(start, 0, length);
1855 // However, given that we don't support sparse mappings, and
1856 // some applications can map a couple of gigabytes of space
1857 // (intending sparse usage), that can get painfully expensive.
1858 // Fortunately, since we don't properly implement munmap either,
1859 // there's no danger of remapping used memory, so for now all
1860 // newly mapped memory should already be zeroed so we can skip it.
1861 } else {
1862 // It is possible to mmap an area larger than a file, however
1863 // accessing unmapped portions the system triggers a "Bus error"
1864 // on the host. We must know when to stop copying the file from
1865 // the host into the target address space.
1866 struct stat file_stat;
1867 if (fstat(sim_fd, &file_stat) > 0)
1868 fatal("mmap: cannot stat file");
1869
1870 // Copy the portion of the file that is resident. This requires
1871 // checking both the mmap size and the filesize that we are
1872 // trying to mmap into this space; the mmap size also depends
1873 // on the specified offset into the file.
1874 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1875 length);
1876 tp.writeBlob(start, pmap, size);
1877
1878 // Cleanup the mmap region before exiting this function.
1879 munmap(pmap, length);
1880
1881 // Maintain the symbol table for dynamic executables.
1882 // The loader will call mmap to map the images into its address
1883 // space and we intercept that here. We can verify that we are
1884 // executing inside the loader by checking the program counter value.
1885 // XXX: with multiprogrammed workloads or multi-node configurations,
1886 // this will not work since there is a single global symbol table.
1887 ObjectFile *interpreter = p->getInterpreter();
1888 if (interpreter) {
1889 Addr text_start = interpreter->textBase();
1890 Addr text_end = text_start + interpreter->textSize();
1891
1892 Addr pc = tc->pcState().pc();
1893
1894 if (pc >= text_start && pc < text_end) {
1895 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1896 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1897 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1898
1899 if (lib) {
1900 lib->loadAllSymbols(debugSymbolTable,
1901 lib->textBase(), start);
1902 }
1903 }
1904 }
1905
1906 // Note that we do not zero out the remainder of the mapping. This
1907 // is done by a real system, but it probably will not affect
1908 // execution (hopefully).
1909 }
1910
1911 return start;
1912}
1913
1914template <class OS>
1915SyscallReturn
1916pwrite64Func(SyscallDesc *desc, int num, ThreadContext *tc)
1917{
1918 int index = 0;
1919 auto p = tc->getProcessPtr();
1920 int tgt_fd = p->getSyscallArg(tc, index);
1921 Addr bufPtr = p->getSyscallArg(tc, index);
1922 int nbytes = p->getSyscallArg(tc, index);
1923 int offset = p->getSyscallArg(tc, index);
1924
1925 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1926 if (!ffdp)
1927 return -EBADF;
1928 int sim_fd = ffdp->getSimFD();
1929
1930 BufferArg bufArg(bufPtr, nbytes);
1931 bufArg.copyIn(tc->getVirtProxy());
1932
1933 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1934
1935 return (bytes_written == -1) ? -errno : bytes_written;
1936}
1937
1938/// Target mmap() handler.
1939template <class OS>
1940SyscallReturn
1941mmapFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1942{
1943 return mmapImpl<OS>(desc, num, tc, false);
1944}
1945
1946/// Target mmap2() handler.
1947template <class OS>
1948SyscallReturn
1949mmap2Func(SyscallDesc *desc, int num, ThreadContext *tc)
1950{
1951 return mmapImpl<OS>(desc, num, tc, true);
1952}
1953
1954/// Target getrlimit() handler.
1955template <class OS>
1956SyscallReturn
1957getrlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1958{
1959 int index = 0;
1960 auto process = tc->getProcessPtr();
1961 unsigned resource = process->getSyscallArg(tc, index);
1962 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1963
1964 switch (resource) {
1965 case OS::TGT_RLIMIT_STACK:
1966 // max stack size in bytes: make up a number (8MB for now)
1967 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1968 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1969 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1970 break;
1971
1972 case OS::TGT_RLIMIT_DATA:
1973 // max data segment size in bytes: make up a number
1974 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1975 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1976 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1977 break;
1978
1979 case OS::TGT_RLIMIT_NPROC:
1980 rlp->rlim_cur = rlp->rlim_max = tc->getSystemPtr()->numContexts();
1981 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1982 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1983 break;
1984
1985 default:
1986 warn("getrlimit: unimplemented resource %d", resource);
1987 return -EINVAL;
1988 break;
1989 }
1990
1991 rlp.copyOut(tc->getVirtProxy());
1992 return 0;
1993}
1994
1995template <class OS>
1996SyscallReturn
1997prlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1998{
1999 int index = 0;
2000 auto process = tc->getProcessPtr();
2001 if (process->getSyscallArg(tc, index) != 0)
2002 {
2003 warn("prlimit: ignoring rlimits for nonzero pid");
2004 return -EPERM;
2005 }
2006 int resource = process->getSyscallArg(tc, index);
2007 Addr n = process->getSyscallArg(tc, index);
2008 if (n != 0)
2009 warn("prlimit: ignoring new rlimit");
2010 Addr o = process->getSyscallArg(tc, index);
2011 if (o != 0)
2012 {
2013 TypedBufferArg<typename OS::rlimit> rlp(o);
2014 switch (resource) {
2015 case OS::TGT_RLIMIT_STACK:
2016 // max stack size in bytes: make up a number (8MB for now)
2017 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2018 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2019 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2020 break;
2021 case OS::TGT_RLIMIT_DATA:
2022 // max data segment size in bytes: make up a number
2023 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
2024 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2025 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2026 break;
2027 default:
2028 warn("prlimit: unimplemented resource %d", resource);
2029 return -EINVAL;
2030 break;
2031 }
2032 rlp.copyOut(tc->getVirtProxy());
2033 }
2034 return 0;
2035}
2036
2037/// Target clock_gettime() function.
2038template <class OS>
2039SyscallReturn
2040clock_gettimeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2041{
2042 int index = 1;
2043 auto p = tc->getProcessPtr();
2044 //int clk_id = p->getSyscallArg(tc, index);
2045 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2046
2047 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
2048 tp->tv_sec += seconds_since_epoch;
2049 tp->tv_sec = TheISA::htog(tp->tv_sec);
2050 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
2051
2052 tp.copyOut(tc->getVirtProxy());
2053
2054 return 0;
2055}
2056
2057/// Target clock_getres() function.
2058template <class OS>
2059SyscallReturn
2060clock_getresFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2061{
2062 int index = 1;
2063 auto p = tc->getProcessPtr();
2064 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2065
2066 // Set resolution at ns, which is what clock_gettime() returns
2067 tp->tv_sec = 0;
2068 tp->tv_nsec = 1;
2069
2070 tp.copyOut(tc->getVirtProxy());
2071
2072 return 0;
2073}
2074
2075/// Target gettimeofday() handler.
2076template <class OS>
2077SyscallReturn
2078gettimeofdayFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2079{
2080 int index = 0;
2081 auto process = tc->getProcessPtr();
2082 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
2083
2084 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
2085 tp->tv_sec += seconds_since_epoch;
2086 tp->tv_sec = TheISA::htog(tp->tv_sec);
2087 tp->tv_usec = TheISA::htog(tp->tv_usec);
2088
2089 tp.copyOut(tc->getVirtProxy());
2090
2091 return 0;
2092}
2093
2094
2095/// Target utimes() handler.
2096template <class OS>
2097SyscallReturn
2098utimesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2099{
2100 std::string path;
2101 auto process = tc->getProcessPtr();
2102
2103 int index = 0;
2104 if (!tc->getVirtProxy().tryReadString(path,
2105 process->getSyscallArg(tc, index))) {
2106 return -EFAULT;
2107 }
2108
2109 TypedBufferArg<typename OS::timeval [2]>
2110 tp(process->getSyscallArg(tc, index));
2111 tp.copyIn(tc->getVirtProxy());
2112
2113 struct timeval hostTimeval[2];
2114 for (int i = 0; i < 2; ++i) {
2115 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2116 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2117 }
2118
2119 // Adjust path for cwd and redirection
2120 path = process->checkPathRedirect(path);
2121
2122 int result = utimes(path.c_str(), hostTimeval);
2123
2124 if (result < 0)
2125 return -errno;
2126
2127 return 0;
2128}
2129
2130template <class OS>
2131SyscallReturn
2132execveFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2133{
2134 desc->setFlags(0);
2135 auto p = tc->getProcessPtr();
2136
2137 int index = 0;
2138 std::string path;
2139 PortProxy & mem_proxy = tc->getVirtProxy();
2140 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2141 return -EFAULT;
2142
2143 if (access(path.c_str(), F_OK) == -1)
2144 return -EACCES;
2145
2146 auto read_in = [](std::vector<std::string> &vect,
2147 PortProxy &mem_proxy, Addr mem_loc)
2148 {
2149 for (int inc = 0; ; inc++) {
2150 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2151 b.copyIn(mem_proxy);
2152
2153 if (!*(Addr*)b.bufferPtr())
2154 break;
2155
2156 vect.push_back(std::string());
2157 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2158 }
2159 };
2160
2161 /**
2162 * Note that ProcessParams is generated by swig and there are no other
2163 * examples of how to create anything but this default constructor. The
2164 * fields are manually initialized instead of passing parameters to the
2165 * constructor.
2166 */
2167 ProcessParams *pp = new ProcessParams();
2168 pp->executable = path;
2169 Addr argv_mem_loc = p->getSyscallArg(tc, index);
2170 read_in(pp->cmd, mem_proxy, argv_mem_loc);
2171 Addr envp_mem_loc = p->getSyscallArg(tc, index);
2172 read_in(pp->env, mem_proxy, envp_mem_loc);
2173 pp->uid = p->uid();
2174 pp->egid = p->egid();
2175 pp->euid = p->euid();
2176 pp->gid = p->gid();
2177 pp->ppid = p->ppid();
2178 pp->pid = p->pid();
2179 pp->input.assign("cin");
2180 pp->output.assign("cout");
2181 pp->errout.assign("cerr");
2182 pp->cwd.assign(p->tgtCwd);
2183 pp->system = p->system;
2184 /**
2185 * Prevent process object creation with identical PIDs (which will trip
2186 * a fatal check in Process constructor). The execve call is supposed to
2187 * take over the currently executing process' identity but replace
2188 * whatever it is doing with a new process image. Instead of hijacking
2189 * the process object in the simulator, we create a new process object
2190 * and bind to the previous process' thread below (hijacking the thread).
2191 */
2192 p->system->PIDs.erase(p->pid());
2193 Process *new_p = pp->create();
2194 delete pp;
2195
2196 /**
2197 * Work through the file descriptor array and close any files marked
2198 * close-on-exec.
2199 */
2200 new_p->fds = p->fds;
2201 for (int i = 0; i < new_p->fds->getSize(); i++) {
2202 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2203 if (fdep && fdep->getCOE())
2204 new_p->fds->closeFDEntry(i);
2205 }
2206
2207 *new_p->sigchld = true;
2208
2209 delete p;
2210 tc->clearArchRegs();
2211 tc->setProcessPtr(new_p);
2212 new_p->assignThreadContext(tc->contextId());
2213 new_p->initState();
2214 tc->activate();
2215 TheISA::PCState pcState = tc->pcState();
2216 tc->setNPC(pcState.instAddr());
2217
2218 desc->setFlags(SyscallDesc::SuppressReturnValue);
2219 return 0;
2220}
2221
2222/// Target getrusage() function.
2223template <class OS>
2224SyscallReturn
2225getrusageFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2226{
2227 int index = 0;
2228 auto process = tc->getProcessPtr();
2229 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2230 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2231
2232 rup->ru_utime.tv_sec = 0;
2233 rup->ru_utime.tv_usec = 0;
2234 rup->ru_stime.tv_sec = 0;
2235 rup->ru_stime.tv_usec = 0;
2236 rup->ru_maxrss = 0;
2237 rup->ru_ixrss = 0;
2238 rup->ru_idrss = 0;
2239 rup->ru_isrss = 0;
2240 rup->ru_minflt = 0;
2241 rup->ru_majflt = 0;
2242 rup->ru_nswap = 0;
2243 rup->ru_inblock = 0;
2244 rup->ru_oublock = 0;
2245 rup->ru_msgsnd = 0;
2246 rup->ru_msgrcv = 0;
2247 rup->ru_nsignals = 0;
2248 rup->ru_nvcsw = 0;
2249 rup->ru_nivcsw = 0;
2250
2251 switch (who) {
2252 case OS::TGT_RUSAGE_SELF:
2253 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2254 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2255 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2256 break;
2257
2258 case OS::TGT_RUSAGE_CHILDREN:
2259 // do nothing. We have no child processes, so they take no time.
2260 break;
2261
2262 default:
2263 // don't really handle THREAD or CHILDREN, but just warn and
2264 // plow ahead
2265 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2266 who);
2267 }
2268
2269 rup.copyOut(tc->getVirtProxy());
2270
2271 return 0;
2272}
2273
2274/// Target times() function.
2275template <class OS>
2276SyscallReturn
2277timesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2278{
2279 int index = 0;
2280 auto process = tc->getProcessPtr();
2281 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2282
2283 // Fill in the time structure (in clocks)
2284 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2285 bufp->tms_utime = clocks;
2286 bufp->tms_stime = 0;
2287 bufp->tms_cutime = 0;
2288 bufp->tms_cstime = 0;
2289
2290 // Convert to host endianness
2291 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2292
2293 // Write back
2294 bufp.copyOut(tc->getVirtProxy());
2295
2296 // Return clock ticks since system boot
2297 return clocks;
2298}
2299
2300/// Target time() function.
2301template <class OS>
2302SyscallReturn
2303timeFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2304{
2305 typename OS::time_t sec, usec;
2306 getElapsedTimeMicro(sec, usec);
2307 sec += seconds_since_epoch;
2308
2309 int index = 0;
2310 auto process = tc->getProcessPtr();
2311 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2312 if (taddr != 0) {
2313 typename OS::time_t t = sec;
2314 t = TheISA::htog(t);
2315 PortProxy &p = tc->getVirtProxy();
2316 p.writeBlob(taddr, &t, (int)sizeof(typename OS::time_t));
2317 }
2318 return sec;
2319}
2320
2321template <class OS>
2322SyscallReturn
2323tgkillFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2324{
2325 int index = 0;
2326 auto process = tc->getProcessPtr();
2327 int tgid = process->getSyscallArg(tc, index);
2328 int tid = process->getSyscallArg(tc, index);
2329 int sig = process->getSyscallArg(tc, index);
2330
2331 /**
2332 * This system call is intended to allow killing a specific thread
2333 * within an arbitrary thread group if sanctioned with permission checks.
2334 * It's usually true that threads share the termination signal as pointed
2335 * out by the pthread_kill man page and this seems to be the intended
2336 * usage. Due to this being an emulated environment, assume the following:
2337 * Threads are allowed to call tgkill because the EUID for all threads
2338 * should be the same. There is no signal handling mechanism for kernel
2339 * registration of signal handlers since signals are poorly supported in
2340 * emulation mode. Since signal handlers cannot be registered, all
2341 * threads within in a thread group must share the termination signal.
2342 * We never exhaust PIDs so there's no chance of finding the wrong one
2343 * due to PID rollover.
2344 */
2345
2346 System *sys = tc->getSystemPtr();
2347 Process *tgt_proc = nullptr;
2348 for (int i = 0; i < sys->numContexts(); i++) {
2349 Process *temp = sys->threadContexts[i]->getProcessPtr();
2350 if (temp->pid() == tid) {
2351 tgt_proc = temp;
2352 break;
2353 }
2354 }
2355
2356 if (sig != 0 || sig != OS::TGT_SIGABRT)
2357 return -EINVAL;
2358
2359 if (tgt_proc == nullptr)
2360 return -ESRCH;
2361
2362 if (tgid != -1 && tgt_proc->tgid() != tgid)
2363 return -ESRCH;
2364
2365 if (sig == OS::TGT_SIGABRT)
2366 exitGroupFunc(desc, 252, tc);
2367
2368 return 0;
2369}
2370
2371template <class OS>
2372SyscallReturn
2373socketFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2374{
2375 int index = 0;
2376 auto p = tc->getProcessPtr();
2377 int domain = p->getSyscallArg(tc, index);
2378 int type = p->getSyscallArg(tc, index);
2379 int prot = p->getSyscallArg(tc, index);
2380
2381 int sim_fd = socket(domain, type, prot);
2382 if (sim_fd == -1)
2383 return -errno;
2384
2385 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2386 int tgt_fd = p->fds->allocFD(sfdp);
2387
2388 return tgt_fd;
2389}
2390
2391template <class OS>
2392SyscallReturn
2393socketpairFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2394{
2395 int index = 0;
2396 auto p = tc->getProcessPtr();
2397 int domain = p->getSyscallArg(tc, index);
2398 int type = p->getSyscallArg(tc, index);
2399 int prot = p->getSyscallArg(tc, index);
2400 Addr svPtr = p->getSyscallArg(tc, index);
2401
2402 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2403 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2404 if (status == -1)
2405 return -errno;
2406
2407 int *fds = (int *)svBuf.bufferPtr();
2408
2409 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2410 fds[0] = p->fds->allocFD(sfdp1);
2411 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2412 fds[1] = p->fds->allocFD(sfdp2);
2413 svBuf.copyOut(tc->getVirtProxy());
2414
2415 return status;
2416}
2417
2418template <class OS>
2419SyscallReturn
2420selectFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2421{
2422 int retval;
2423
2424 int index = 0;
2425 auto p = tc->getProcessPtr();
2426 int nfds_t = p->getSyscallArg(tc, index);
2427 Addr fds_read_ptr = p->getSyscallArg(tc, index);
2428 Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2429 Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2430 Addr time_val_ptr = p->getSyscallArg(tc, index);
2431
2432 TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2433 TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2434 TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2435 TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2436
2437 /**
2438 * Host fields. Notice that these use the definitions from the system
2439 * headers instead of the gem5 headers and libraries. If the host and
2440 * target have different header file definitions, this will not work.
2441 */
2442 fd_set rd_h;
2443 FD_ZERO(&rd_h);
2444 fd_set wr_h;
2445 FD_ZERO(&wr_h);
2446 fd_set ex_h;
2447 FD_ZERO(&ex_h);
2448
2449 /**
2450 * Copy in the fd_set from the target.
2451 */
2452 if (fds_read_ptr)
2453 rd_t.copyIn(tc->getVirtProxy());
2454 if (fds_writ_ptr)
2455 wr_t.copyIn(tc->getVirtProxy());
2456 if (fds_excp_ptr)
2457 ex_t.copyIn(tc->getVirtProxy());
2458
2459 /**
2460 * We need to translate the target file descriptor set into a host file
2461 * descriptor set. This involves both our internal process fd array
2462 * and the fd_set defined in Linux header files. The nfds field also
2463 * needs to be updated as it will be only target specific after
2464 * retrieving it from the target; the nfds value is expected to be the
2465 * highest file descriptor that needs to be checked, so we need to extend
2466 * it out for nfds_h when we do the update.
2467 */
2468 int nfds_h = 0;
2469 std::map<int, int> trans_map;
2470 auto try_add_host_set = [&](fd_set *tgt_set_entry,
2471 fd_set *hst_set_entry,
2472 int iter) -> bool
2473 {
2474 /**
2475 * By this point, we know that we are looking at a valid file
2476 * descriptor set on the target. We need to check if the target file
2477 * descriptor value passed in as iter is part of the set.
2478 */
2479 if (FD_ISSET(iter, tgt_set_entry)) {
2480 /**
2481 * We know that the target file descriptor belongs to the set,
2482 * but we do not yet know if the file descriptor is valid or
2483 * that we have a host mapping. Check that now.
2484 */
2485 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2486 if (!hbfdp)
2487 return true;
2488 auto sim_fd = hbfdp->getSimFD();
2489
2490 /**
2491 * Add the sim_fd to tgt_fd translation into trans_map for use
2492 * later when we need to zero the target fd_set structures and
2493 * then update them with hits returned from the host select call.
2494 */
2495 trans_map[sim_fd] = iter;
2496
2497 /**
2498 * We know that the host file descriptor exists so now we check
2499 * if we need to update the max count for nfds_h before passing
2500 * the duplicated structure into the host.
2501 */
2502 nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2503
2504 /**
2505 * Add the host file descriptor to the set that we are going to
2506 * pass into the host.
2507 */
2508 FD_SET(sim_fd, hst_set_entry);
2509 }
2510 return false;
2511 };
2512
2513 for (int i = 0; i < nfds_t; i++) {
2514 if (fds_read_ptr) {
2515 bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2516 if (ebadf) return -EBADF;
2517 }
2518 if (fds_writ_ptr) {
2519 bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2520 if (ebadf) return -EBADF;
2521 }
2522 if (fds_excp_ptr) {
2523 bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2524 if (ebadf) return -EBADF;
2525 }
2526 }
2527
2528 if (time_val_ptr) {
2529 /**
2530 * It might be possible to decrement the timeval based on some
2531 * derivation of wall clock determined from elapsed simulator ticks
2532 * but that seems like overkill. Rather, we just set the timeval with
2533 * zero timeout. (There is no reason to block during the simulation
2534 * as it only decreases simulator performance.)
2535 */
2536 tp->tv_sec = 0;
2537 tp->tv_usec = 0;
2538
2539 retval = select(nfds_h,
2540 fds_read_ptr ? &rd_h : nullptr,
2541 fds_writ_ptr ? &wr_h : nullptr,
2542 fds_excp_ptr ? &ex_h : nullptr,
2543 (timeval*)&*tp);
2544 } else {
2545 /**
2546 * If the timeval pointer is null, setup a new timeval structure to
2547 * pass into the host select call. Unfortunately, we will need to
2548 * manually check the return value and throw a retry fault if the
2549 * return value is zero. Allowing the system call to block will
2550 * likely deadlock the event queue.
2551 */
2552 struct timeval tv = { 0, 0 };
2553
2554 retval = select(nfds_h,
2555 fds_read_ptr ? &rd_h : nullptr,
2556 fds_writ_ptr ? &wr_h : nullptr,
2557 fds_excp_ptr ? &ex_h : nullptr,
2558 &tv);
2559
2560 if (retval == 0) {
2561 /**
2562 * If blocking indefinitely, check the signal list to see if a
2563 * signal would break the poll out of the retry cycle and try to
2564 * return the signal interrupt instead.
2565 */
2566 for (auto sig : tc->getSystemPtr()->signalList)
2567 if (sig.receiver == p)
2568 return -EINTR;
2569 return SyscallReturn::retry();
2570 }
2571 }
2572
2573 if (retval == -1)
2574 return -errno;
2575
2576 FD_ZERO((fd_set*)&*rd_t);
2577 FD_ZERO((fd_set*)&*wr_t);
2578 FD_ZERO((fd_set*)&*ex_t);
2579
2580 /**
2581 * We need to translate the host file descriptor set into a target file
2582 * descriptor set. This involves both our internal process fd array
2583 * and the fd_set defined in header files.
2584 */
2585 for (int i = 0; i < nfds_h; i++) {
2586 if (fds_read_ptr) {
2587 if (FD_ISSET(i, &rd_h))
2588 FD_SET(trans_map[i], (fd_set*)&*rd_t);
2589 }
2590
2591 if (fds_writ_ptr) {
2592 if (FD_ISSET(i, &wr_h))
2593 FD_SET(trans_map[i], (fd_set*)&*wr_t);
2594 }
2595
2596 if (fds_excp_ptr) {
2597 if (FD_ISSET(i, &ex_h))
2598 FD_SET(trans_map[i], (fd_set*)&*ex_t);
2599 }
2600 }
2601
2602 if (fds_read_ptr)
2603 rd_t.copyOut(tc->getVirtProxy());
2604 if (fds_writ_ptr)
2605 wr_t.copyOut(tc->getVirtProxy());
2606 if (fds_excp_ptr)
2607 ex_t.copyOut(tc->getVirtProxy());
2608 if (time_val_ptr)
2609 tp.copyOut(tc->getVirtProxy());
2610
2611 return retval;
2612}
2613
2614template <class OS>
2615SyscallReturn
2616readFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2617{
2618 int index = 0;
2619 auto p = tc->getProcessPtr();
2620 int tgt_fd = p->getSyscallArg(tc, index);
2621 Addr buf_ptr = p->getSyscallArg(tc, index);
2622 int nbytes = p->getSyscallArg(tc, index);
2623
2624 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2625 if (!hbfdp)
2626 return -EBADF;
2627 int sim_fd = hbfdp->getSimFD();
2628
2629 struct pollfd pfd;
2630 pfd.fd = sim_fd;
2631 pfd.events = POLLIN | POLLPRI;
2632 if ((poll(&pfd, 1, 0) == 0)
2633 && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2634 return SyscallReturn::retry();
2635
2636 BufferArg buf_arg(buf_ptr, nbytes);
2637 int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2638
2639 if (bytes_read > 0)
2640 buf_arg.copyOut(tc->getVirtProxy());
2641
2642 return (bytes_read == -1) ? -errno : bytes_read;
2643}
2644
2645template <class OS>
2646SyscallReturn
2647writeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2648{
2649 int index = 0;
2650 auto p = tc->getProcessPtr();
2651 int tgt_fd = p->getSyscallArg(tc, index);
2652 Addr buf_ptr = p->getSyscallArg(tc, index);
2653 int nbytes = p->getSyscallArg(tc, index);
2654
2655 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2656 if (!hbfdp)
2657 return -EBADF;
2658 int sim_fd = hbfdp->getSimFD();
2659
2660 BufferArg buf_arg(buf_ptr, nbytes);
2661 buf_arg.copyIn(tc->getVirtProxy());
2662
2663 struct pollfd pfd;
2664 pfd.fd = sim_fd;
2665 pfd.events = POLLOUT;
2666
2667 /**
2668 * We don't want to poll on /dev/random. The kernel will not enable the
2669 * file descriptor for writing unless the entropy in the system falls
2670 * below write_wakeup_threshold. This is not guaranteed to happen
2671 * depending on host settings.
2672 */
2673 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2674 if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2675 if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2676 return SyscallReturn::retry();
2677 }
2678
2679 int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2680
2681 if (bytes_written != -1)
2682 fsync(sim_fd);
2683
2684 return (bytes_written == -1) ? -errno : bytes_written;
2685}
2686
2687template <class OS>
2688SyscallReturn
2689wait4Func(SyscallDesc *desc, int num, ThreadContext *tc)
2690{
2691 int index = 0;
2692 auto p = tc->getProcessPtr();
2693 pid_t pid = p->getSyscallArg(tc, index);
2694 Addr statPtr = p->getSyscallArg(tc, index);
2695 int options = p->getSyscallArg(tc, index);
2696 Addr rusagePtr = p->getSyscallArg(tc, index);
2697
2698 if (rusagePtr)
2699 DPRINTF_SYSCALL(Verbose, "wait4: rusage pointer provided %lx, however "
2700 "functionality not supported. Ignoring rusage pointer.\n",
2701 rusagePtr);
2702
2703 /**
2704 * Currently, wait4 is only implemented so that it will wait for children
2705 * exit conditions which are denoted by a SIGCHLD signals posted into the
2706 * system signal list. We return no additional information via any of the
2707 * parameters supplied to wait4. If nothing is found in the system signal
2708 * list, we will wait indefinitely for SIGCHLD to post by retrying the
2709 * call.
2710 */
2711 System *sysh = tc->getSystemPtr();
2712 std::list<BasicSignal>::iterator iter;
2713 for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2714 if (iter->receiver == p) {
2715 if (pid < -1) {
2716 if ((iter->sender->pgid() == -pid)
2717 && (iter->signalValue == OS::TGT_SIGCHLD))
2718 goto success;
2719 } else if (pid == -1) {
2720 if (iter->signalValue == OS::TGT_SIGCHLD)
2721 goto success;
2722 } else if (pid == 0) {
2723 if ((iter->sender->pgid() == p->pgid())
2724 && (iter->signalValue == OS::TGT_SIGCHLD))
2725 goto success;
2726 } else {
2727 if ((iter->sender->pid() == pid)
2728 && (iter->signalValue == OS::TGT_SIGCHLD))
2729 goto success;
2730 }
2731 }
2732 }
2733
2734 return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2735
2736success:
2737 // Set status to EXITED for WIFEXITED evaluations.
2738 const int EXITED = 0;
2739 BufferArg statusBuf(statPtr, sizeof(int));
2740 *(int *)statusBuf.bufferPtr() = EXITED;
2741 statusBuf.copyOut(tc->getVirtProxy());
2742
2743 // Return the child PID.
2744 pid_t retval = iter->sender->pid();
2745 sysh->signalList.erase(iter);
2746 return retval;
2747}
2748
2749template <class OS>
2750SyscallReturn
2751acceptFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2752{
2753 struct sockaddr sa;
2754 socklen_t addrLen;
2755 int host_fd;
2756 int index = 0;
2757 auto p = tc->getProcessPtr();
2758 int tgt_fd = p->getSyscallArg(tc, index);
2759 Addr addrPtr = p->getSyscallArg(tc, index);
2760 Addr lenPtr = p->getSyscallArg(tc, index);
2761
2762 BufferArg *lenBufPtr = nullptr;
2763 BufferArg *addrBufPtr = nullptr;
2764
2765 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2766 if (!sfdp)
2767 return -EBADF;
2768 int sim_fd = sfdp->getSimFD();
2769
2770 /**
2771 * We poll the socket file descriptor first to guarantee that we do not
2772 * block on our accept call. The socket can be opened without the
2773 * non-blocking flag (it blocks). This will cause deadlocks between
2774 * communicating processes.
2775 */
2776 struct pollfd pfd;
2777 pfd.fd = sim_fd;
2778 pfd.events = POLLIN | POLLPRI;
2779 if ((poll(&pfd, 1, 0) == 0)
2780 && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2781 return SyscallReturn::retry();
2782
2783 if (lenPtr) {
2784 lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2785 lenBufPtr->copyIn(tc->getVirtProxy());
2786 memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2787 sizeof(socklen_t));
2788 }
2789
2790 if (addrPtr) {
2791 addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2792 addrBufPtr->copyIn(tc->getVirtProxy());
2793 memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2794 sizeof(struct sockaddr));
2795 }
2796
2797 host_fd = accept(sim_fd, &sa, &addrLen);
2798
2799 if (host_fd == -1)
2800 return -errno;
2801
2802 if (addrPtr) {
2803 memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2804 addrBufPtr->copyOut(tc->getVirtProxy());
2805 delete(addrBufPtr);
2806 }
2807
2808 if (lenPtr) {
2809 *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2810 lenBufPtr->copyOut(tc->getVirtProxy());
2811 delete(lenBufPtr);
2812 }
2813
2814 auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2815 sfdp->_type, sfdp->_protocol);
2816 return p->fds->allocFD(afdp);
2817}
2818
2819/// Target eventfd() function.
2820template <class OS>
2821SyscallReturn
2822eventfdFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2823{
2824#if defined(__linux__)
2825 int index = 0;
2826 auto p = tc->getProcessPtr();
2827 unsigned initval = p->getSyscallArg(tc, index);
2828 int in_flags = p->getSyscallArg(tc, index);
2829
2830 int sim_fd = eventfd(initval, in_flags);
2831 if (sim_fd == -1)
2832 return -errno;
2833
2834 bool cloexec = in_flags & OS::TGT_O_CLOEXEC;
2835
2836 int flags = cloexec ? OS::TGT_O_CLOEXEC : 0;
2837 flags |= (in_flags & OS::TGT_O_NONBLOCK) ? OS::TGT_O_NONBLOCK : 0;
2838
2839 auto hbfdp = std::make_shared<HBFDEntry>(flags, sim_fd, cloexec);
2840 int tgt_fd = p->fds->allocFD(hbfdp);
2841 return tgt_fd;
2842#else
2843 warnUnsupportedOS("eventfd");
2844 return -1;
2845#endif
2846}
2847
2848#endif // __SIM_SYSCALL_EMUL_HH__