syscall_emul.hh (14020:c9bf7a011602) syscall_emul.hh (14024:abe47b13653d)
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56///
57/// @file syscall_emul.hh
58///
59/// This file defines objects used to emulate syscalls from the target
60/// application on the host machine.
61
62#if defined(__linux__)
63#include <sys/eventfd.h>
64#include <sys/statfs.h>
65
66#else
67#include <sys/mount.h>
68
69#endif
70
71#ifdef __CYGWIN32__
72#include <sys/fcntl.h>
73
74#endif
75#include <fcntl.h>
76#include <net/if.h>
77#include <poll.h>
78#include <sys/ioctl.h>
79#include <sys/mman.h>
80#include <sys/socket.h>
81#include <sys/stat.h>
82#include <sys/time.h>
83#include <sys/types.h>
84#include <sys/uio.h>
85#include <unistd.h>
86
87#include <cerrno>
88#include <memory>
89#include <string>
90
91#include "arch/generic/tlb.hh"
92#include "arch/utility.hh"
93#include "base/intmath.hh"
94#include "base/loader/object_file.hh"
95#include "base/logging.hh"
96#include "base/trace.hh"
97#include "base/types.hh"
98#include "config/the_isa.hh"
99#include "cpu/base.hh"
100#include "cpu/thread_context.hh"
101#include "mem/page_table.hh"
102#include "params/Process.hh"
103#include "sim/emul_driver.hh"
104#include "sim/futex_map.hh"
105#include "sim/process.hh"
106#include "sim/syscall_debug_macros.hh"
107#include "sim/syscall_desc.hh"
108#include "sim/syscall_emul_buf.hh"
109#include "sim/syscall_return.hh"
110
111#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
112#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
113#endif
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's. They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123void warnUnsupportedOS(std::string syscall_name);
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program. Print a warning only if the appropriate
131/// trace flag is enabled. Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num, ThreadContext *tc);
133
134// Target fallocateFunc() handler.
135SyscallReturn fallocateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
136
137/// Target exit() handler: terminate current context.
138SyscallReturn exitFunc(SyscallDesc *desc, int num, ThreadContext *tc);
139
140/// Target exit_group() handler: terminate simulation. (exit all threads)
141SyscallReturn exitGroupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
142
143/// Target set_tid_address() handler.
144SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num, ThreadContext *tc);
145
146/// Target getpagesize() handler.
147SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
148
149/// Target brk() handler: set brk address.
150SyscallReturn brkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
151
152/// Target close() handler.
153SyscallReturn closeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
154
155/// Target lseek() handler.
156SyscallReturn lseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
157
158/// Target _llseek() handler.
159SyscallReturn _llseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
160
161/// Target munmap() handler.
162SyscallReturn munmapFunc(SyscallDesc *desc, int num, ThreadContext *tc);
163
164/// Target shutdown() handler.
165SyscallReturn shutdownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
166
167/// Target gethostname() handler.
168SyscallReturn gethostnameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
169
170/// Target getcwd() handler.
171SyscallReturn getcwdFunc(SyscallDesc *desc, int num, ThreadContext *tc);
172
173/// Target readlink() handler.
174SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc,
175 int index = 0);
176SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
177
178/// Target unlink() handler.
179SyscallReturn unlinkHelper(SyscallDesc *desc, int num, ThreadContext *tc,
180 int index);
181SyscallReturn unlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
182
183/// Target link() handler
184SyscallReturn linkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
185
186/// Target symlink() handler.
187SyscallReturn symlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
188
189/// Target mkdir() handler.
190SyscallReturn mkdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
191
192/// Target mknod() handler.
193SyscallReturn mknodFunc(SyscallDesc *desc, int num, ThreadContext *tc);
194
195/// Target chdir() handler.
196SyscallReturn chdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
197
198// Target rmdir() handler.
199SyscallReturn rmdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
200
201/// Target rename() handler.
202SyscallReturn renameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
203
204
205/// Target truncate() handler.
206SyscallReturn truncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
207
208
209/// Target ftruncate() handler.
210SyscallReturn ftruncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
211
212
213/// Target truncate64() handler.
214SyscallReturn truncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
215
216/// Target ftruncate64() handler.
217SyscallReturn ftruncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
218
219
220/// Target umask() handler.
221SyscallReturn umaskFunc(SyscallDesc *desc, int num, ThreadContext *tc);
222
223/// Target gettid() handler.
224SyscallReturn gettidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
225
226/// Target chown() handler.
227SyscallReturn chownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
228
229/// Target setpgid() handler.
230SyscallReturn setpgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
231
232/// Target fchown() handler.
233SyscallReturn fchownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
234
235/// Target dup() handler.
236SyscallReturn dupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
237
238/// Target dup2() handler.
239SyscallReturn dup2Func(SyscallDesc *desc, int num, ThreadContext *tc);
240
241/// Target fcntl() handler.
242SyscallReturn fcntlFunc(SyscallDesc *desc, int num, ThreadContext *tc);
243
244/// Target fcntl64() handler.
245SyscallReturn fcntl64Func(SyscallDesc *desc, int num, ThreadContext *tc);
246
247/// Target setuid() handler.
248SyscallReturn setuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
249
250/// Target pipe() handler.
251SyscallReturn pipeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
252
253/// Internal pipe() handler.
254SyscallReturn pipeImpl(SyscallDesc *desc, int num, ThreadContext *tc,
255 bool pseudoPipe);
256
257/// Target getpid() handler.
258SyscallReturn getpidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
259
260// Target getpeername() handler.
261SyscallReturn getpeernameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
262
263// Target bind() handler.
264SyscallReturn bindFunc(SyscallDesc *desc, int num, ThreadContext *tc);
265
266// Target listen() handler.
267SyscallReturn listenFunc(SyscallDesc *desc, int num, ThreadContext *tc);
268
269// Target connect() handler.
270SyscallReturn connectFunc(SyscallDesc *desc, int num, ThreadContext *tc);
271
272#if defined(SYS_getdents)
273// Target getdents() handler.
274SyscallReturn getdentsFunc(SyscallDesc *desc, int num, ThreadContext *tc);
275#endif
276
277#if defined(SYS_getdents64)
278// Target getdents() handler.
279SyscallReturn getdents64Func(SyscallDesc *desc, int num, ThreadContext *tc);
280#endif
281
282// Target sendto() handler.
283SyscallReturn sendtoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
284
285// Target recvfrom() handler.
286SyscallReturn recvfromFunc(SyscallDesc *desc, int num, ThreadContext *tc);
287
288// Target recvmsg() handler.
289SyscallReturn recvmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
290
291// Target sendmsg() handler.
292SyscallReturn sendmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
293
294// Target getuid() handler.
295SyscallReturn getuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
296
297/// Target getgid() handler.
298SyscallReturn getgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
299
300/// Target getppid() handler.
301SyscallReturn getppidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
302
303/// Target geteuid() handler.
304SyscallReturn geteuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
305
306/// Target getegid() handler.
307SyscallReturn getegidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
308
309/// Target access() handler
310SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc);
311SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc,
312 int index);
313
314// Target getsockopt() handler.
315SyscallReturn getsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
316
317// Target setsockopt() handler.
318SyscallReturn setsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
319
320// Target getsockname() handler.
321SyscallReturn getsocknameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
322
323/// Futex system call
324/// Implemented by Daniel Sanchez
325/// Used by printf's in multi-threaded apps
326template <class OS>
327SyscallReturn
328futexFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
329{
330 using namespace std;
331
332 int index = 0;
333 auto process = tc->getProcessPtr();
334
335 Addr uaddr = process->getSyscallArg(tc, index);
336 int op = process->getSyscallArg(tc, index);
337 int val = process->getSyscallArg(tc, index);
338 int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
339 Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
340 int val3 = process->getSyscallArg(tc, index);
341
342 /*
343 * Unsupported option that does not affect the correctness of the
344 * application. This is a performance optimization utilized by Linux.
345 */
346 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
347 op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
348
349 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
350
351 if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
352 // Ensure futex system call accessed atomically.
353 BufferArg buf(uaddr, sizeof(int));
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56///
57/// @file syscall_emul.hh
58///
59/// This file defines objects used to emulate syscalls from the target
60/// application on the host machine.
61
62#if defined(__linux__)
63#include <sys/eventfd.h>
64#include <sys/statfs.h>
65
66#else
67#include <sys/mount.h>
68
69#endif
70
71#ifdef __CYGWIN32__
72#include <sys/fcntl.h>
73
74#endif
75#include <fcntl.h>
76#include <net/if.h>
77#include <poll.h>
78#include <sys/ioctl.h>
79#include <sys/mman.h>
80#include <sys/socket.h>
81#include <sys/stat.h>
82#include <sys/time.h>
83#include <sys/types.h>
84#include <sys/uio.h>
85#include <unistd.h>
86
87#include <cerrno>
88#include <memory>
89#include <string>
90
91#include "arch/generic/tlb.hh"
92#include "arch/utility.hh"
93#include "base/intmath.hh"
94#include "base/loader/object_file.hh"
95#include "base/logging.hh"
96#include "base/trace.hh"
97#include "base/types.hh"
98#include "config/the_isa.hh"
99#include "cpu/base.hh"
100#include "cpu/thread_context.hh"
101#include "mem/page_table.hh"
102#include "params/Process.hh"
103#include "sim/emul_driver.hh"
104#include "sim/futex_map.hh"
105#include "sim/process.hh"
106#include "sim/syscall_debug_macros.hh"
107#include "sim/syscall_desc.hh"
108#include "sim/syscall_emul_buf.hh"
109#include "sim/syscall_return.hh"
110
111#if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN)
112#define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1))
113#endif
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's. They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123void warnUnsupportedOS(std::string syscall_name);
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program. Print a warning only if the appropriate
131/// trace flag is enabled. Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num, ThreadContext *tc);
133
134// Target fallocateFunc() handler.
135SyscallReturn fallocateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
136
137/// Target exit() handler: terminate current context.
138SyscallReturn exitFunc(SyscallDesc *desc, int num, ThreadContext *tc);
139
140/// Target exit_group() handler: terminate simulation. (exit all threads)
141SyscallReturn exitGroupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
142
143/// Target set_tid_address() handler.
144SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num, ThreadContext *tc);
145
146/// Target getpagesize() handler.
147SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
148
149/// Target brk() handler: set brk address.
150SyscallReturn brkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
151
152/// Target close() handler.
153SyscallReturn closeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
154
155/// Target lseek() handler.
156SyscallReturn lseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
157
158/// Target _llseek() handler.
159SyscallReturn _llseekFunc(SyscallDesc *desc, int num, ThreadContext *tc);
160
161/// Target munmap() handler.
162SyscallReturn munmapFunc(SyscallDesc *desc, int num, ThreadContext *tc);
163
164/// Target shutdown() handler.
165SyscallReturn shutdownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
166
167/// Target gethostname() handler.
168SyscallReturn gethostnameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
169
170/// Target getcwd() handler.
171SyscallReturn getcwdFunc(SyscallDesc *desc, int num, ThreadContext *tc);
172
173/// Target readlink() handler.
174SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc,
175 int index = 0);
176SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
177
178/// Target unlink() handler.
179SyscallReturn unlinkHelper(SyscallDesc *desc, int num, ThreadContext *tc,
180 int index);
181SyscallReturn unlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
182
183/// Target link() handler
184SyscallReturn linkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
185
186/// Target symlink() handler.
187SyscallReturn symlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc);
188
189/// Target mkdir() handler.
190SyscallReturn mkdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
191
192/// Target mknod() handler.
193SyscallReturn mknodFunc(SyscallDesc *desc, int num, ThreadContext *tc);
194
195/// Target chdir() handler.
196SyscallReturn chdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
197
198// Target rmdir() handler.
199SyscallReturn rmdirFunc(SyscallDesc *desc, int num, ThreadContext *tc);
200
201/// Target rename() handler.
202SyscallReturn renameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
203
204
205/// Target truncate() handler.
206SyscallReturn truncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
207
208
209/// Target ftruncate() handler.
210SyscallReturn ftruncateFunc(SyscallDesc *desc, int num, ThreadContext *tc);
211
212
213/// Target truncate64() handler.
214SyscallReturn truncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
215
216/// Target ftruncate64() handler.
217SyscallReturn ftruncate64Func(SyscallDesc *desc, int num, ThreadContext *tc);
218
219
220/// Target umask() handler.
221SyscallReturn umaskFunc(SyscallDesc *desc, int num, ThreadContext *tc);
222
223/// Target gettid() handler.
224SyscallReturn gettidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
225
226/// Target chown() handler.
227SyscallReturn chownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
228
229/// Target setpgid() handler.
230SyscallReturn setpgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
231
232/// Target fchown() handler.
233SyscallReturn fchownFunc(SyscallDesc *desc, int num, ThreadContext *tc);
234
235/// Target dup() handler.
236SyscallReturn dupFunc(SyscallDesc *desc, int num, ThreadContext *tc);
237
238/// Target dup2() handler.
239SyscallReturn dup2Func(SyscallDesc *desc, int num, ThreadContext *tc);
240
241/// Target fcntl() handler.
242SyscallReturn fcntlFunc(SyscallDesc *desc, int num, ThreadContext *tc);
243
244/// Target fcntl64() handler.
245SyscallReturn fcntl64Func(SyscallDesc *desc, int num, ThreadContext *tc);
246
247/// Target setuid() handler.
248SyscallReturn setuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
249
250/// Target pipe() handler.
251SyscallReturn pipeFunc(SyscallDesc *desc, int num, ThreadContext *tc);
252
253/// Internal pipe() handler.
254SyscallReturn pipeImpl(SyscallDesc *desc, int num, ThreadContext *tc,
255 bool pseudoPipe);
256
257/// Target getpid() handler.
258SyscallReturn getpidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
259
260// Target getpeername() handler.
261SyscallReturn getpeernameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
262
263// Target bind() handler.
264SyscallReturn bindFunc(SyscallDesc *desc, int num, ThreadContext *tc);
265
266// Target listen() handler.
267SyscallReturn listenFunc(SyscallDesc *desc, int num, ThreadContext *tc);
268
269// Target connect() handler.
270SyscallReturn connectFunc(SyscallDesc *desc, int num, ThreadContext *tc);
271
272#if defined(SYS_getdents)
273// Target getdents() handler.
274SyscallReturn getdentsFunc(SyscallDesc *desc, int num, ThreadContext *tc);
275#endif
276
277#if defined(SYS_getdents64)
278// Target getdents() handler.
279SyscallReturn getdents64Func(SyscallDesc *desc, int num, ThreadContext *tc);
280#endif
281
282// Target sendto() handler.
283SyscallReturn sendtoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
284
285// Target recvfrom() handler.
286SyscallReturn recvfromFunc(SyscallDesc *desc, int num, ThreadContext *tc);
287
288// Target recvmsg() handler.
289SyscallReturn recvmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
290
291// Target sendmsg() handler.
292SyscallReturn sendmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc);
293
294// Target getuid() handler.
295SyscallReturn getuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
296
297/// Target getgid() handler.
298SyscallReturn getgidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
299
300/// Target getppid() handler.
301SyscallReturn getppidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
302
303/// Target geteuid() handler.
304SyscallReturn geteuidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
305
306/// Target getegid() handler.
307SyscallReturn getegidFunc(SyscallDesc *desc, int num, ThreadContext *tc);
308
309/// Target access() handler
310SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc);
311SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc,
312 int index);
313
314// Target getsockopt() handler.
315SyscallReturn getsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
316
317// Target setsockopt() handler.
318SyscallReturn setsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc);
319
320// Target getsockname() handler.
321SyscallReturn getsocknameFunc(SyscallDesc *desc, int num, ThreadContext *tc);
322
323/// Futex system call
324/// Implemented by Daniel Sanchez
325/// Used by printf's in multi-threaded apps
326template <class OS>
327SyscallReturn
328futexFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
329{
330 using namespace std;
331
332 int index = 0;
333 auto process = tc->getProcessPtr();
334
335 Addr uaddr = process->getSyscallArg(tc, index);
336 int op = process->getSyscallArg(tc, index);
337 int val = process->getSyscallArg(tc, index);
338 int timeout M5_VAR_USED = process->getSyscallArg(tc, index);
339 Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index);
340 int val3 = process->getSyscallArg(tc, index);
341
342 /*
343 * Unsupported option that does not affect the correctness of the
344 * application. This is a performance optimization utilized by Linux.
345 */
346 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
347 op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG;
348
349 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
350
351 if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) {
352 // Ensure futex system call accessed atomically.
353 BufferArg buf(uaddr, sizeof(int));
354 buf.copyIn(tc->getMemProxy());
354 buf.copyIn(tc->getVirtProxy());
355 int mem_val = *(int*)buf.bufferPtr();
356
357 /*
358 * The value in memory at uaddr is not equal with the expected val
359 * (a different thread must have changed it before the system call was
360 * invoked). In this case, we need to throw an error.
361 */
362 if (val != mem_val)
363 return -OS::TGT_EWOULDBLOCK;
364
365 if (OS::TGT_FUTEX_WAIT) {
366 futex_map.suspend(uaddr, process->tgid(), tc);
367 } else {
368 futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
369 }
370
371 return 0;
372 } else if (OS::TGT_FUTEX_WAKE == op) {
373 return futex_map.wakeup(uaddr, process->tgid(), val);
374 } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
375 return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
376 } else if (OS::TGT_FUTEX_REQUEUE == op ||
377 OS::TGT_FUTEX_CMP_REQUEUE == op) {
378
379 // Ensure futex system call accessed atomically.
380 BufferArg buf(uaddr, sizeof(int));
355 int mem_val = *(int*)buf.bufferPtr();
356
357 /*
358 * The value in memory at uaddr is not equal with the expected val
359 * (a different thread must have changed it before the system call was
360 * invoked). In this case, we need to throw an error.
361 */
362 if (val != mem_val)
363 return -OS::TGT_EWOULDBLOCK;
364
365 if (OS::TGT_FUTEX_WAIT) {
366 futex_map.suspend(uaddr, process->tgid(), tc);
367 } else {
368 futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3);
369 }
370
371 return 0;
372 } else if (OS::TGT_FUTEX_WAKE == op) {
373 return futex_map.wakeup(uaddr, process->tgid(), val);
374 } else if (OS::TGT_FUTEX_WAKE_BITSET == op) {
375 return futex_map.wakeup_bitset(uaddr, process->tgid(), val3);
376 } else if (OS::TGT_FUTEX_REQUEUE == op ||
377 OS::TGT_FUTEX_CMP_REQUEUE == op) {
378
379 // Ensure futex system call accessed atomically.
380 BufferArg buf(uaddr, sizeof(int));
381 buf.copyIn(tc->getMemProxy());
381 buf.copyIn(tc->getVirtProxy());
382 int mem_val = *(int*)buf.bufferPtr();
383 /*
384 * For CMP_REQUEUE, the whole operation is only started only if
385 * val3 is still the value of the futex pointed to by uaddr.
386 */
387 if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
388 return -OS::TGT_EWOULDBLOCK;
389 return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
390 } else if (OS::TGT_FUTEX_WAKE_OP == op) {
391 /*
392 * The FUTEX_WAKE_OP operation is equivalent to executing the
393 * following code atomically and totally ordered with respect to
394 * other futex operations on any of the two supplied futex words:
395 *
396 * int oldval = *(int *) addr2;
397 * *(int *) addr2 = oldval op oparg;
398 * futex(addr1, FUTEX_WAKE, val, 0, 0, 0);
399 * if (oldval cmp cmparg)
400 * futex(addr2, FUTEX_WAKE, val2, 0, 0, 0);
401 *
402 * (op, oparg, cmp, cmparg are encoded in val3)
403 *
404 * +---+---+-----------+-----------+
405 * |op |cmp| oparg | cmparg |
406 * +---+---+-----------+-----------+
407 * 4 4 12 12 <== # of bits
408 *
409 * reference: http://man7.org/linux/man-pages/man2/futex.2.html
410 *
411 */
412 // get value from simulated-space
413 BufferArg buf(uaddr2, sizeof(int));
382 int mem_val = *(int*)buf.bufferPtr();
383 /*
384 * For CMP_REQUEUE, the whole operation is only started only if
385 * val3 is still the value of the futex pointed to by uaddr.
386 */
387 if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val)
388 return -OS::TGT_EWOULDBLOCK;
389 return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2);
390 } else if (OS::TGT_FUTEX_WAKE_OP == op) {
391 /*
392 * The FUTEX_WAKE_OP operation is equivalent to executing the
393 * following code atomically and totally ordered with respect to
394 * other futex operations on any of the two supplied futex words:
395 *
396 * int oldval = *(int *) addr2;
397 * *(int *) addr2 = oldval op oparg;
398 * futex(addr1, FUTEX_WAKE, val, 0, 0, 0);
399 * if (oldval cmp cmparg)
400 * futex(addr2, FUTEX_WAKE, val2, 0, 0, 0);
401 *
402 * (op, oparg, cmp, cmparg are encoded in val3)
403 *
404 * +---+---+-----------+-----------+
405 * |op |cmp| oparg | cmparg |
406 * +---+---+-----------+-----------+
407 * 4 4 12 12 <== # of bits
408 *
409 * reference: http://man7.org/linux/man-pages/man2/futex.2.html
410 *
411 */
412 // get value from simulated-space
413 BufferArg buf(uaddr2, sizeof(int));
414 buf.copyIn(tc->getMemProxy());
414 buf.copyIn(tc->getVirtProxy());
415 int oldval = *(int*)buf.bufferPtr();
416 int newval = oldval;
417 // extract op, oparg, cmp, cmparg from val3
418 int wake_cmparg = val3 & 0xfff;
419 int wake_oparg = (val3 & 0xfff000) >> 12;
420 int wake_cmp = (val3 & 0xf000000) >> 24;
421 int wake_op = (val3 & 0xf0000000) >> 28;
422 if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1)
423 wake_oparg = (1 << wake_oparg);
424 wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT;
425 // perform operation on the value of the second futex
426 if (wake_op == OS::TGT_FUTEX_OP_SET)
427 newval = wake_oparg;
428 else if (wake_op == OS::TGT_FUTEX_OP_ADD)
429 newval += wake_oparg;
430 else if (wake_op == OS::TGT_FUTEX_OP_OR)
431 newval |= wake_oparg;
432 else if (wake_op == OS::TGT_FUTEX_OP_ANDN)
433 newval &= ~wake_oparg;
434 else if (wake_op == OS::TGT_FUTEX_OP_XOR)
435 newval ^= wake_oparg;
436 // copy updated value back to simulated-space
437 *(int*)buf.bufferPtr() = newval;
415 int oldval = *(int*)buf.bufferPtr();
416 int newval = oldval;
417 // extract op, oparg, cmp, cmparg from val3
418 int wake_cmparg = val3 & 0xfff;
419 int wake_oparg = (val3 & 0xfff000) >> 12;
420 int wake_cmp = (val3 & 0xf000000) >> 24;
421 int wake_op = (val3 & 0xf0000000) >> 28;
422 if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1)
423 wake_oparg = (1 << wake_oparg);
424 wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT;
425 // perform operation on the value of the second futex
426 if (wake_op == OS::TGT_FUTEX_OP_SET)
427 newval = wake_oparg;
428 else if (wake_op == OS::TGT_FUTEX_OP_ADD)
429 newval += wake_oparg;
430 else if (wake_op == OS::TGT_FUTEX_OP_OR)
431 newval |= wake_oparg;
432 else if (wake_op == OS::TGT_FUTEX_OP_ANDN)
433 newval &= ~wake_oparg;
434 else if (wake_op == OS::TGT_FUTEX_OP_XOR)
435 newval ^= wake_oparg;
436 // copy updated value back to simulated-space
437 *(int*)buf.bufferPtr() = newval;
438 buf.copyOut(tc->getMemProxy());
438 buf.copyOut(tc->getVirtProxy());
439 // perform the first wake-up
440 int woken1 = futex_map.wakeup(uaddr, process->tgid(), val);
441 int woken2 = 0;
442 // calculate the condition of the second wake-up
443 bool is_wake2 = false;
444 if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ)
445 is_wake2 = oldval == wake_cmparg;
446 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE)
447 is_wake2 = oldval != wake_cmparg;
448 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT)
449 is_wake2 = oldval < wake_cmparg;
450 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE)
451 is_wake2 = oldval <= wake_cmparg;
452 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT)
453 is_wake2 = oldval > wake_cmparg;
454 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE)
455 is_wake2 = oldval >= wake_cmparg;
456 // perform the second wake-up
457 if (is_wake2)
458 woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout);
459
460 return woken1 + woken2;
461 }
462 warn("futex: op %d not implemented; ignoring.", op);
463 return -ENOSYS;
464}
465
466
467/// Pseudo Funcs - These functions use a different return convension,
468/// returning a second value in a register other than the normal return register
469SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
470
471/// Target getpidPseudo() handler.
472SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
473
474/// Target getuidPseudo() handler.
475SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
476
477/// Target getgidPseudo() handler.
478SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
479
480
481/// A readable name for 1,000,000, for converting microseconds to seconds.
482const int one_million = 1000000;
483/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
484const int one_billion = 1000000000;
485
486/// Approximate seconds since the epoch (1/1/1970). About a billion,
487/// by my reckoning. We want to keep this a constant (not use the
488/// real-world time) to keep simulations repeatable.
489const unsigned seconds_since_epoch = 1000000000;
490
491/// Helper function to convert current elapsed time to seconds and
492/// microseconds.
493template <class T1, class T2>
494void
495getElapsedTimeMicro(T1 &sec, T2 &usec)
496{
497 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
498 sec = elapsed_usecs / one_million;
499 usec = elapsed_usecs % one_million;
500}
501
502/// Helper function to convert current elapsed time to seconds and
503/// nanoseconds.
504template <class T1, class T2>
505void
506getElapsedTimeNano(T1 &sec, T2 &nsec)
507{
508 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
509 sec = elapsed_nsecs / one_billion;
510 nsec = elapsed_nsecs % one_billion;
511}
512
513//////////////////////////////////////////////////////////////////////
514//
515// The following emulation functions are generic, but need to be
516// templated to account for differences in types, constants, etc.
517//
518//////////////////////////////////////////////////////////////////////
519
520 typedef struct statfs hst_statfs;
521#if NO_STAT64
522 typedef struct stat hst_stat;
523 typedef struct stat hst_stat64;
524#else
525 typedef struct stat hst_stat;
526 typedef struct stat64 hst_stat64;
527#endif
528
529//// Helper function to convert a host stat buffer to a target stat
530//// buffer. Also copies the target buffer out to the simulated
531//// memory space. Used by stat(), fstat(), and lstat().
532
533template <typename target_stat, typename host_stat>
534void
535convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
536{
537 using namespace TheISA;
538
539 if (fakeTTY)
540 tgt->st_dev = 0xA;
541 else
542 tgt->st_dev = host->st_dev;
543 tgt->st_dev = TheISA::htog(tgt->st_dev);
544 tgt->st_ino = host->st_ino;
545 tgt->st_ino = TheISA::htog(tgt->st_ino);
546 tgt->st_mode = host->st_mode;
547 if (fakeTTY) {
548 // Claim to be a character device
549 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
550 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
551 }
552 tgt->st_mode = TheISA::htog(tgt->st_mode);
553 tgt->st_nlink = host->st_nlink;
554 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
555 tgt->st_uid = host->st_uid;
556 tgt->st_uid = TheISA::htog(tgt->st_uid);
557 tgt->st_gid = host->st_gid;
558 tgt->st_gid = TheISA::htog(tgt->st_gid);
559 if (fakeTTY)
560 tgt->st_rdev = 0x880d;
561 else
562 tgt->st_rdev = host->st_rdev;
563 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
564 tgt->st_size = host->st_size;
565 tgt->st_size = TheISA::htog(tgt->st_size);
566 tgt->st_atimeX = host->st_atime;
567 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
568 tgt->st_mtimeX = host->st_mtime;
569 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
570 tgt->st_ctimeX = host->st_ctime;
571 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
572 // Force the block size to be 8KB. This helps to ensure buffered io works
573 // consistently across different hosts.
574 tgt->st_blksize = 0x2000;
575 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
576 tgt->st_blocks = host->st_blocks;
577 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
578}
579
580// Same for stat64
581
582template <typename target_stat, typename host_stat64>
583void
584convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
585{
586 using namespace TheISA;
587
588 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
589#if defined(STAT_HAVE_NSEC)
590 tgt->st_atime_nsec = host->st_atime_nsec;
591 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
592 tgt->st_mtime_nsec = host->st_mtime_nsec;
593 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
594 tgt->st_ctime_nsec = host->st_ctime_nsec;
595 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
596#else
597 tgt->st_atime_nsec = 0;
598 tgt->st_mtime_nsec = 0;
599 tgt->st_ctime_nsec = 0;
600#endif
601}
602
603// Here are a couple of convenience functions
604template<class OS>
605void
606copyOutStatBuf(PortProxy &mem, Addr addr,
607 hst_stat *host, bool fakeTTY = false)
608{
609 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
610 tgt_stat_buf tgt(addr);
611 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
612 tgt.copyOut(mem);
613}
614
615template<class OS>
616void
617copyOutStat64Buf(PortProxy &mem, Addr addr,
618 hst_stat64 *host, bool fakeTTY = false)
619{
620 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
621 tgt_stat_buf tgt(addr);
622 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
623 tgt.copyOut(mem);
624}
625
626template <class OS>
627void
628copyOutStatfsBuf(PortProxy &mem, Addr addr,
629 hst_statfs *host)
630{
631 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
632
633 tgt->f_type = TheISA::htog(host->f_type);
634#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
635 tgt->f_bsize = TheISA::htog(host->f_iosize);
636#else
637 tgt->f_bsize = TheISA::htog(host->f_bsize);
638#endif
639 tgt->f_blocks = TheISA::htog(host->f_blocks);
640 tgt->f_bfree = TheISA::htog(host->f_bfree);
641 tgt->f_bavail = TheISA::htog(host->f_bavail);
642 tgt->f_files = TheISA::htog(host->f_files);
643 tgt->f_ffree = TheISA::htog(host->f_ffree);
644 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
645#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
646 tgt->f_namelen = TheISA::htog(host->f_namemax);
647 tgt->f_frsize = TheISA::htog(host->f_bsize);
648#elif defined(__APPLE__)
649 tgt->f_namelen = 0;
650 tgt->f_frsize = 0;
651#else
652 tgt->f_namelen = TheISA::htog(host->f_namelen);
653 tgt->f_frsize = TheISA::htog(host->f_frsize);
654#endif
655#if defined(__linux__)
656 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
657#else
658 /*
659 * The fields are different sizes per OS. Don't bother with
660 * f_spare or f_reserved on non-Linux for now.
661 */
662 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
663#endif
664
665 tgt.copyOut(mem);
666}
667
668/// Target ioctl() handler. For the most part, programs call ioctl()
669/// only to find out if their stdout is a tty, to determine whether to
670/// do line or block buffering. We always claim that output fds are
671/// not TTYs to provide repeatable results.
672template <class OS>
673SyscallReturn
674ioctlFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
675{
676 int index = 0;
677 auto p = tc->getProcessPtr();
678
679 int tgt_fd = p->getSyscallArg(tc, index);
680 unsigned req = p->getSyscallArg(tc, index);
681
682 DPRINTF_SYSCALL(Verbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
683
684 if (OS::isTtyReq(req))
685 return -ENOTTY;
686
687 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
688 if (dfdp) {
689 EmulatedDriver *emul_driver = dfdp->getDriver();
690 if (emul_driver)
691 return emul_driver->ioctl(tc, req);
692 }
693
694 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
695 if (sfdp) {
696 int status;
697
698 switch (req) {
699 case SIOCGIFCONF: {
700 Addr conf_addr = p->getSyscallArg(tc, index);
701 BufferArg conf_arg(conf_addr, sizeof(ifconf));
439 // perform the first wake-up
440 int woken1 = futex_map.wakeup(uaddr, process->tgid(), val);
441 int woken2 = 0;
442 // calculate the condition of the second wake-up
443 bool is_wake2 = false;
444 if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ)
445 is_wake2 = oldval == wake_cmparg;
446 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE)
447 is_wake2 = oldval != wake_cmparg;
448 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT)
449 is_wake2 = oldval < wake_cmparg;
450 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE)
451 is_wake2 = oldval <= wake_cmparg;
452 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT)
453 is_wake2 = oldval > wake_cmparg;
454 else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE)
455 is_wake2 = oldval >= wake_cmparg;
456 // perform the second wake-up
457 if (is_wake2)
458 woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout);
459
460 return woken1 + woken2;
461 }
462 warn("futex: op %d not implemented; ignoring.", op);
463 return -ENOSYS;
464}
465
466
467/// Pseudo Funcs - These functions use a different return convension,
468/// returning a second value in a register other than the normal return register
469SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
470
471/// Target getpidPseudo() handler.
472SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
473
474/// Target getuidPseudo() handler.
475SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
476
477/// Target getgidPseudo() handler.
478SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc);
479
480
481/// A readable name for 1,000,000, for converting microseconds to seconds.
482const int one_million = 1000000;
483/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
484const int one_billion = 1000000000;
485
486/// Approximate seconds since the epoch (1/1/1970). About a billion,
487/// by my reckoning. We want to keep this a constant (not use the
488/// real-world time) to keep simulations repeatable.
489const unsigned seconds_since_epoch = 1000000000;
490
491/// Helper function to convert current elapsed time to seconds and
492/// microseconds.
493template <class T1, class T2>
494void
495getElapsedTimeMicro(T1 &sec, T2 &usec)
496{
497 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
498 sec = elapsed_usecs / one_million;
499 usec = elapsed_usecs % one_million;
500}
501
502/// Helper function to convert current elapsed time to seconds and
503/// nanoseconds.
504template <class T1, class T2>
505void
506getElapsedTimeNano(T1 &sec, T2 &nsec)
507{
508 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
509 sec = elapsed_nsecs / one_billion;
510 nsec = elapsed_nsecs % one_billion;
511}
512
513//////////////////////////////////////////////////////////////////////
514//
515// The following emulation functions are generic, but need to be
516// templated to account for differences in types, constants, etc.
517//
518//////////////////////////////////////////////////////////////////////
519
520 typedef struct statfs hst_statfs;
521#if NO_STAT64
522 typedef struct stat hst_stat;
523 typedef struct stat hst_stat64;
524#else
525 typedef struct stat hst_stat;
526 typedef struct stat64 hst_stat64;
527#endif
528
529//// Helper function to convert a host stat buffer to a target stat
530//// buffer. Also copies the target buffer out to the simulated
531//// memory space. Used by stat(), fstat(), and lstat().
532
533template <typename target_stat, typename host_stat>
534void
535convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
536{
537 using namespace TheISA;
538
539 if (fakeTTY)
540 tgt->st_dev = 0xA;
541 else
542 tgt->st_dev = host->st_dev;
543 tgt->st_dev = TheISA::htog(tgt->st_dev);
544 tgt->st_ino = host->st_ino;
545 tgt->st_ino = TheISA::htog(tgt->st_ino);
546 tgt->st_mode = host->st_mode;
547 if (fakeTTY) {
548 // Claim to be a character device
549 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
550 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
551 }
552 tgt->st_mode = TheISA::htog(tgt->st_mode);
553 tgt->st_nlink = host->st_nlink;
554 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
555 tgt->st_uid = host->st_uid;
556 tgt->st_uid = TheISA::htog(tgt->st_uid);
557 tgt->st_gid = host->st_gid;
558 tgt->st_gid = TheISA::htog(tgt->st_gid);
559 if (fakeTTY)
560 tgt->st_rdev = 0x880d;
561 else
562 tgt->st_rdev = host->st_rdev;
563 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
564 tgt->st_size = host->st_size;
565 tgt->st_size = TheISA::htog(tgt->st_size);
566 tgt->st_atimeX = host->st_atime;
567 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
568 tgt->st_mtimeX = host->st_mtime;
569 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
570 tgt->st_ctimeX = host->st_ctime;
571 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
572 // Force the block size to be 8KB. This helps to ensure buffered io works
573 // consistently across different hosts.
574 tgt->st_blksize = 0x2000;
575 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
576 tgt->st_blocks = host->st_blocks;
577 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
578}
579
580// Same for stat64
581
582template <typename target_stat, typename host_stat64>
583void
584convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
585{
586 using namespace TheISA;
587
588 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
589#if defined(STAT_HAVE_NSEC)
590 tgt->st_atime_nsec = host->st_atime_nsec;
591 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
592 tgt->st_mtime_nsec = host->st_mtime_nsec;
593 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
594 tgt->st_ctime_nsec = host->st_ctime_nsec;
595 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
596#else
597 tgt->st_atime_nsec = 0;
598 tgt->st_mtime_nsec = 0;
599 tgt->st_ctime_nsec = 0;
600#endif
601}
602
603// Here are a couple of convenience functions
604template<class OS>
605void
606copyOutStatBuf(PortProxy &mem, Addr addr,
607 hst_stat *host, bool fakeTTY = false)
608{
609 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
610 tgt_stat_buf tgt(addr);
611 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
612 tgt.copyOut(mem);
613}
614
615template<class OS>
616void
617copyOutStat64Buf(PortProxy &mem, Addr addr,
618 hst_stat64 *host, bool fakeTTY = false)
619{
620 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
621 tgt_stat_buf tgt(addr);
622 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
623 tgt.copyOut(mem);
624}
625
626template <class OS>
627void
628copyOutStatfsBuf(PortProxy &mem, Addr addr,
629 hst_statfs *host)
630{
631 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
632
633 tgt->f_type = TheISA::htog(host->f_type);
634#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
635 tgt->f_bsize = TheISA::htog(host->f_iosize);
636#else
637 tgt->f_bsize = TheISA::htog(host->f_bsize);
638#endif
639 tgt->f_blocks = TheISA::htog(host->f_blocks);
640 tgt->f_bfree = TheISA::htog(host->f_bfree);
641 tgt->f_bavail = TheISA::htog(host->f_bavail);
642 tgt->f_files = TheISA::htog(host->f_files);
643 tgt->f_ffree = TheISA::htog(host->f_ffree);
644 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
645#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
646 tgt->f_namelen = TheISA::htog(host->f_namemax);
647 tgt->f_frsize = TheISA::htog(host->f_bsize);
648#elif defined(__APPLE__)
649 tgt->f_namelen = 0;
650 tgt->f_frsize = 0;
651#else
652 tgt->f_namelen = TheISA::htog(host->f_namelen);
653 tgt->f_frsize = TheISA::htog(host->f_frsize);
654#endif
655#if defined(__linux__)
656 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
657#else
658 /*
659 * The fields are different sizes per OS. Don't bother with
660 * f_spare or f_reserved on non-Linux for now.
661 */
662 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
663#endif
664
665 tgt.copyOut(mem);
666}
667
668/// Target ioctl() handler. For the most part, programs call ioctl()
669/// only to find out if their stdout is a tty, to determine whether to
670/// do line or block buffering. We always claim that output fds are
671/// not TTYs to provide repeatable results.
672template <class OS>
673SyscallReturn
674ioctlFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
675{
676 int index = 0;
677 auto p = tc->getProcessPtr();
678
679 int tgt_fd = p->getSyscallArg(tc, index);
680 unsigned req = p->getSyscallArg(tc, index);
681
682 DPRINTF_SYSCALL(Verbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
683
684 if (OS::isTtyReq(req))
685 return -ENOTTY;
686
687 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
688 if (dfdp) {
689 EmulatedDriver *emul_driver = dfdp->getDriver();
690 if (emul_driver)
691 return emul_driver->ioctl(tc, req);
692 }
693
694 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
695 if (sfdp) {
696 int status;
697
698 switch (req) {
699 case SIOCGIFCONF: {
700 Addr conf_addr = p->getSyscallArg(tc, index);
701 BufferArg conf_arg(conf_addr, sizeof(ifconf));
702 conf_arg.copyIn(tc->getMemProxy());
702 conf_arg.copyIn(tc->getVirtProxy());
703
704 ifconf *conf = (ifconf*)conf_arg.bufferPtr();
705 Addr ifc_buf_addr = (Addr)conf->ifc_buf;
706 BufferArg ifc_buf_arg(ifc_buf_addr, conf->ifc_len);
703
704 ifconf *conf = (ifconf*)conf_arg.bufferPtr();
705 Addr ifc_buf_addr = (Addr)conf->ifc_buf;
706 BufferArg ifc_buf_arg(ifc_buf_addr, conf->ifc_len);
707 ifc_buf_arg.copyIn(tc->getMemProxy());
707 ifc_buf_arg.copyIn(tc->getVirtProxy());
708
709 conf->ifc_buf = (char*)ifc_buf_arg.bufferPtr();
710
711 status = ioctl(sfdp->getSimFD(), req, conf_arg.bufferPtr());
712 if (status != -1) {
713 conf->ifc_buf = (char*)ifc_buf_addr;
708
709 conf->ifc_buf = (char*)ifc_buf_arg.bufferPtr();
710
711 status = ioctl(sfdp->getSimFD(), req, conf_arg.bufferPtr());
712 if (status != -1) {
713 conf->ifc_buf = (char*)ifc_buf_addr;
714 ifc_buf_arg.copyOut(tc->getMemProxy());
715 conf_arg.copyOut(tc->getMemProxy());
714 ifc_buf_arg.copyOut(tc->getVirtProxy());
715 conf_arg.copyOut(tc->getVirtProxy());
716 }
717
718 return status;
719 }
720 case SIOCGIFFLAGS:
721#if defined(__linux__)
722 case SIOCGIFINDEX:
723#endif
724 case SIOCGIFNETMASK:
725 case SIOCGIFADDR:
726#if defined(__linux__)
727 case SIOCGIFHWADDR:
728#endif
729 case SIOCGIFMTU: {
730 Addr req_addr = p->getSyscallArg(tc, index);
731 BufferArg req_arg(req_addr, sizeof(ifreq));
716 }
717
718 return status;
719 }
720 case SIOCGIFFLAGS:
721#if defined(__linux__)
722 case SIOCGIFINDEX:
723#endif
724 case SIOCGIFNETMASK:
725 case SIOCGIFADDR:
726#if defined(__linux__)
727 case SIOCGIFHWADDR:
728#endif
729 case SIOCGIFMTU: {
730 Addr req_addr = p->getSyscallArg(tc, index);
731 BufferArg req_arg(req_addr, sizeof(ifreq));
732 req_arg.copyIn(tc->getMemProxy());
732 req_arg.copyIn(tc->getVirtProxy());
733
734 status = ioctl(sfdp->getSimFD(), req, req_arg.bufferPtr());
735 if (status != -1)
733
734 status = ioctl(sfdp->getSimFD(), req, req_arg.bufferPtr());
735 if (status != -1)
736 req_arg.copyOut(tc->getMemProxy());
736 req_arg.copyOut(tc->getVirtProxy());
737 return status;
738 }
739 }
740 }
741
742 /**
743 * For lack of a better return code, return ENOTTY. Ideally, we should
744 * return something better here, but at least we issue the warning.
745 */
746 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
747 tgt_fd, req, tc->pcState());
748 return -ENOTTY;
749}
750
751template <class OS>
752SyscallReturn
753openImpl(SyscallDesc *desc, int callnum, ThreadContext *tc, bool isopenat)
754{
755 int index = 0;
756 auto p = tc->getProcessPtr();
757 int tgt_dirfd = -1;
758
759 /**
760 * If using the openat variant, read in the target directory file
761 * descriptor from the simulated process.
762 */
763 if (isopenat)
764 tgt_dirfd = p->getSyscallArg(tc, index);
765
766 /**
767 * Retrieve the simulated process' memory proxy and then read in the path
768 * string from that memory space into the host's working memory space.
769 */
770 std::string path;
737 return status;
738 }
739 }
740 }
741
742 /**
743 * For lack of a better return code, return ENOTTY. Ideally, we should
744 * return something better here, but at least we issue the warning.
745 */
746 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
747 tgt_fd, req, tc->pcState());
748 return -ENOTTY;
749}
750
751template <class OS>
752SyscallReturn
753openImpl(SyscallDesc *desc, int callnum, ThreadContext *tc, bool isopenat)
754{
755 int index = 0;
756 auto p = tc->getProcessPtr();
757 int tgt_dirfd = -1;
758
759 /**
760 * If using the openat variant, read in the target directory file
761 * descriptor from the simulated process.
762 */
763 if (isopenat)
764 tgt_dirfd = p->getSyscallArg(tc, index);
765
766 /**
767 * Retrieve the simulated process' memory proxy and then read in the path
768 * string from that memory space into the host's working memory space.
769 */
770 std::string path;
771 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
771 if (!tc->getVirtProxy().tryReadString(path, p->getSyscallArg(tc, index)))
772 return -EFAULT;
773
774#ifdef __CYGWIN32__
775 int host_flags = O_BINARY;
776#else
777 int host_flags = 0;
778#endif
779 /**
780 * Translate target flags into host flags. Flags exist which are not
781 * ported between architectures which can cause check failures.
782 */
783 int tgt_flags = p->getSyscallArg(tc, index);
784 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
785 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
786 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
787 host_flags |= OS::openFlagTable[i].hostFlag;
788 }
789 }
790 if (tgt_flags) {
791 warn("open%s: cannot decode flags 0x%x",
792 isopenat ? "at" : "", tgt_flags);
793 }
794#ifdef __CYGWIN32__
795 host_flags |= O_BINARY;
796#endif
797
798 int mode = p->getSyscallArg(tc, index);
799
800 /**
801 * If the simulated process called open or openat with AT_FDCWD specified,
802 * take the current working directory value which was passed into the
803 * process class as a Python parameter and append the current path to
804 * create a full path.
805 * Otherwise, openat with a valid target directory file descriptor has
806 * been called. If the path option, which was passed in as a parameter,
807 * is not absolute, retrieve the directory file descriptor's path and
808 * prepend it to the path passed in as a parameter.
809 * In every case, we should have a full path (which is relevant to the
810 * host) to work with after this block has been passed.
811 */
812 std::string redir_path = path;
813 std::string abs_path = path;
814 if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) {
815 abs_path = p->absolutePath(path, true);
816 redir_path = p->checkPathRedirect(path);
817 } else if (!startswith(path, "/")) {
818 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
819 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
820 if (!ffdp)
821 return -EBADF;
822 abs_path = ffdp->getFileName() + path;
823 redir_path = p->checkPathRedirect(abs_path);
824 }
825
826 /**
827 * Since this is an emulated environment, we create pseudo file
828 * descriptors for device requests that have been registered with
829 * the process class through Python; this allows us to create a file
830 * descriptor for subsequent ioctl or mmap calls.
831 */
832 if (startswith(abs_path, "/dev/")) {
833 std::string filename = abs_path.substr(strlen("/dev/"));
834 EmulatedDriver *drv = p->findDriver(filename);
835 if (drv) {
836 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
837 "driver open with path[%s]\n",
838 isopenat ? "at" : "", abs_path.c_str());
839 return drv->open(tc, mode, host_flags);
840 }
841 /**
842 * Fall through here for pass through to host devices, such
843 * as /dev/zero
844 */
845 }
846
847 /**
848 * We make several attempts resolve a call to open.
849 *
850 * 1) Resolve any path redirection before hand. This will set the path
851 * up with variable 'redir_path' which may contain a modified path or
852 * the original path value. This should already be done in prior code.
853 * 2) Try to handle the access using 'special_paths'. Some special_paths
854 * and files cannot be called on the host and need to be handled as
855 * special cases inside the simulator. These special_paths are handled by
856 * C++ routines to provide output back to userspace.
857 * 3) If the full path that was created above does not match any of the
858 * special cases, pass it through to the open call on the __HOST__ to let
859 * the host open the file on our behalf. Again, the openImpl tries to
860 * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the
861 * faux-filesystem files). The faux-filesystem is dynamically created
862 * during simulator configuration using Python functions.
863 * 4) If the host cannot open the file, the open attempt failed in "3)".
864 * Return the host's error code back through the system call to the
865 * simulated process. If running a debug trace, also notify the user that
866 * the open call failed.
867 *
868 * Any success will set sim_fd to something other than -1 and skip the
869 * next conditions effectively bypassing them.
870 */
871 int sim_fd = -1;
872 std::string used_path;
873 std::vector<std::string> special_paths =
874 { "/proc/meminfo/", "/system/", "/platform/", "/etc/passwd" };
875 for (auto entry : special_paths) {
876 if (startswith(path, entry)) {
877 sim_fd = OS::openSpecialFile(abs_path, p, tc);
878 used_path = abs_path;
879 }
880 }
881 if (sim_fd == -1) {
882 sim_fd = open(redir_path.c_str(), host_flags, mode);
883 used_path = redir_path;
884 }
885 if (sim_fd == -1) {
886 int local = -errno;
887 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s "
888 "(inferred from:%s)\n", isopenat ? "at" : "",
889 used_path.c_str(), path.c_str());
890 return local;
891 }
892
893 /**
894 * The file was opened successfully and needs to be recorded in the
895 * process' file descriptor array so that it can be retrieved later.
896 * The target file descriptor that is chosen will be the lowest unused
897 * file descriptor.
898 * Return the indirect target file descriptor back to the simulated
899 * process to act as a handle for the opened file.
900 */
901 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
902 int tgt_fd = p->fds->allocFD(ffdp);
903 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n"
904 "(inferred from:%s)\n", isopenat ? "at" : "",
905 sim_fd, tgt_fd, used_path.c_str(), path.c_str());
906 return tgt_fd;
907}
908
909/// Target open() handler.
910template <class OS>
911SyscallReturn
912openFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
913{
914 return openImpl<OS>(desc, callnum, tc, false);
915}
916
917/// Target openat() handler.
918template <class OS>
919SyscallReturn
920openatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
921{
922 return openImpl<OS>(desc, callnum, tc, true);
923}
924
925/// Target unlinkat() handler.
926template <class OS>
927SyscallReturn
928unlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
929{
930 int index = 0;
931 auto process = tc->getProcessPtr();
932 int dirfd = process->getSyscallArg(tc, index);
933 if (dirfd != OS::TGT_AT_FDCWD)
934 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
935
936 return unlinkHelper(desc, callnum, tc, 1);
937}
938
939/// Target facessat() handler
940template <class OS>
941SyscallReturn
942faccessatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
943{
944 int index = 0;
945 auto process = tc->getProcessPtr();
946 int dirfd = process->getSyscallArg(tc, index);
947 if (dirfd != OS::TGT_AT_FDCWD)
948 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
949 return accessFunc(desc, callnum, tc, 1);
950}
951
952/// Target readlinkat() handler
953template <class OS>
954SyscallReturn
955readlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
956{
957 int index = 0;
958 auto process = tc->getProcessPtr();
959 int dirfd = process->getSyscallArg(tc, index);
960 if (dirfd != OS::TGT_AT_FDCWD)
961 warn("openat: first argument not AT_FDCWD; unlikely to work");
962 return readlinkFunc(desc, callnum, tc, 1);
963}
964
965/// Target renameat() handler.
966template <class OS>
967SyscallReturn
968renameatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
969{
970 int index = 0;
971 auto process = tc->getProcessPtr();
972
973 int olddirfd = process->getSyscallArg(tc, index);
974 if (olddirfd != OS::TGT_AT_FDCWD)
975 warn("renameat: first argument not AT_FDCWD; unlikely to work");
976
977 std::string old_name;
978
772 return -EFAULT;
773
774#ifdef __CYGWIN32__
775 int host_flags = O_BINARY;
776#else
777 int host_flags = 0;
778#endif
779 /**
780 * Translate target flags into host flags. Flags exist which are not
781 * ported between architectures which can cause check failures.
782 */
783 int tgt_flags = p->getSyscallArg(tc, index);
784 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
785 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
786 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
787 host_flags |= OS::openFlagTable[i].hostFlag;
788 }
789 }
790 if (tgt_flags) {
791 warn("open%s: cannot decode flags 0x%x",
792 isopenat ? "at" : "", tgt_flags);
793 }
794#ifdef __CYGWIN32__
795 host_flags |= O_BINARY;
796#endif
797
798 int mode = p->getSyscallArg(tc, index);
799
800 /**
801 * If the simulated process called open or openat with AT_FDCWD specified,
802 * take the current working directory value which was passed into the
803 * process class as a Python parameter and append the current path to
804 * create a full path.
805 * Otherwise, openat with a valid target directory file descriptor has
806 * been called. If the path option, which was passed in as a parameter,
807 * is not absolute, retrieve the directory file descriptor's path and
808 * prepend it to the path passed in as a parameter.
809 * In every case, we should have a full path (which is relevant to the
810 * host) to work with after this block has been passed.
811 */
812 std::string redir_path = path;
813 std::string abs_path = path;
814 if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) {
815 abs_path = p->absolutePath(path, true);
816 redir_path = p->checkPathRedirect(path);
817 } else if (!startswith(path, "/")) {
818 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
819 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
820 if (!ffdp)
821 return -EBADF;
822 abs_path = ffdp->getFileName() + path;
823 redir_path = p->checkPathRedirect(abs_path);
824 }
825
826 /**
827 * Since this is an emulated environment, we create pseudo file
828 * descriptors for device requests that have been registered with
829 * the process class through Python; this allows us to create a file
830 * descriptor for subsequent ioctl or mmap calls.
831 */
832 if (startswith(abs_path, "/dev/")) {
833 std::string filename = abs_path.substr(strlen("/dev/"));
834 EmulatedDriver *drv = p->findDriver(filename);
835 if (drv) {
836 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
837 "driver open with path[%s]\n",
838 isopenat ? "at" : "", abs_path.c_str());
839 return drv->open(tc, mode, host_flags);
840 }
841 /**
842 * Fall through here for pass through to host devices, such
843 * as /dev/zero
844 */
845 }
846
847 /**
848 * We make several attempts resolve a call to open.
849 *
850 * 1) Resolve any path redirection before hand. This will set the path
851 * up with variable 'redir_path' which may contain a modified path or
852 * the original path value. This should already be done in prior code.
853 * 2) Try to handle the access using 'special_paths'. Some special_paths
854 * and files cannot be called on the host and need to be handled as
855 * special cases inside the simulator. These special_paths are handled by
856 * C++ routines to provide output back to userspace.
857 * 3) If the full path that was created above does not match any of the
858 * special cases, pass it through to the open call on the __HOST__ to let
859 * the host open the file on our behalf. Again, the openImpl tries to
860 * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the
861 * faux-filesystem files). The faux-filesystem is dynamically created
862 * during simulator configuration using Python functions.
863 * 4) If the host cannot open the file, the open attempt failed in "3)".
864 * Return the host's error code back through the system call to the
865 * simulated process. If running a debug trace, also notify the user that
866 * the open call failed.
867 *
868 * Any success will set sim_fd to something other than -1 and skip the
869 * next conditions effectively bypassing them.
870 */
871 int sim_fd = -1;
872 std::string used_path;
873 std::vector<std::string> special_paths =
874 { "/proc/meminfo/", "/system/", "/platform/", "/etc/passwd" };
875 for (auto entry : special_paths) {
876 if (startswith(path, entry)) {
877 sim_fd = OS::openSpecialFile(abs_path, p, tc);
878 used_path = abs_path;
879 }
880 }
881 if (sim_fd == -1) {
882 sim_fd = open(redir_path.c_str(), host_flags, mode);
883 used_path = redir_path;
884 }
885 if (sim_fd == -1) {
886 int local = -errno;
887 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s "
888 "(inferred from:%s)\n", isopenat ? "at" : "",
889 used_path.c_str(), path.c_str());
890 return local;
891 }
892
893 /**
894 * The file was opened successfully and needs to be recorded in the
895 * process' file descriptor array so that it can be retrieved later.
896 * The target file descriptor that is chosen will be the lowest unused
897 * file descriptor.
898 * Return the indirect target file descriptor back to the simulated
899 * process to act as a handle for the opened file.
900 */
901 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
902 int tgt_fd = p->fds->allocFD(ffdp);
903 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n"
904 "(inferred from:%s)\n", isopenat ? "at" : "",
905 sim_fd, tgt_fd, used_path.c_str(), path.c_str());
906 return tgt_fd;
907}
908
909/// Target open() handler.
910template <class OS>
911SyscallReturn
912openFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
913{
914 return openImpl<OS>(desc, callnum, tc, false);
915}
916
917/// Target openat() handler.
918template <class OS>
919SyscallReturn
920openatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
921{
922 return openImpl<OS>(desc, callnum, tc, true);
923}
924
925/// Target unlinkat() handler.
926template <class OS>
927SyscallReturn
928unlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
929{
930 int index = 0;
931 auto process = tc->getProcessPtr();
932 int dirfd = process->getSyscallArg(tc, index);
933 if (dirfd != OS::TGT_AT_FDCWD)
934 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
935
936 return unlinkHelper(desc, callnum, tc, 1);
937}
938
939/// Target facessat() handler
940template <class OS>
941SyscallReturn
942faccessatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
943{
944 int index = 0;
945 auto process = tc->getProcessPtr();
946 int dirfd = process->getSyscallArg(tc, index);
947 if (dirfd != OS::TGT_AT_FDCWD)
948 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
949 return accessFunc(desc, callnum, tc, 1);
950}
951
952/// Target readlinkat() handler
953template <class OS>
954SyscallReturn
955readlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
956{
957 int index = 0;
958 auto process = tc->getProcessPtr();
959 int dirfd = process->getSyscallArg(tc, index);
960 if (dirfd != OS::TGT_AT_FDCWD)
961 warn("openat: first argument not AT_FDCWD; unlikely to work");
962 return readlinkFunc(desc, callnum, tc, 1);
963}
964
965/// Target renameat() handler.
966template <class OS>
967SyscallReturn
968renameatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
969{
970 int index = 0;
971 auto process = tc->getProcessPtr();
972
973 int olddirfd = process->getSyscallArg(tc, index);
974 if (olddirfd != OS::TGT_AT_FDCWD)
975 warn("renameat: first argument not AT_FDCWD; unlikely to work");
976
977 std::string old_name;
978
979 if (!tc->getMemProxy().tryReadString(old_name,
979 if (!tc->getVirtProxy().tryReadString(old_name,
980 process->getSyscallArg(tc, index)))
981 return -EFAULT;
982
983 int newdirfd = process->getSyscallArg(tc, index);
984 if (newdirfd != OS::TGT_AT_FDCWD)
985 warn("renameat: third argument not AT_FDCWD; unlikely to work");
986
987 std::string new_name;
988
980 process->getSyscallArg(tc, index)))
981 return -EFAULT;
982
983 int newdirfd = process->getSyscallArg(tc, index);
984 if (newdirfd != OS::TGT_AT_FDCWD)
985 warn("renameat: third argument not AT_FDCWD; unlikely to work");
986
987 std::string new_name;
988
989 if (!tc->getMemProxy().tryReadString(new_name,
989 if (!tc->getVirtProxy().tryReadString(new_name,
990 process->getSyscallArg(tc, index)))
991 return -EFAULT;
992
993 // Adjust path for cwd and redirection
994 old_name = process->checkPathRedirect(old_name);
995 new_name = process->checkPathRedirect(new_name);
996
997 int result = rename(old_name.c_str(), new_name.c_str());
998 return (result == -1) ? -errno : result;
999}
1000
1001/// Target sysinfo() handler.
1002template <class OS>
1003SyscallReturn
1004sysinfoFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1005{
1006 int index = 0;
1007 auto process = tc->getProcessPtr();
1008
1009 TypedBufferArg<typename OS::tgt_sysinfo>
1010 sysinfo(process->getSyscallArg(tc, index));
1011
1012 sysinfo->uptime = seconds_since_epoch;
1013 sysinfo->totalram = process->system->memSize();
1014 sysinfo->mem_unit = 1;
1015
990 process->getSyscallArg(tc, index)))
991 return -EFAULT;
992
993 // Adjust path for cwd and redirection
994 old_name = process->checkPathRedirect(old_name);
995 new_name = process->checkPathRedirect(new_name);
996
997 int result = rename(old_name.c_str(), new_name.c_str());
998 return (result == -1) ? -errno : result;
999}
1000
1001/// Target sysinfo() handler.
1002template <class OS>
1003SyscallReturn
1004sysinfoFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1005{
1006 int index = 0;
1007 auto process = tc->getProcessPtr();
1008
1009 TypedBufferArg<typename OS::tgt_sysinfo>
1010 sysinfo(process->getSyscallArg(tc, index));
1011
1012 sysinfo->uptime = seconds_since_epoch;
1013 sysinfo->totalram = process->system->memSize();
1014 sysinfo->mem_unit = 1;
1015
1016 sysinfo.copyOut(tc->getMemProxy());
1016 sysinfo.copyOut(tc->getVirtProxy());
1017
1018 return 0;
1019}
1020
1021/// Target chmod() handler.
1022template <class OS>
1023SyscallReturn
1024chmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1025{
1026 std::string path;
1027 auto process = tc->getProcessPtr();
1028
1029 int index = 0;
1017
1018 return 0;
1019}
1020
1021/// Target chmod() handler.
1022template <class OS>
1023SyscallReturn
1024chmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1025{
1026 std::string path;
1027 auto process = tc->getProcessPtr();
1028
1029 int index = 0;
1030 if (!tc->getMemProxy().tryReadString(path,
1030 if (!tc->getVirtProxy().tryReadString(path,
1031 process->getSyscallArg(tc, index))) {
1032 return -EFAULT;
1033 }
1034
1035 uint32_t mode = process->getSyscallArg(tc, index);
1036 mode_t hostMode = 0;
1037
1038 // XXX translate mode flags via OS::something???
1039 hostMode = mode;
1040
1041 // Adjust path for cwd and redirection
1042 path = process->checkPathRedirect(path);
1043
1044 // do the chmod
1045 int result = chmod(path.c_str(), hostMode);
1046 if (result < 0)
1047 return -errno;
1048
1049 return 0;
1050}
1051
1052template <class OS>
1053SyscallReturn
1054pollFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1055{
1056 int index = 0;
1057 auto p = tc->getProcessPtr();
1058 Addr fdsPtr = p->getSyscallArg(tc, index);
1059 int nfds = p->getSyscallArg(tc, index);
1060 int tmout = p->getSyscallArg(tc, index);
1061
1062 BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
1031 process->getSyscallArg(tc, index))) {
1032 return -EFAULT;
1033 }
1034
1035 uint32_t mode = process->getSyscallArg(tc, index);
1036 mode_t hostMode = 0;
1037
1038 // XXX translate mode flags via OS::something???
1039 hostMode = mode;
1040
1041 // Adjust path for cwd and redirection
1042 path = process->checkPathRedirect(path);
1043
1044 // do the chmod
1045 int result = chmod(path.c_str(), hostMode);
1046 if (result < 0)
1047 return -errno;
1048
1049 return 0;
1050}
1051
1052template <class OS>
1053SyscallReturn
1054pollFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1055{
1056 int index = 0;
1057 auto p = tc->getProcessPtr();
1058 Addr fdsPtr = p->getSyscallArg(tc, index);
1059 int nfds = p->getSyscallArg(tc, index);
1060 int tmout = p->getSyscallArg(tc, index);
1061
1062 BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
1063 fdsBuf.copyIn(tc->getMemProxy());
1063 fdsBuf.copyIn(tc->getVirtProxy());
1064
1065 /**
1066 * Record the target file descriptors in a local variable. We need to
1067 * replace them with host file descriptors but we need a temporary copy
1068 * for later. Afterwards, replace each target file descriptor in the
1069 * poll_fd array with its host_fd.
1070 */
1071 int temp_tgt_fds[nfds];
1072 for (index = 0; index < nfds; index++) {
1073 temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1074 auto tgt_fd = temp_tgt_fds[index];
1075 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1076 if (!hbfdp)
1077 return -EBADF;
1078 auto host_fd = hbfdp->getSimFD();
1079 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1080 }
1081
1082 /**
1083 * We cannot allow an infinite poll to occur or it will inevitably cause
1084 * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1085 * a non-negative value, however it also makes no sense to poll on the
1086 * underlying host for any other time than tmout a zero timeout.
1087 */
1088 int status;
1089 if (tmout < 0) {
1090 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1091 if (status == 0) {
1092 /**
1093 * If blocking indefinitely, check the signal list to see if a
1094 * signal would break the poll out of the retry cycle and try
1095 * to return the signal interrupt instead.
1096 */
1097 System *sysh = tc->getSystemPtr();
1098 std::list<BasicSignal>::iterator it;
1099 for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1100 if (it->receiver == p)
1101 return -EINTR;
1102 return SyscallReturn::retry();
1103 }
1104 } else
1105 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1106
1107 if (status == -1)
1108 return -errno;
1109
1110 /**
1111 * Replace each host_fd in the returned poll_fd array with its original
1112 * target file descriptor.
1113 */
1114 for (index = 0; index < nfds; index++) {
1115 auto tgt_fd = temp_tgt_fds[index];
1116 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1117 }
1118
1119 /**
1120 * Copy out the pollfd struct because the host may have updated fields
1121 * in the structure.
1122 */
1064
1065 /**
1066 * Record the target file descriptors in a local variable. We need to
1067 * replace them with host file descriptors but we need a temporary copy
1068 * for later. Afterwards, replace each target file descriptor in the
1069 * poll_fd array with its host_fd.
1070 */
1071 int temp_tgt_fds[nfds];
1072 for (index = 0; index < nfds; index++) {
1073 temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
1074 auto tgt_fd = temp_tgt_fds[index];
1075 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1076 if (!hbfdp)
1077 return -EBADF;
1078 auto host_fd = hbfdp->getSimFD();
1079 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
1080 }
1081
1082 /**
1083 * We cannot allow an infinite poll to occur or it will inevitably cause
1084 * a deadlock in the gem5 simulator with clone. We must pass in tmout with
1085 * a non-negative value, however it also makes no sense to poll on the
1086 * underlying host for any other time than tmout a zero timeout.
1087 */
1088 int status;
1089 if (tmout < 0) {
1090 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1091 if (status == 0) {
1092 /**
1093 * If blocking indefinitely, check the signal list to see if a
1094 * signal would break the poll out of the retry cycle and try
1095 * to return the signal interrupt instead.
1096 */
1097 System *sysh = tc->getSystemPtr();
1098 std::list<BasicSignal>::iterator it;
1099 for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
1100 if (it->receiver == p)
1101 return -EINTR;
1102 return SyscallReturn::retry();
1103 }
1104 } else
1105 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
1106
1107 if (status == -1)
1108 return -errno;
1109
1110 /**
1111 * Replace each host_fd in the returned poll_fd array with its original
1112 * target file descriptor.
1113 */
1114 for (index = 0; index < nfds; index++) {
1115 auto tgt_fd = temp_tgt_fds[index];
1116 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1117 }
1118
1119 /**
1120 * Copy out the pollfd struct because the host may have updated fields
1121 * in the structure.
1122 */
1123 fdsBuf.copyOut(tc->getMemProxy());
1123 fdsBuf.copyOut(tc->getVirtProxy());
1124
1125 return status;
1126}
1127
1128/// Target fchmod() handler.
1129template <class OS>
1130SyscallReturn
1131fchmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1132{
1133 int index = 0;
1134 auto p = tc->getProcessPtr();
1135 int tgt_fd = p->getSyscallArg(tc, index);
1136 uint32_t mode = p->getSyscallArg(tc, index);
1137
1138 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1139 if (!ffdp)
1140 return -EBADF;
1141 int sim_fd = ffdp->getSimFD();
1142
1143 mode_t hostMode = mode;
1144
1145 int result = fchmod(sim_fd, hostMode);
1146
1147 return (result < 0) ? -errno : 0;
1148}
1149
1150/// Target mremap() handler.
1151template <class OS>
1152SyscallReturn
1153mremapFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1154{
1155 int index = 0;
1156 auto process = tc->getProcessPtr();
1157 Addr start = process->getSyscallArg(tc, index);
1158 uint64_t old_length = process->getSyscallArg(tc, index);
1159 uint64_t new_length = process->getSyscallArg(tc, index);
1160 uint64_t flags = process->getSyscallArg(tc, index);
1161 uint64_t provided_address = 0;
1162 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1163
1164 if (use_provided_address)
1165 provided_address = process->getSyscallArg(tc, index);
1166
1167 if ((start % TheISA::PageBytes != 0) ||
1168 (provided_address % TheISA::PageBytes != 0)) {
1169 warn("mremap failing: arguments not page aligned");
1170 return -EINVAL;
1171 }
1172
1173 new_length = roundUp(new_length, TheISA::PageBytes);
1174
1175 if (new_length > old_length) {
1176 std::shared_ptr<MemState> mem_state = process->memState;
1177 Addr mmap_end = mem_state->getMmapEnd();
1178
1179 if ((start + old_length) == mmap_end &&
1180 (!use_provided_address || provided_address == start)) {
1181 // This case cannot occur when growing downward, as
1182 // start is greater than or equal to mmap_end.
1183 uint64_t diff = new_length - old_length;
1184 process->allocateMem(mmap_end, diff);
1185 mem_state->setMmapEnd(mmap_end + diff);
1186 return start;
1187 } else {
1188 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1189 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1190 return -ENOMEM;
1191 } else {
1192 uint64_t new_start = provided_address;
1193 if (!use_provided_address) {
1194 new_start = process->mmapGrowsDown() ?
1195 mmap_end - new_length : mmap_end;
1196 mmap_end = process->mmapGrowsDown() ?
1197 new_start : mmap_end + new_length;
1198 mem_state->setMmapEnd(mmap_end);
1199 }
1200
1201 process->pTable->remap(start, old_length, new_start);
1202 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1203 new_start, new_start + new_length,
1204 new_length - old_length);
1205 // add on the remaining unallocated pages
1206 process->allocateMem(new_start + old_length,
1207 new_length - old_length,
1208 use_provided_address /* clobber */);
1209 if (use_provided_address &&
1210 ((new_start + new_length > mem_state->getMmapEnd() &&
1211 !process->mmapGrowsDown()) ||
1212 (new_start < mem_state->getMmapEnd() &&
1213 process->mmapGrowsDown()))) {
1214 // something fishy going on here, at least notify the user
1215 // @todo: increase mmap_end?
1216 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1217 }
1218 warn("returning %08p as start\n", new_start);
1219 return new_start;
1220 }
1221 }
1222 } else {
1223 if (use_provided_address && provided_address != start)
1224 process->pTable->remap(start, new_length, provided_address);
1225 process->pTable->unmap(start + new_length, old_length - new_length);
1226 return use_provided_address ? provided_address : start;
1227 }
1228}
1229
1230/// Target stat() handler.
1231template <class OS>
1232SyscallReturn
1233statFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1234{
1235 std::string path;
1236 auto process = tc->getProcessPtr();
1237
1238 int index = 0;
1124
1125 return status;
1126}
1127
1128/// Target fchmod() handler.
1129template <class OS>
1130SyscallReturn
1131fchmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1132{
1133 int index = 0;
1134 auto p = tc->getProcessPtr();
1135 int tgt_fd = p->getSyscallArg(tc, index);
1136 uint32_t mode = p->getSyscallArg(tc, index);
1137
1138 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1139 if (!ffdp)
1140 return -EBADF;
1141 int sim_fd = ffdp->getSimFD();
1142
1143 mode_t hostMode = mode;
1144
1145 int result = fchmod(sim_fd, hostMode);
1146
1147 return (result < 0) ? -errno : 0;
1148}
1149
1150/// Target mremap() handler.
1151template <class OS>
1152SyscallReturn
1153mremapFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1154{
1155 int index = 0;
1156 auto process = tc->getProcessPtr();
1157 Addr start = process->getSyscallArg(tc, index);
1158 uint64_t old_length = process->getSyscallArg(tc, index);
1159 uint64_t new_length = process->getSyscallArg(tc, index);
1160 uint64_t flags = process->getSyscallArg(tc, index);
1161 uint64_t provided_address = 0;
1162 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1163
1164 if (use_provided_address)
1165 provided_address = process->getSyscallArg(tc, index);
1166
1167 if ((start % TheISA::PageBytes != 0) ||
1168 (provided_address % TheISA::PageBytes != 0)) {
1169 warn("mremap failing: arguments not page aligned");
1170 return -EINVAL;
1171 }
1172
1173 new_length = roundUp(new_length, TheISA::PageBytes);
1174
1175 if (new_length > old_length) {
1176 std::shared_ptr<MemState> mem_state = process->memState;
1177 Addr mmap_end = mem_state->getMmapEnd();
1178
1179 if ((start + old_length) == mmap_end &&
1180 (!use_provided_address || provided_address == start)) {
1181 // This case cannot occur when growing downward, as
1182 // start is greater than or equal to mmap_end.
1183 uint64_t diff = new_length - old_length;
1184 process->allocateMem(mmap_end, diff);
1185 mem_state->setMmapEnd(mmap_end + diff);
1186 return start;
1187 } else {
1188 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1189 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1190 return -ENOMEM;
1191 } else {
1192 uint64_t new_start = provided_address;
1193 if (!use_provided_address) {
1194 new_start = process->mmapGrowsDown() ?
1195 mmap_end - new_length : mmap_end;
1196 mmap_end = process->mmapGrowsDown() ?
1197 new_start : mmap_end + new_length;
1198 mem_state->setMmapEnd(mmap_end);
1199 }
1200
1201 process->pTable->remap(start, old_length, new_start);
1202 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1203 new_start, new_start + new_length,
1204 new_length - old_length);
1205 // add on the remaining unallocated pages
1206 process->allocateMem(new_start + old_length,
1207 new_length - old_length,
1208 use_provided_address /* clobber */);
1209 if (use_provided_address &&
1210 ((new_start + new_length > mem_state->getMmapEnd() &&
1211 !process->mmapGrowsDown()) ||
1212 (new_start < mem_state->getMmapEnd() &&
1213 process->mmapGrowsDown()))) {
1214 // something fishy going on here, at least notify the user
1215 // @todo: increase mmap_end?
1216 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1217 }
1218 warn("returning %08p as start\n", new_start);
1219 return new_start;
1220 }
1221 }
1222 } else {
1223 if (use_provided_address && provided_address != start)
1224 process->pTable->remap(start, new_length, provided_address);
1225 process->pTable->unmap(start + new_length, old_length - new_length);
1226 return use_provided_address ? provided_address : start;
1227 }
1228}
1229
1230/// Target stat() handler.
1231template <class OS>
1232SyscallReturn
1233statFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1234{
1235 std::string path;
1236 auto process = tc->getProcessPtr();
1237
1238 int index = 0;
1239 if (!tc->getMemProxy().tryReadString(path,
1239 if (!tc->getVirtProxy().tryReadString(path,
1240 process->getSyscallArg(tc, index))) {
1241 return -EFAULT;
1242 }
1243 Addr bufPtr = process->getSyscallArg(tc, index);
1244
1245 // Adjust path for cwd and redirection
1246 path = process->checkPathRedirect(path);
1247
1248 struct stat hostBuf;
1249 int result = stat(path.c_str(), &hostBuf);
1250
1251 if (result < 0)
1252 return -errno;
1253
1240 process->getSyscallArg(tc, index))) {
1241 return -EFAULT;
1242 }
1243 Addr bufPtr = process->getSyscallArg(tc, index);
1244
1245 // Adjust path for cwd and redirection
1246 path = process->checkPathRedirect(path);
1247
1248 struct stat hostBuf;
1249 int result = stat(path.c_str(), &hostBuf);
1250
1251 if (result < 0)
1252 return -errno;
1253
1254 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1254 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1255
1256 return 0;
1257}
1258
1259
1260/// Target stat64() handler.
1261template <class OS>
1262SyscallReturn
1263stat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1264{
1265 std::string path;
1266 auto process = tc->getProcessPtr();
1267
1268 int index = 0;
1255
1256 return 0;
1257}
1258
1259
1260/// Target stat64() handler.
1261template <class OS>
1262SyscallReturn
1263stat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1264{
1265 std::string path;
1266 auto process = tc->getProcessPtr();
1267
1268 int index = 0;
1269 if (!tc->getMemProxy().tryReadString(path,
1269 if (!tc->getVirtProxy().tryReadString(path,
1270 process->getSyscallArg(tc, index)))
1271 return -EFAULT;
1272 Addr bufPtr = process->getSyscallArg(tc, index);
1273
1274 // Adjust path for cwd and redirection
1275 path = process->checkPathRedirect(path);
1276
1277#if NO_STAT64
1278 struct stat hostBuf;
1279 int result = stat(path.c_str(), &hostBuf);
1280#else
1281 struct stat64 hostBuf;
1282 int result = stat64(path.c_str(), &hostBuf);
1283#endif
1284
1285 if (result < 0)
1286 return -errno;
1287
1270 process->getSyscallArg(tc, index)))
1271 return -EFAULT;
1272 Addr bufPtr = process->getSyscallArg(tc, index);
1273
1274 // Adjust path for cwd and redirection
1275 path = process->checkPathRedirect(path);
1276
1277#if NO_STAT64
1278 struct stat hostBuf;
1279 int result = stat(path.c_str(), &hostBuf);
1280#else
1281 struct stat64 hostBuf;
1282 int result = stat64(path.c_str(), &hostBuf);
1283#endif
1284
1285 if (result < 0)
1286 return -errno;
1287
1288 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1288 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1289
1290 return 0;
1291}
1292
1293
1294/// Target fstatat64() handler.
1295template <class OS>
1296SyscallReturn
1297fstatat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1298{
1299 int index = 0;
1300 auto process = tc->getProcessPtr();
1301 int dirfd = process->getSyscallArg(tc, index);
1302 if (dirfd != OS::TGT_AT_FDCWD)
1303 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1304
1305 std::string path;
1289
1290 return 0;
1291}
1292
1293
1294/// Target fstatat64() handler.
1295template <class OS>
1296SyscallReturn
1297fstatat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1298{
1299 int index = 0;
1300 auto process = tc->getProcessPtr();
1301 int dirfd = process->getSyscallArg(tc, index);
1302 if (dirfd != OS::TGT_AT_FDCWD)
1303 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1304
1305 std::string path;
1306 if (!tc->getMemProxy().tryReadString(path,
1306 if (!tc->getVirtProxy().tryReadString(path,
1307 process->getSyscallArg(tc, index)))
1308 return -EFAULT;
1309 Addr bufPtr = process->getSyscallArg(tc, index);
1310
1311 // Adjust path for cwd and redirection
1312 path = process->checkPathRedirect(path);
1313
1314#if NO_STAT64
1315 struct stat hostBuf;
1316 int result = stat(path.c_str(), &hostBuf);
1317#else
1318 struct stat64 hostBuf;
1319 int result = stat64(path.c_str(), &hostBuf);
1320#endif
1321
1322 if (result < 0)
1323 return -errno;
1324
1307 process->getSyscallArg(tc, index)))
1308 return -EFAULT;
1309 Addr bufPtr = process->getSyscallArg(tc, index);
1310
1311 // Adjust path for cwd and redirection
1312 path = process->checkPathRedirect(path);
1313
1314#if NO_STAT64
1315 struct stat hostBuf;
1316 int result = stat(path.c_str(), &hostBuf);
1317#else
1318 struct stat64 hostBuf;
1319 int result = stat64(path.c_str(), &hostBuf);
1320#endif
1321
1322 if (result < 0)
1323 return -errno;
1324
1325 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1325 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1326
1327 return 0;
1328}
1329
1330
1331/// Target fstat64() handler.
1332template <class OS>
1333SyscallReturn
1334fstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1335{
1336 int index = 0;
1337 auto p = tc->getProcessPtr();
1338 int tgt_fd = p->getSyscallArg(tc, index);
1339 Addr bufPtr = p->getSyscallArg(tc, index);
1340
1341 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1342 if (!ffdp)
1343 return -EBADF;
1344 int sim_fd = ffdp->getSimFD();
1345
1346#if NO_STAT64
1347 struct stat hostBuf;
1348 int result = fstat(sim_fd, &hostBuf);
1349#else
1350 struct stat64 hostBuf;
1351 int result = fstat64(sim_fd, &hostBuf);
1352#endif
1353
1354 if (result < 0)
1355 return -errno;
1356
1326
1327 return 0;
1328}
1329
1330
1331/// Target fstat64() handler.
1332template <class OS>
1333SyscallReturn
1334fstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1335{
1336 int index = 0;
1337 auto p = tc->getProcessPtr();
1338 int tgt_fd = p->getSyscallArg(tc, index);
1339 Addr bufPtr = p->getSyscallArg(tc, index);
1340
1341 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1342 if (!ffdp)
1343 return -EBADF;
1344 int sim_fd = ffdp->getSimFD();
1345
1346#if NO_STAT64
1347 struct stat hostBuf;
1348 int result = fstat(sim_fd, &hostBuf);
1349#else
1350 struct stat64 hostBuf;
1351 int result = fstat64(sim_fd, &hostBuf);
1352#endif
1353
1354 if (result < 0)
1355 return -errno;
1356
1357 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1357 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1358
1359 return 0;
1360}
1361
1362
1363/// Target lstat() handler.
1364template <class OS>
1365SyscallReturn
1366lstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1367{
1368 std::string path;
1369 auto process = tc->getProcessPtr();
1370
1371 int index = 0;
1358
1359 return 0;
1360}
1361
1362
1363/// Target lstat() handler.
1364template <class OS>
1365SyscallReturn
1366lstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1367{
1368 std::string path;
1369 auto process = tc->getProcessPtr();
1370
1371 int index = 0;
1372 if (!tc->getMemProxy().tryReadString(path,
1372 if (!tc->getVirtProxy().tryReadString(path,
1373 process->getSyscallArg(tc, index))) {
1374 return -EFAULT;
1375 }
1376 Addr bufPtr = process->getSyscallArg(tc, index);
1377
1378 // Adjust path for cwd and redirection
1379 path = process->checkPathRedirect(path);
1380
1381 struct stat hostBuf;
1382 int result = lstat(path.c_str(), &hostBuf);
1383
1384 if (result < 0)
1385 return -errno;
1386
1373 process->getSyscallArg(tc, index))) {
1374 return -EFAULT;
1375 }
1376 Addr bufPtr = process->getSyscallArg(tc, index);
1377
1378 // Adjust path for cwd and redirection
1379 path = process->checkPathRedirect(path);
1380
1381 struct stat hostBuf;
1382 int result = lstat(path.c_str(), &hostBuf);
1383
1384 if (result < 0)
1385 return -errno;
1386
1387 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1387 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1388
1389 return 0;
1390}
1391
1392/// Target lstat64() handler.
1393template <class OS>
1394SyscallReturn
1395lstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1396{
1397 std::string path;
1398 auto process = tc->getProcessPtr();
1399
1400 int index = 0;
1388
1389 return 0;
1390}
1391
1392/// Target lstat64() handler.
1393template <class OS>
1394SyscallReturn
1395lstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc)
1396{
1397 std::string path;
1398 auto process = tc->getProcessPtr();
1399
1400 int index = 0;
1401 if (!tc->getMemProxy().tryReadString(path,
1401 if (!tc->getVirtProxy().tryReadString(path,
1402 process->getSyscallArg(tc, index))) {
1403 return -EFAULT;
1404 }
1405 Addr bufPtr = process->getSyscallArg(tc, index);
1406
1407 // Adjust path for cwd and redirection
1408 path = process->checkPathRedirect(path);
1409
1410#if NO_STAT64
1411 struct stat hostBuf;
1412 int result = lstat(path.c_str(), &hostBuf);
1413#else
1414 struct stat64 hostBuf;
1415 int result = lstat64(path.c_str(), &hostBuf);
1416#endif
1417
1418 if (result < 0)
1419 return -errno;
1420
1402 process->getSyscallArg(tc, index))) {
1403 return -EFAULT;
1404 }
1405 Addr bufPtr = process->getSyscallArg(tc, index);
1406
1407 // Adjust path for cwd and redirection
1408 path = process->checkPathRedirect(path);
1409
1410#if NO_STAT64
1411 struct stat hostBuf;
1412 int result = lstat(path.c_str(), &hostBuf);
1413#else
1414 struct stat64 hostBuf;
1415 int result = lstat64(path.c_str(), &hostBuf);
1416#endif
1417
1418 if (result < 0)
1419 return -errno;
1420
1421 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1421 copyOutStat64Buf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1422
1423 return 0;
1424}
1425
1426/// Target fstat() handler.
1427template <class OS>
1428SyscallReturn
1429fstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1430{
1431 int index = 0;
1432 auto p = tc->getProcessPtr();
1433 int tgt_fd = p->getSyscallArg(tc, index);
1434 Addr bufPtr = p->getSyscallArg(tc, index);
1435
1436 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1437
1438 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1439 if (!ffdp)
1440 return -EBADF;
1441 int sim_fd = ffdp->getSimFD();
1442
1443 struct stat hostBuf;
1444 int result = fstat(sim_fd, &hostBuf);
1445
1446 if (result < 0)
1447 return -errno;
1448
1422
1423 return 0;
1424}
1425
1426/// Target fstat() handler.
1427template <class OS>
1428SyscallReturn
1429fstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1430{
1431 int index = 0;
1432 auto p = tc->getProcessPtr();
1433 int tgt_fd = p->getSyscallArg(tc, index);
1434 Addr bufPtr = p->getSyscallArg(tc, index);
1435
1436 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1437
1438 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1439 if (!ffdp)
1440 return -EBADF;
1441 int sim_fd = ffdp->getSimFD();
1442
1443 struct stat hostBuf;
1444 int result = fstat(sim_fd, &hostBuf);
1445
1446 if (result < 0)
1447 return -errno;
1448
1449 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1449 copyOutStatBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1450
1451 return 0;
1452}
1453
1454/// Target statfs() handler.
1455template <class OS>
1456SyscallReturn
1457statfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1458{
1459#if defined(__linux__)
1460 std::string path;
1461 auto process = tc->getProcessPtr();
1462
1463 int index = 0;
1450
1451 return 0;
1452}
1453
1454/// Target statfs() handler.
1455template <class OS>
1456SyscallReturn
1457statfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1458{
1459#if defined(__linux__)
1460 std::string path;
1461 auto process = tc->getProcessPtr();
1462
1463 int index = 0;
1464 if (!tc->getMemProxy().tryReadString(path,
1464 if (!tc->getVirtProxy().tryReadString(path,
1465 process->getSyscallArg(tc, index))) {
1466 return -EFAULT;
1467 }
1468 Addr bufPtr = process->getSyscallArg(tc, index);
1469
1470 // Adjust path for cwd and redirection
1471 path = process->checkPathRedirect(path);
1472
1473 struct statfs hostBuf;
1474 int result = statfs(path.c_str(), &hostBuf);
1475
1476 if (result < 0)
1477 return -errno;
1478
1465 process->getSyscallArg(tc, index))) {
1466 return -EFAULT;
1467 }
1468 Addr bufPtr = process->getSyscallArg(tc, index);
1469
1470 // Adjust path for cwd and redirection
1471 path = process->checkPathRedirect(path);
1472
1473 struct statfs hostBuf;
1474 int result = statfs(path.c_str(), &hostBuf);
1475
1476 if (result < 0)
1477 return -errno;
1478
1479 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1479 copyOutStatfsBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1480 return 0;
1481#else
1482 warnUnsupportedOS("statfs");
1483 return -1;
1484#endif
1485}
1486
1487template <class OS>
1488SyscallReturn
1489cloneFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1490{
1491 int index = 0;
1492
1493 auto p = tc->getProcessPtr();
1494 RegVal flags = p->getSyscallArg(tc, index);
1495 RegVal newStack = p->getSyscallArg(tc, index);
1496 Addr ptidPtr = p->getSyscallArg(tc, index);
1497
1498#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1499 /**
1500 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1501 * The flag defines the list of clone() arguments in the following
1502 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1503 */
1504 Addr tlsPtr = p->getSyscallArg(tc, index);
1505 Addr ctidPtr = p->getSyscallArg(tc, index);
1506#else
1507 Addr ctidPtr = p->getSyscallArg(tc, index);
1508 Addr tlsPtr = p->getSyscallArg(tc, index);
1509#endif
1510
1511 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1512 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1513 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1514 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1515 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1516 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1517 return -EINVAL;
1518
1519 ThreadContext *ctc;
1520 if (!(ctc = p->findFreeContext())) {
1521 DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1522 "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1523 return -EAGAIN;
1524 }
1525
1526 /**
1527 * Note that ProcessParams is generated by swig and there are no other
1528 * examples of how to create anything but this default constructor. The
1529 * fields are manually initialized instead of passing parameters to the
1530 * constructor.
1531 */
1532 ProcessParams *pp = new ProcessParams();
1533 pp->executable.assign(*(new std::string(p->progName())));
1534 pp->cmd.push_back(*(new std::string(p->progName())));
1535 pp->system = p->system;
1536 pp->cwd.assign(p->tgtCwd);
1537 pp->input.assign("stdin");
1538 pp->output.assign("stdout");
1539 pp->errout.assign("stderr");
1540 pp->uid = p->uid();
1541 pp->euid = p->euid();
1542 pp->gid = p->gid();
1543 pp->egid = p->egid();
1544
1545 /* Find the first free PID that's less than the maximum */
1546 std::set<int> const& pids = p->system->PIDs;
1547 int temp_pid = *pids.begin();
1548 do {
1549 temp_pid++;
1550 } while (pids.find(temp_pid) != pids.end());
1551 if (temp_pid >= System::maxPID)
1552 fatal("temp_pid is too large: %d", temp_pid);
1553
1554 pp->pid = temp_pid;
1555 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1556 pp->useArchPT = p->useArchPT;
1557 pp->kvmInSE = p->kvmInSE;
1558 Process *cp = pp->create();
1559 delete pp;
1560
1561 Process *owner = ctc->getProcessPtr();
1562 ctc->setProcessPtr(cp);
1563 cp->assignThreadContext(ctc->contextId());
1564 owner->revokeThreadContext(ctc->contextId());
1565
1566 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1567 BufferArg ptidBuf(ptidPtr, sizeof(long));
1568 long *ptid = (long *)ptidBuf.bufferPtr();
1569 *ptid = cp->pid();
1480 return 0;
1481#else
1482 warnUnsupportedOS("statfs");
1483 return -1;
1484#endif
1485}
1486
1487template <class OS>
1488SyscallReturn
1489cloneFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1490{
1491 int index = 0;
1492
1493 auto p = tc->getProcessPtr();
1494 RegVal flags = p->getSyscallArg(tc, index);
1495 RegVal newStack = p->getSyscallArg(tc, index);
1496 Addr ptidPtr = p->getSyscallArg(tc, index);
1497
1498#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1499 /**
1500 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1501 * The flag defines the list of clone() arguments in the following
1502 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1503 */
1504 Addr tlsPtr = p->getSyscallArg(tc, index);
1505 Addr ctidPtr = p->getSyscallArg(tc, index);
1506#else
1507 Addr ctidPtr = p->getSyscallArg(tc, index);
1508 Addr tlsPtr = p->getSyscallArg(tc, index);
1509#endif
1510
1511 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1512 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1513 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1514 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1515 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1516 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1517 return -EINVAL;
1518
1519 ThreadContext *ctc;
1520 if (!(ctc = p->findFreeContext())) {
1521 DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system"
1522 "[cpu %d, thread %d]", tc->cpuId(), tc->threadId());
1523 return -EAGAIN;
1524 }
1525
1526 /**
1527 * Note that ProcessParams is generated by swig and there are no other
1528 * examples of how to create anything but this default constructor. The
1529 * fields are manually initialized instead of passing parameters to the
1530 * constructor.
1531 */
1532 ProcessParams *pp = new ProcessParams();
1533 pp->executable.assign(*(new std::string(p->progName())));
1534 pp->cmd.push_back(*(new std::string(p->progName())));
1535 pp->system = p->system;
1536 pp->cwd.assign(p->tgtCwd);
1537 pp->input.assign("stdin");
1538 pp->output.assign("stdout");
1539 pp->errout.assign("stderr");
1540 pp->uid = p->uid();
1541 pp->euid = p->euid();
1542 pp->gid = p->gid();
1543 pp->egid = p->egid();
1544
1545 /* Find the first free PID that's less than the maximum */
1546 std::set<int> const& pids = p->system->PIDs;
1547 int temp_pid = *pids.begin();
1548 do {
1549 temp_pid++;
1550 } while (pids.find(temp_pid) != pids.end());
1551 if (temp_pid >= System::maxPID)
1552 fatal("temp_pid is too large: %d", temp_pid);
1553
1554 pp->pid = temp_pid;
1555 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1556 pp->useArchPT = p->useArchPT;
1557 pp->kvmInSE = p->kvmInSE;
1558 Process *cp = pp->create();
1559 delete pp;
1560
1561 Process *owner = ctc->getProcessPtr();
1562 ctc->setProcessPtr(cp);
1563 cp->assignThreadContext(ctc->contextId());
1564 owner->revokeThreadContext(ctc->contextId());
1565
1566 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1567 BufferArg ptidBuf(ptidPtr, sizeof(long));
1568 long *ptid = (long *)ptidBuf.bufferPtr();
1569 *ptid = cp->pid();
1570 ptidBuf.copyOut(tc->getMemProxy());
1570 ptidBuf.copyOut(tc->getVirtProxy());
1571 }
1572
1573 if (flags & OS::TGT_CLONE_THREAD) {
1574 cp->pTable->shared = true;
1575 cp->useForClone = true;
1576 }
1577 cp->initState();
1578 p->clone(tc, ctc, cp, flags);
1579
1580 if (flags & OS::TGT_CLONE_THREAD) {
1581 delete cp->sigchld;
1582 cp->sigchld = p->sigchld;
1583 } else if (flags & OS::TGT_SIGCHLD) {
1584 *cp->sigchld = true;
1585 }
1586
1587 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1588 BufferArg ctidBuf(ctidPtr, sizeof(long));
1589 long *ctid = (long *)ctidBuf.bufferPtr();
1590 *ctid = cp->pid();
1571 }
1572
1573 if (flags & OS::TGT_CLONE_THREAD) {
1574 cp->pTable->shared = true;
1575 cp->useForClone = true;
1576 }
1577 cp->initState();
1578 p->clone(tc, ctc, cp, flags);
1579
1580 if (flags & OS::TGT_CLONE_THREAD) {
1581 delete cp->sigchld;
1582 cp->sigchld = p->sigchld;
1583 } else if (flags & OS::TGT_SIGCHLD) {
1584 *cp->sigchld = true;
1585 }
1586
1587 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1588 BufferArg ctidBuf(ctidPtr, sizeof(long));
1589 long *ctid = (long *)ctidBuf.bufferPtr();
1590 *ctid = cp->pid();
1591 ctidBuf.copyOut(ctc->getMemProxy());
1591 ctidBuf.copyOut(ctc->getVirtProxy());
1592 }
1593
1594 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1595 cp->childClearTID = (uint64_t)ctidPtr;
1596
1597 ctc->clearArchRegs();
1598
1599 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1600
1601 cp->setSyscallReturn(ctc, 0);
1602
1603#if THE_ISA == ALPHA_ISA
1604 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1605#elif THE_ISA == SPARC_ISA
1606 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1607 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1608#endif
1609
1610 if (p->kvmInSE) {
1611#if THE_ISA == X86_ISA
1612 ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX));
1613#else
1614 panic("KVM CPU model is not supported for this ISA");
1615#endif
1616 } else {
1617 TheISA::PCState cpc = tc->pcState();
1618 cpc.advance();
1619 ctc->pcState(cpc);
1620 }
1621 ctc->activate();
1622
1623 return cp->pid();
1624}
1625
1626/// Target fstatfs() handler.
1627template <class OS>
1628SyscallReturn
1629fstatfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1630{
1631 int index = 0;
1632 auto p = tc->getProcessPtr();
1633 int tgt_fd = p->getSyscallArg(tc, index);
1634 Addr bufPtr = p->getSyscallArg(tc, index);
1635
1636 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1637 if (!ffdp)
1638 return -EBADF;
1639 int sim_fd = ffdp->getSimFD();
1640
1641 struct statfs hostBuf;
1642 int result = fstatfs(sim_fd, &hostBuf);
1643
1644 if (result < 0)
1645 return -errno;
1646
1592 }
1593
1594 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1595 cp->childClearTID = (uint64_t)ctidPtr;
1596
1597 ctc->clearArchRegs();
1598
1599 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1600
1601 cp->setSyscallReturn(ctc, 0);
1602
1603#if THE_ISA == ALPHA_ISA
1604 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1605#elif THE_ISA == SPARC_ISA
1606 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1607 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1608#endif
1609
1610 if (p->kvmInSE) {
1611#if THE_ISA == X86_ISA
1612 ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX));
1613#else
1614 panic("KVM CPU model is not supported for this ISA");
1615#endif
1616 } else {
1617 TheISA::PCState cpc = tc->pcState();
1618 cpc.advance();
1619 ctc->pcState(cpc);
1620 }
1621 ctc->activate();
1622
1623 return cp->pid();
1624}
1625
1626/// Target fstatfs() handler.
1627template <class OS>
1628SyscallReturn
1629fstatfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1630{
1631 int index = 0;
1632 auto p = tc->getProcessPtr();
1633 int tgt_fd = p->getSyscallArg(tc, index);
1634 Addr bufPtr = p->getSyscallArg(tc, index);
1635
1636 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1637 if (!ffdp)
1638 return -EBADF;
1639 int sim_fd = ffdp->getSimFD();
1640
1641 struct statfs hostBuf;
1642 int result = fstatfs(sim_fd, &hostBuf);
1643
1644 if (result < 0)
1645 return -errno;
1646
1647 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1647 copyOutStatfsBuf<OS>(tc->getVirtProxy(), bufPtr, &hostBuf);
1648
1649 return 0;
1650}
1651
1652/// Target readv() handler.
1653template <class OS>
1654SyscallReturn
1655readvFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1656{
1657 int index = 0;
1658 auto p = tc->getProcessPtr();
1659 int tgt_fd = p->getSyscallArg(tc, index);
1660
1661 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1662 if (!ffdp)
1663 return -EBADF;
1664 int sim_fd = ffdp->getSimFD();
1665
1648
1649 return 0;
1650}
1651
1652/// Target readv() handler.
1653template <class OS>
1654SyscallReturn
1655readvFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1656{
1657 int index = 0;
1658 auto p = tc->getProcessPtr();
1659 int tgt_fd = p->getSyscallArg(tc, index);
1660
1661 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1662 if (!ffdp)
1663 return -EBADF;
1664 int sim_fd = ffdp->getSimFD();
1665
1666 PortProxy &prox = tc->getMemProxy();
1666 PortProxy &prox = tc->getVirtProxy();
1667 uint64_t tiov_base = p->getSyscallArg(tc, index);
1668 size_t count = p->getSyscallArg(tc, index);
1669 typename OS::tgt_iovec tiov[count];
1670 struct iovec hiov[count];
1671 for (size_t i = 0; i < count; ++i) {
1672 prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1673 &tiov[i], sizeof(typename OS::tgt_iovec));
1674 hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1675 hiov[i].iov_base = new char [hiov[i].iov_len];
1676 }
1677
1678 int result = readv(sim_fd, hiov, count);
1679 int local_errno = errno;
1680
1681 for (size_t i = 0; i < count; ++i) {
1682 if (result != -1) {
1683 prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1684 hiov[i].iov_base, hiov[i].iov_len);
1685 }
1686 delete [] (char *)hiov[i].iov_base;
1687 }
1688
1689 return (result == -1) ? -local_errno : result;
1690}
1691
1692/// Target writev() handler.
1693template <class OS>
1694SyscallReturn
1695writevFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1696{
1697 int index = 0;
1698 auto p = tc->getProcessPtr();
1699 int tgt_fd = p->getSyscallArg(tc, index);
1700
1701 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1702 if (!hbfdp)
1703 return -EBADF;
1704 int sim_fd = hbfdp->getSimFD();
1705
1667 uint64_t tiov_base = p->getSyscallArg(tc, index);
1668 size_t count = p->getSyscallArg(tc, index);
1669 typename OS::tgt_iovec tiov[count];
1670 struct iovec hiov[count];
1671 for (size_t i = 0; i < count; ++i) {
1672 prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)),
1673 &tiov[i], sizeof(typename OS::tgt_iovec));
1674 hiov[i].iov_len = TheISA::gtoh(tiov[i].iov_len);
1675 hiov[i].iov_base = new char [hiov[i].iov_len];
1676 }
1677
1678 int result = readv(sim_fd, hiov, count);
1679 int local_errno = errno;
1680
1681 for (size_t i = 0; i < count; ++i) {
1682 if (result != -1) {
1683 prox.writeBlob(TheISA::htog(tiov[i].iov_base),
1684 hiov[i].iov_base, hiov[i].iov_len);
1685 }
1686 delete [] (char *)hiov[i].iov_base;
1687 }
1688
1689 return (result == -1) ? -local_errno : result;
1690}
1691
1692/// Target writev() handler.
1693template <class OS>
1694SyscallReturn
1695writevFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1696{
1697 int index = 0;
1698 auto p = tc->getProcessPtr();
1699 int tgt_fd = p->getSyscallArg(tc, index);
1700
1701 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1702 if (!hbfdp)
1703 return -EBADF;
1704 int sim_fd = hbfdp->getSimFD();
1705
1706 PortProxy &prox = tc->getMemProxy();
1706 PortProxy &prox = tc->getVirtProxy();
1707 uint64_t tiov_base = p->getSyscallArg(tc, index);
1708 size_t count = p->getSyscallArg(tc, index);
1709 struct iovec hiov[count];
1710 for (size_t i = 0; i < count; ++i) {
1711 typename OS::tgt_iovec tiov;
1712
1713 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1714 &tiov, sizeof(typename OS::tgt_iovec));
1715 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1716 hiov[i].iov_base = new char [hiov[i].iov_len];
1717 prox.readBlob(TheISA::gtoh(tiov.iov_base), hiov[i].iov_base,
1718 hiov[i].iov_len);
1719 }
1720
1721 int result = writev(sim_fd, hiov, count);
1722
1723 for (size_t i = 0; i < count; ++i)
1724 delete [] (char *)hiov[i].iov_base;
1725
1726 return (result == -1) ? -errno : result;
1727}
1728
1729/// Real mmap handler.
1730template <class OS>
1731SyscallReturn
1732mmapImpl(SyscallDesc *desc, int num, ThreadContext *tc, bool is_mmap2)
1733{
1734 int index = 0;
1735 auto p = tc->getProcessPtr();
1736 Addr start = p->getSyscallArg(tc, index);
1737 uint64_t length = p->getSyscallArg(tc, index);
1738 int prot = p->getSyscallArg(tc, index);
1739 int tgt_flags = p->getSyscallArg(tc, index);
1740 int tgt_fd = p->getSyscallArg(tc, index);
1741 int offset = p->getSyscallArg(tc, index);
1742
1743 if (is_mmap2)
1744 offset *= TheISA::PageBytes;
1745
1746 if (start & (TheISA::PageBytes - 1) ||
1747 offset & (TheISA::PageBytes - 1) ||
1748 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1749 tgt_flags & OS::TGT_MAP_SHARED) ||
1750 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1751 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1752 !length) {
1753 return -EINVAL;
1754 }
1755
1756 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1757 // With shared mmaps, there are two cases to consider:
1758 // 1) anonymous: writes should modify the mapping and this should be
1759 // visible to observers who share the mapping. Currently, it's
1760 // difficult to update the shared mapping because there's no
1761 // structure which maintains information about the which virtual
1762 // memory areas are shared. If that structure existed, it would be
1763 // possible to make the translations point to the same frames.
1764 // 2) file-backed: writes should modify the mapping and the file
1765 // which is backed by the mapping. The shared mapping problem is the
1766 // same as what was mentioned about the anonymous mappings. For
1767 // file-backed mappings, the writes to the file are difficult
1768 // because it requires syncing what the mapping holds with the file
1769 // that resides on the host system. So, any write on a real system
1770 // would cause the change to be propagated to the file mapping at
1771 // some point in the future (the inode is tracked along with the
1772 // mapping). This isn't guaranteed to always happen, but it usually
1773 // works well enough. The guarantee is provided by the msync system
1774 // call. We could force the change through with shared mappings with
1775 // a call to msync, but that again would require more information
1776 // than we currently maintain.
1777 warn("mmap: writing to shared mmap region is currently "
1778 "unsupported. The write succeeds on the target, but it "
1779 "will not be propagated to the host or shared mappings");
1780 }
1781
1782 length = roundUp(length, TheISA::PageBytes);
1783
1784 int sim_fd = -1;
1785 uint8_t *pmap = nullptr;
1786 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1787 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1788
1789 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1790 if (dfdp) {
1791 EmulatedDriver *emul_driver = dfdp->getDriver();
1792 return emul_driver->mmap(tc, start, length, prot, tgt_flags,
1793 tgt_fd, offset);
1794 }
1795
1796 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1797 if (!ffdp)
1798 return -EBADF;
1799 sim_fd = ffdp->getSimFD();
1800
1801 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1802 sim_fd, offset);
1803
1804 if (pmap == (decltype(pmap))-1) {
1805 warn("mmap: failed to map file into host address space");
1806 return -errno;
1807 }
1808 }
1809
1810 // Extend global mmap region if necessary. Note that we ignore the
1811 // start address unless MAP_FIXED is specified.
1812 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1813 std::shared_ptr<MemState> mem_state = p->memState;
1814 Addr mmap_end = mem_state->getMmapEnd();
1815
1816 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1817 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1818
1819 mem_state->setMmapEnd(mmap_end);
1820 }
1821
1822 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1823 start, start + length - 1);
1824
1825 // We only allow mappings to overwrite existing mappings if
1826 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1827 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1828 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1829 if (clobber) {
1830 for (auto tc : p->system->threadContexts) {
1831 // If we might be overwriting old mappings, we need to
1832 // invalidate potentially stale mappings out of the TLBs.
1833 tc->getDTBPtr()->flushAll();
1834 tc->getITBPtr()->flushAll();
1835 }
1836 }
1837
1838 // Allocate physical memory and map it in. If the page table is already
1839 // mapped and clobber is not set, the simulator will issue throw a
1840 // fatal and bail out of the simulation.
1841 p->allocateMem(start, length, clobber);
1842
1843 // Transfer content into target address space.
1707 uint64_t tiov_base = p->getSyscallArg(tc, index);
1708 size_t count = p->getSyscallArg(tc, index);
1709 struct iovec hiov[count];
1710 for (size_t i = 0; i < count; ++i) {
1711 typename OS::tgt_iovec tiov;
1712
1713 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1714 &tiov, sizeof(typename OS::tgt_iovec));
1715 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1716 hiov[i].iov_base = new char [hiov[i].iov_len];
1717 prox.readBlob(TheISA::gtoh(tiov.iov_base), hiov[i].iov_base,
1718 hiov[i].iov_len);
1719 }
1720
1721 int result = writev(sim_fd, hiov, count);
1722
1723 for (size_t i = 0; i < count; ++i)
1724 delete [] (char *)hiov[i].iov_base;
1725
1726 return (result == -1) ? -errno : result;
1727}
1728
1729/// Real mmap handler.
1730template <class OS>
1731SyscallReturn
1732mmapImpl(SyscallDesc *desc, int num, ThreadContext *tc, bool is_mmap2)
1733{
1734 int index = 0;
1735 auto p = tc->getProcessPtr();
1736 Addr start = p->getSyscallArg(tc, index);
1737 uint64_t length = p->getSyscallArg(tc, index);
1738 int prot = p->getSyscallArg(tc, index);
1739 int tgt_flags = p->getSyscallArg(tc, index);
1740 int tgt_fd = p->getSyscallArg(tc, index);
1741 int offset = p->getSyscallArg(tc, index);
1742
1743 if (is_mmap2)
1744 offset *= TheISA::PageBytes;
1745
1746 if (start & (TheISA::PageBytes - 1) ||
1747 offset & (TheISA::PageBytes - 1) ||
1748 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1749 tgt_flags & OS::TGT_MAP_SHARED) ||
1750 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1751 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1752 !length) {
1753 return -EINVAL;
1754 }
1755
1756 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1757 // With shared mmaps, there are two cases to consider:
1758 // 1) anonymous: writes should modify the mapping and this should be
1759 // visible to observers who share the mapping. Currently, it's
1760 // difficult to update the shared mapping because there's no
1761 // structure which maintains information about the which virtual
1762 // memory areas are shared. If that structure existed, it would be
1763 // possible to make the translations point to the same frames.
1764 // 2) file-backed: writes should modify the mapping and the file
1765 // which is backed by the mapping. The shared mapping problem is the
1766 // same as what was mentioned about the anonymous mappings. For
1767 // file-backed mappings, the writes to the file are difficult
1768 // because it requires syncing what the mapping holds with the file
1769 // that resides on the host system. So, any write on a real system
1770 // would cause the change to be propagated to the file mapping at
1771 // some point in the future (the inode is tracked along with the
1772 // mapping). This isn't guaranteed to always happen, but it usually
1773 // works well enough. The guarantee is provided by the msync system
1774 // call. We could force the change through with shared mappings with
1775 // a call to msync, but that again would require more information
1776 // than we currently maintain.
1777 warn("mmap: writing to shared mmap region is currently "
1778 "unsupported. The write succeeds on the target, but it "
1779 "will not be propagated to the host or shared mappings");
1780 }
1781
1782 length = roundUp(length, TheISA::PageBytes);
1783
1784 int sim_fd = -1;
1785 uint8_t *pmap = nullptr;
1786 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1787 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1788
1789 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1790 if (dfdp) {
1791 EmulatedDriver *emul_driver = dfdp->getDriver();
1792 return emul_driver->mmap(tc, start, length, prot, tgt_flags,
1793 tgt_fd, offset);
1794 }
1795
1796 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1797 if (!ffdp)
1798 return -EBADF;
1799 sim_fd = ffdp->getSimFD();
1800
1801 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1802 sim_fd, offset);
1803
1804 if (pmap == (decltype(pmap))-1) {
1805 warn("mmap: failed to map file into host address space");
1806 return -errno;
1807 }
1808 }
1809
1810 // Extend global mmap region if necessary. Note that we ignore the
1811 // start address unless MAP_FIXED is specified.
1812 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1813 std::shared_ptr<MemState> mem_state = p->memState;
1814 Addr mmap_end = mem_state->getMmapEnd();
1815
1816 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1817 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1818
1819 mem_state->setMmapEnd(mmap_end);
1820 }
1821
1822 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1823 start, start + length - 1);
1824
1825 // We only allow mappings to overwrite existing mappings if
1826 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1827 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1828 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1829 if (clobber) {
1830 for (auto tc : p->system->threadContexts) {
1831 // If we might be overwriting old mappings, we need to
1832 // invalidate potentially stale mappings out of the TLBs.
1833 tc->getDTBPtr()->flushAll();
1834 tc->getITBPtr()->flushAll();
1835 }
1836 }
1837
1838 // Allocate physical memory and map it in. If the page table is already
1839 // mapped and clobber is not set, the simulator will issue throw a
1840 // fatal and bail out of the simulation.
1841 p->allocateMem(start, length, clobber);
1842
1843 // Transfer content into target address space.
1844 PortProxy &tp = tc->getMemProxy();
1844 PortProxy &tp = tc->getVirtProxy();
1845 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1846 // In general, we should zero the mapped area for anonymous mappings,
1847 // with something like:
1848 // tp.memsetBlob(start, 0, length);
1849 // However, given that we don't support sparse mappings, and
1850 // some applications can map a couple of gigabytes of space
1851 // (intending sparse usage), that can get painfully expensive.
1852 // Fortunately, since we don't properly implement munmap either,
1853 // there's no danger of remapping used memory, so for now all
1854 // newly mapped memory should already be zeroed so we can skip it.
1855 } else {
1856 // It is possible to mmap an area larger than a file, however
1857 // accessing unmapped portions the system triggers a "Bus error"
1858 // on the host. We must know when to stop copying the file from
1859 // the host into the target address space.
1860 struct stat file_stat;
1861 if (fstat(sim_fd, &file_stat) > 0)
1862 fatal("mmap: cannot stat file");
1863
1864 // Copy the portion of the file that is resident. This requires
1865 // checking both the mmap size and the filesize that we are
1866 // trying to mmap into this space; the mmap size also depends
1867 // on the specified offset into the file.
1868 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1869 length);
1870 tp.writeBlob(start, pmap, size);
1871
1872 // Cleanup the mmap region before exiting this function.
1873 munmap(pmap, length);
1874
1875 // Maintain the symbol table for dynamic executables.
1876 // The loader will call mmap to map the images into its address
1877 // space and we intercept that here. We can verify that we are
1878 // executing inside the loader by checking the program counter value.
1879 // XXX: with multiprogrammed workloads or multi-node configurations,
1880 // this will not work since there is a single global symbol table.
1881 ObjectFile *interpreter = p->getInterpreter();
1882 if (interpreter) {
1883 Addr text_start = interpreter->textBase();
1884 Addr text_end = text_start + interpreter->textSize();
1885
1886 Addr pc = tc->pcState().pc();
1887
1888 if (pc >= text_start && pc < text_end) {
1889 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1890 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1891 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1892
1893 if (lib) {
1894 lib->loadAllSymbols(debugSymbolTable,
1895 lib->textBase(), start);
1896 }
1897 }
1898 }
1899
1900 // Note that we do not zero out the remainder of the mapping. This
1901 // is done by a real system, but it probably will not affect
1902 // execution (hopefully).
1903 }
1904
1905 return start;
1906}
1907
1908template <class OS>
1909SyscallReturn
1910pwrite64Func(SyscallDesc *desc, int num, ThreadContext *tc)
1911{
1912 int index = 0;
1913 auto p = tc->getProcessPtr();
1914 int tgt_fd = p->getSyscallArg(tc, index);
1915 Addr bufPtr = p->getSyscallArg(tc, index);
1916 int nbytes = p->getSyscallArg(tc, index);
1917 int offset = p->getSyscallArg(tc, index);
1918
1919 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1920 if (!ffdp)
1921 return -EBADF;
1922 int sim_fd = ffdp->getSimFD();
1923
1924 BufferArg bufArg(bufPtr, nbytes);
1845 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1846 // In general, we should zero the mapped area for anonymous mappings,
1847 // with something like:
1848 // tp.memsetBlob(start, 0, length);
1849 // However, given that we don't support sparse mappings, and
1850 // some applications can map a couple of gigabytes of space
1851 // (intending sparse usage), that can get painfully expensive.
1852 // Fortunately, since we don't properly implement munmap either,
1853 // there's no danger of remapping used memory, so for now all
1854 // newly mapped memory should already be zeroed so we can skip it.
1855 } else {
1856 // It is possible to mmap an area larger than a file, however
1857 // accessing unmapped portions the system triggers a "Bus error"
1858 // on the host. We must know when to stop copying the file from
1859 // the host into the target address space.
1860 struct stat file_stat;
1861 if (fstat(sim_fd, &file_stat) > 0)
1862 fatal("mmap: cannot stat file");
1863
1864 // Copy the portion of the file that is resident. This requires
1865 // checking both the mmap size and the filesize that we are
1866 // trying to mmap into this space; the mmap size also depends
1867 // on the specified offset into the file.
1868 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1869 length);
1870 tp.writeBlob(start, pmap, size);
1871
1872 // Cleanup the mmap region before exiting this function.
1873 munmap(pmap, length);
1874
1875 // Maintain the symbol table for dynamic executables.
1876 // The loader will call mmap to map the images into its address
1877 // space and we intercept that here. We can verify that we are
1878 // executing inside the loader by checking the program counter value.
1879 // XXX: with multiprogrammed workloads or multi-node configurations,
1880 // this will not work since there is a single global symbol table.
1881 ObjectFile *interpreter = p->getInterpreter();
1882 if (interpreter) {
1883 Addr text_start = interpreter->textBase();
1884 Addr text_end = text_start + interpreter->textSize();
1885
1886 Addr pc = tc->pcState().pc();
1887
1888 if (pc >= text_start && pc < text_end) {
1889 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1890 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1891 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1892
1893 if (lib) {
1894 lib->loadAllSymbols(debugSymbolTable,
1895 lib->textBase(), start);
1896 }
1897 }
1898 }
1899
1900 // Note that we do not zero out the remainder of the mapping. This
1901 // is done by a real system, but it probably will not affect
1902 // execution (hopefully).
1903 }
1904
1905 return start;
1906}
1907
1908template <class OS>
1909SyscallReturn
1910pwrite64Func(SyscallDesc *desc, int num, ThreadContext *tc)
1911{
1912 int index = 0;
1913 auto p = tc->getProcessPtr();
1914 int tgt_fd = p->getSyscallArg(tc, index);
1915 Addr bufPtr = p->getSyscallArg(tc, index);
1916 int nbytes = p->getSyscallArg(tc, index);
1917 int offset = p->getSyscallArg(tc, index);
1918
1919 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1920 if (!ffdp)
1921 return -EBADF;
1922 int sim_fd = ffdp->getSimFD();
1923
1924 BufferArg bufArg(bufPtr, nbytes);
1925 bufArg.copyIn(tc->getMemProxy());
1925 bufArg.copyIn(tc->getVirtProxy());
1926
1927 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1928
1929 return (bytes_written == -1) ? -errno : bytes_written;
1930}
1931
1932/// Target mmap() handler.
1933template <class OS>
1934SyscallReturn
1935mmapFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1936{
1937 return mmapImpl<OS>(desc, num, tc, false);
1938}
1939
1940/// Target mmap2() handler.
1941template <class OS>
1942SyscallReturn
1943mmap2Func(SyscallDesc *desc, int num, ThreadContext *tc)
1944{
1945 return mmapImpl<OS>(desc, num, tc, true);
1946}
1947
1948/// Target getrlimit() handler.
1949template <class OS>
1950SyscallReturn
1951getrlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1952{
1953 int index = 0;
1954 auto process = tc->getProcessPtr();
1955 unsigned resource = process->getSyscallArg(tc, index);
1956 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1957
1958 switch (resource) {
1959 case OS::TGT_RLIMIT_STACK:
1960 // max stack size in bytes: make up a number (8MB for now)
1961 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1962 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1963 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1964 break;
1965
1966 case OS::TGT_RLIMIT_DATA:
1967 // max data segment size in bytes: make up a number
1968 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1969 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1970 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1971 break;
1972
1973 default:
1974 warn("getrlimit: unimplemented resource %d", resource);
1975 return -EINVAL;
1976 break;
1977 }
1978
1926
1927 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1928
1929 return (bytes_written == -1) ? -errno : bytes_written;
1930}
1931
1932/// Target mmap() handler.
1933template <class OS>
1934SyscallReturn
1935mmapFunc(SyscallDesc *desc, int num, ThreadContext *tc)
1936{
1937 return mmapImpl<OS>(desc, num, tc, false);
1938}
1939
1940/// Target mmap2() handler.
1941template <class OS>
1942SyscallReturn
1943mmap2Func(SyscallDesc *desc, int num, ThreadContext *tc)
1944{
1945 return mmapImpl<OS>(desc, num, tc, true);
1946}
1947
1948/// Target getrlimit() handler.
1949template <class OS>
1950SyscallReturn
1951getrlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1952{
1953 int index = 0;
1954 auto process = tc->getProcessPtr();
1955 unsigned resource = process->getSyscallArg(tc, index);
1956 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1957
1958 switch (resource) {
1959 case OS::TGT_RLIMIT_STACK:
1960 // max stack size in bytes: make up a number (8MB for now)
1961 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1962 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1963 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1964 break;
1965
1966 case OS::TGT_RLIMIT_DATA:
1967 // max data segment size in bytes: make up a number
1968 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1969 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1970 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1971 break;
1972
1973 default:
1974 warn("getrlimit: unimplemented resource %d", resource);
1975 return -EINVAL;
1976 break;
1977 }
1978
1979 rlp.copyOut(tc->getMemProxy());
1979 rlp.copyOut(tc->getVirtProxy());
1980 return 0;
1981}
1982
1983template <class OS>
1984SyscallReturn
1985prlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1986{
1987 int index = 0;
1988 auto process = tc->getProcessPtr();
1989 if (process->getSyscallArg(tc, index) != 0)
1990 {
1991 warn("prlimit: ignoring rlimits for nonzero pid");
1992 return -EPERM;
1993 }
1994 int resource = process->getSyscallArg(tc, index);
1995 Addr n = process->getSyscallArg(tc, index);
1996 if (n != 0)
1997 warn("prlimit: ignoring new rlimit");
1998 Addr o = process->getSyscallArg(tc, index);
1999 if (o != 0)
2000 {
2001 TypedBufferArg<typename OS::rlimit> rlp(o);
2002 switch (resource) {
2003 case OS::TGT_RLIMIT_STACK:
2004 // max stack size in bytes: make up a number (8MB for now)
2005 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2006 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2007 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2008 break;
2009 case OS::TGT_RLIMIT_DATA:
2010 // max data segment size in bytes: make up a number
2011 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
2012 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2013 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2014 break;
2015 default:
2016 warn("prlimit: unimplemented resource %d", resource);
2017 return -EINVAL;
2018 break;
2019 }
1980 return 0;
1981}
1982
1983template <class OS>
1984SyscallReturn
1985prlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
1986{
1987 int index = 0;
1988 auto process = tc->getProcessPtr();
1989 if (process->getSyscallArg(tc, index) != 0)
1990 {
1991 warn("prlimit: ignoring rlimits for nonzero pid");
1992 return -EPERM;
1993 }
1994 int resource = process->getSyscallArg(tc, index);
1995 Addr n = process->getSyscallArg(tc, index);
1996 if (n != 0)
1997 warn("prlimit: ignoring new rlimit");
1998 Addr o = process->getSyscallArg(tc, index);
1999 if (o != 0)
2000 {
2001 TypedBufferArg<typename OS::rlimit> rlp(o);
2002 switch (resource) {
2003 case OS::TGT_RLIMIT_STACK:
2004 // max stack size in bytes: make up a number (8MB for now)
2005 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
2006 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2007 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2008 break;
2009 case OS::TGT_RLIMIT_DATA:
2010 // max data segment size in bytes: make up a number
2011 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
2012 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
2013 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
2014 break;
2015 default:
2016 warn("prlimit: unimplemented resource %d", resource);
2017 return -EINVAL;
2018 break;
2019 }
2020 rlp.copyOut(tc->getMemProxy());
2020 rlp.copyOut(tc->getVirtProxy());
2021 }
2022 return 0;
2023}
2024
2025/// Target clock_gettime() function.
2026template <class OS>
2027SyscallReturn
2028clock_gettimeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2029{
2030 int index = 1;
2031 auto p = tc->getProcessPtr();
2032 //int clk_id = p->getSyscallArg(tc, index);
2033 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2034
2035 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
2036 tp->tv_sec += seconds_since_epoch;
2037 tp->tv_sec = TheISA::htog(tp->tv_sec);
2038 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
2039
2021 }
2022 return 0;
2023}
2024
2025/// Target clock_gettime() function.
2026template <class OS>
2027SyscallReturn
2028clock_gettimeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2029{
2030 int index = 1;
2031 auto p = tc->getProcessPtr();
2032 //int clk_id = p->getSyscallArg(tc, index);
2033 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2034
2035 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
2036 tp->tv_sec += seconds_since_epoch;
2037 tp->tv_sec = TheISA::htog(tp->tv_sec);
2038 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
2039
2040 tp.copyOut(tc->getMemProxy());
2040 tp.copyOut(tc->getVirtProxy());
2041
2042 return 0;
2043}
2044
2045/// Target clock_getres() function.
2046template <class OS>
2047SyscallReturn
2048clock_getresFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2049{
2050 int index = 1;
2051 auto p = tc->getProcessPtr();
2052 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2053
2054 // Set resolution at ns, which is what clock_gettime() returns
2055 tp->tv_sec = 0;
2056 tp->tv_nsec = 1;
2057
2041
2042 return 0;
2043}
2044
2045/// Target clock_getres() function.
2046template <class OS>
2047SyscallReturn
2048clock_getresFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2049{
2050 int index = 1;
2051 auto p = tc->getProcessPtr();
2052 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
2053
2054 // Set resolution at ns, which is what clock_gettime() returns
2055 tp->tv_sec = 0;
2056 tp->tv_nsec = 1;
2057
2058 tp.copyOut(tc->getMemProxy());
2058 tp.copyOut(tc->getVirtProxy());
2059
2060 return 0;
2061}
2062
2063/// Target gettimeofday() handler.
2064template <class OS>
2065SyscallReturn
2066gettimeofdayFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2067{
2068 int index = 0;
2069 auto process = tc->getProcessPtr();
2070 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
2071
2072 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
2073 tp->tv_sec += seconds_since_epoch;
2074 tp->tv_sec = TheISA::htog(tp->tv_sec);
2075 tp->tv_usec = TheISA::htog(tp->tv_usec);
2076
2059
2060 return 0;
2061}
2062
2063/// Target gettimeofday() handler.
2064template <class OS>
2065SyscallReturn
2066gettimeofdayFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2067{
2068 int index = 0;
2069 auto process = tc->getProcessPtr();
2070 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
2071
2072 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
2073 tp->tv_sec += seconds_since_epoch;
2074 tp->tv_sec = TheISA::htog(tp->tv_sec);
2075 tp->tv_usec = TheISA::htog(tp->tv_usec);
2076
2077 tp.copyOut(tc->getMemProxy());
2077 tp.copyOut(tc->getVirtProxy());
2078
2079 return 0;
2080}
2081
2082
2083/// Target utimes() handler.
2084template <class OS>
2085SyscallReturn
2086utimesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2087{
2088 std::string path;
2089 auto process = tc->getProcessPtr();
2090
2091 int index = 0;
2078
2079 return 0;
2080}
2081
2082
2083/// Target utimes() handler.
2084template <class OS>
2085SyscallReturn
2086utimesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2087{
2088 std::string path;
2089 auto process = tc->getProcessPtr();
2090
2091 int index = 0;
2092 if (!tc->getMemProxy().tryReadString(path,
2092 if (!tc->getVirtProxy().tryReadString(path,
2093 process->getSyscallArg(tc, index))) {
2094 return -EFAULT;
2095 }
2096
2097 TypedBufferArg<typename OS::timeval [2]>
2098 tp(process->getSyscallArg(tc, index));
2093 process->getSyscallArg(tc, index))) {
2094 return -EFAULT;
2095 }
2096
2097 TypedBufferArg<typename OS::timeval [2]>
2098 tp(process->getSyscallArg(tc, index));
2099 tp.copyIn(tc->getMemProxy());
2099 tp.copyIn(tc->getVirtProxy());
2100
2101 struct timeval hostTimeval[2];
2102 for (int i = 0; i < 2; ++i) {
2103 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2104 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2105 }
2106
2107 // Adjust path for cwd and redirection
2108 path = process->checkPathRedirect(path);
2109
2110 int result = utimes(path.c_str(), hostTimeval);
2111
2112 if (result < 0)
2113 return -errno;
2114
2115 return 0;
2116}
2117
2118template <class OS>
2119SyscallReturn
2120execveFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2121{
2122 desc->setFlags(0);
2123 auto p = tc->getProcessPtr();
2124
2125 int index = 0;
2126 std::string path;
2100
2101 struct timeval hostTimeval[2];
2102 for (int i = 0; i < 2; ++i) {
2103 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
2104 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
2105 }
2106
2107 // Adjust path for cwd and redirection
2108 path = process->checkPathRedirect(path);
2109
2110 int result = utimes(path.c_str(), hostTimeval);
2111
2112 if (result < 0)
2113 return -errno;
2114
2115 return 0;
2116}
2117
2118template <class OS>
2119SyscallReturn
2120execveFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2121{
2122 desc->setFlags(0);
2123 auto p = tc->getProcessPtr();
2124
2125 int index = 0;
2126 std::string path;
2127 PortProxy & mem_proxy = tc->getMemProxy();
2127 PortProxy & mem_proxy = tc->getVirtProxy();
2128 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2129 return -EFAULT;
2130
2131 if (access(path.c_str(), F_OK) == -1)
2132 return -EACCES;
2133
2134 auto read_in = [](std::vector<std::string> &vect,
2135 PortProxy &mem_proxy, Addr mem_loc)
2136 {
2137 for (int inc = 0; ; inc++) {
2138 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2139 b.copyIn(mem_proxy);
2140
2141 if (!*(Addr*)b.bufferPtr())
2142 break;
2143
2144 vect.push_back(std::string());
2145 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2146 }
2147 };
2148
2149 /**
2150 * Note that ProcessParams is generated by swig and there are no other
2151 * examples of how to create anything but this default constructor. The
2152 * fields are manually initialized instead of passing parameters to the
2153 * constructor.
2154 */
2155 ProcessParams *pp = new ProcessParams();
2156 pp->executable = path;
2157 Addr argv_mem_loc = p->getSyscallArg(tc, index);
2158 read_in(pp->cmd, mem_proxy, argv_mem_loc);
2159 Addr envp_mem_loc = p->getSyscallArg(tc, index);
2160 read_in(pp->env, mem_proxy, envp_mem_loc);
2161 pp->uid = p->uid();
2162 pp->egid = p->egid();
2163 pp->euid = p->euid();
2164 pp->gid = p->gid();
2165 pp->ppid = p->ppid();
2166 pp->pid = p->pid();
2167 pp->input.assign("cin");
2168 pp->output.assign("cout");
2169 pp->errout.assign("cerr");
2170 pp->cwd.assign(p->tgtCwd);
2171 pp->system = p->system;
2172 /**
2173 * Prevent process object creation with identical PIDs (which will trip
2174 * a fatal check in Process constructor). The execve call is supposed to
2175 * take over the currently executing process' identity but replace
2176 * whatever it is doing with a new process image. Instead of hijacking
2177 * the process object in the simulator, we create a new process object
2178 * and bind to the previous process' thread below (hijacking the thread).
2179 */
2180 p->system->PIDs.erase(p->pid());
2181 Process *new_p = pp->create();
2182 delete pp;
2183
2184 /**
2185 * Work through the file descriptor array and close any files marked
2186 * close-on-exec.
2187 */
2188 new_p->fds = p->fds;
2189 for (int i = 0; i < new_p->fds->getSize(); i++) {
2190 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2191 if (fdep && fdep->getCOE())
2192 new_p->fds->closeFDEntry(i);
2193 }
2194
2195 *new_p->sigchld = true;
2196
2197 delete p;
2198 tc->clearArchRegs();
2199 tc->setProcessPtr(new_p);
2200 new_p->assignThreadContext(tc->contextId());
2201 new_p->initState();
2202 tc->activate();
2203 TheISA::PCState pcState = tc->pcState();
2204 tc->setNPC(pcState.instAddr());
2205
2206 desc->setFlags(SyscallDesc::SuppressReturnValue);
2207 return 0;
2208}
2209
2210/// Target getrusage() function.
2211template <class OS>
2212SyscallReturn
2213getrusageFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2214{
2215 int index = 0;
2216 auto process = tc->getProcessPtr();
2217 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2218 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2219
2220 rup->ru_utime.tv_sec = 0;
2221 rup->ru_utime.tv_usec = 0;
2222 rup->ru_stime.tv_sec = 0;
2223 rup->ru_stime.tv_usec = 0;
2224 rup->ru_maxrss = 0;
2225 rup->ru_ixrss = 0;
2226 rup->ru_idrss = 0;
2227 rup->ru_isrss = 0;
2228 rup->ru_minflt = 0;
2229 rup->ru_majflt = 0;
2230 rup->ru_nswap = 0;
2231 rup->ru_inblock = 0;
2232 rup->ru_oublock = 0;
2233 rup->ru_msgsnd = 0;
2234 rup->ru_msgrcv = 0;
2235 rup->ru_nsignals = 0;
2236 rup->ru_nvcsw = 0;
2237 rup->ru_nivcsw = 0;
2238
2239 switch (who) {
2240 case OS::TGT_RUSAGE_SELF:
2241 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2242 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2243 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2244 break;
2245
2246 case OS::TGT_RUSAGE_CHILDREN:
2247 // do nothing. We have no child processes, so they take no time.
2248 break;
2249
2250 default:
2251 // don't really handle THREAD or CHILDREN, but just warn and
2252 // plow ahead
2253 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2254 who);
2255 }
2256
2128 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
2129 return -EFAULT;
2130
2131 if (access(path.c_str(), F_OK) == -1)
2132 return -EACCES;
2133
2134 auto read_in = [](std::vector<std::string> &vect,
2135 PortProxy &mem_proxy, Addr mem_loc)
2136 {
2137 for (int inc = 0; ; inc++) {
2138 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
2139 b.copyIn(mem_proxy);
2140
2141 if (!*(Addr*)b.bufferPtr())
2142 break;
2143
2144 vect.push_back(std::string());
2145 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
2146 }
2147 };
2148
2149 /**
2150 * Note that ProcessParams is generated by swig and there are no other
2151 * examples of how to create anything but this default constructor. The
2152 * fields are manually initialized instead of passing parameters to the
2153 * constructor.
2154 */
2155 ProcessParams *pp = new ProcessParams();
2156 pp->executable = path;
2157 Addr argv_mem_loc = p->getSyscallArg(tc, index);
2158 read_in(pp->cmd, mem_proxy, argv_mem_loc);
2159 Addr envp_mem_loc = p->getSyscallArg(tc, index);
2160 read_in(pp->env, mem_proxy, envp_mem_loc);
2161 pp->uid = p->uid();
2162 pp->egid = p->egid();
2163 pp->euid = p->euid();
2164 pp->gid = p->gid();
2165 pp->ppid = p->ppid();
2166 pp->pid = p->pid();
2167 pp->input.assign("cin");
2168 pp->output.assign("cout");
2169 pp->errout.assign("cerr");
2170 pp->cwd.assign(p->tgtCwd);
2171 pp->system = p->system;
2172 /**
2173 * Prevent process object creation with identical PIDs (which will trip
2174 * a fatal check in Process constructor). The execve call is supposed to
2175 * take over the currently executing process' identity but replace
2176 * whatever it is doing with a new process image. Instead of hijacking
2177 * the process object in the simulator, we create a new process object
2178 * and bind to the previous process' thread below (hijacking the thread).
2179 */
2180 p->system->PIDs.erase(p->pid());
2181 Process *new_p = pp->create();
2182 delete pp;
2183
2184 /**
2185 * Work through the file descriptor array and close any files marked
2186 * close-on-exec.
2187 */
2188 new_p->fds = p->fds;
2189 for (int i = 0; i < new_p->fds->getSize(); i++) {
2190 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2191 if (fdep && fdep->getCOE())
2192 new_p->fds->closeFDEntry(i);
2193 }
2194
2195 *new_p->sigchld = true;
2196
2197 delete p;
2198 tc->clearArchRegs();
2199 tc->setProcessPtr(new_p);
2200 new_p->assignThreadContext(tc->contextId());
2201 new_p->initState();
2202 tc->activate();
2203 TheISA::PCState pcState = tc->pcState();
2204 tc->setNPC(pcState.instAddr());
2205
2206 desc->setFlags(SyscallDesc::SuppressReturnValue);
2207 return 0;
2208}
2209
2210/// Target getrusage() function.
2211template <class OS>
2212SyscallReturn
2213getrusageFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2214{
2215 int index = 0;
2216 auto process = tc->getProcessPtr();
2217 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2218 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2219
2220 rup->ru_utime.tv_sec = 0;
2221 rup->ru_utime.tv_usec = 0;
2222 rup->ru_stime.tv_sec = 0;
2223 rup->ru_stime.tv_usec = 0;
2224 rup->ru_maxrss = 0;
2225 rup->ru_ixrss = 0;
2226 rup->ru_idrss = 0;
2227 rup->ru_isrss = 0;
2228 rup->ru_minflt = 0;
2229 rup->ru_majflt = 0;
2230 rup->ru_nswap = 0;
2231 rup->ru_inblock = 0;
2232 rup->ru_oublock = 0;
2233 rup->ru_msgsnd = 0;
2234 rup->ru_msgrcv = 0;
2235 rup->ru_nsignals = 0;
2236 rup->ru_nvcsw = 0;
2237 rup->ru_nivcsw = 0;
2238
2239 switch (who) {
2240 case OS::TGT_RUSAGE_SELF:
2241 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2242 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2243 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2244 break;
2245
2246 case OS::TGT_RUSAGE_CHILDREN:
2247 // do nothing. We have no child processes, so they take no time.
2248 break;
2249
2250 default:
2251 // don't really handle THREAD or CHILDREN, but just warn and
2252 // plow ahead
2253 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2254 who);
2255 }
2256
2257 rup.copyOut(tc->getMemProxy());
2257 rup.copyOut(tc->getVirtProxy());
2258
2259 return 0;
2260}
2261
2262/// Target times() function.
2263template <class OS>
2264SyscallReturn
2265timesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2266{
2267 int index = 0;
2268 auto process = tc->getProcessPtr();
2269 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2270
2271 // Fill in the time structure (in clocks)
2272 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2273 bufp->tms_utime = clocks;
2274 bufp->tms_stime = 0;
2275 bufp->tms_cutime = 0;
2276 bufp->tms_cstime = 0;
2277
2278 // Convert to host endianness
2279 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2280
2281 // Write back
2258
2259 return 0;
2260}
2261
2262/// Target times() function.
2263template <class OS>
2264SyscallReturn
2265timesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2266{
2267 int index = 0;
2268 auto process = tc->getProcessPtr();
2269 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2270
2271 // Fill in the time structure (in clocks)
2272 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2273 bufp->tms_utime = clocks;
2274 bufp->tms_stime = 0;
2275 bufp->tms_cutime = 0;
2276 bufp->tms_cstime = 0;
2277
2278 // Convert to host endianness
2279 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2280
2281 // Write back
2282 bufp.copyOut(tc->getMemProxy());
2282 bufp.copyOut(tc->getVirtProxy());
2283
2284 // Return clock ticks since system boot
2285 return clocks;
2286}
2287
2288/// Target time() function.
2289template <class OS>
2290SyscallReturn
2291timeFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2292{
2293 typename OS::time_t sec, usec;
2294 getElapsedTimeMicro(sec, usec);
2295 sec += seconds_since_epoch;
2296
2297 int index = 0;
2298 auto process = tc->getProcessPtr();
2299 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2300 if (taddr != 0) {
2301 typename OS::time_t t = sec;
2302 t = TheISA::htog(t);
2283
2284 // Return clock ticks since system boot
2285 return clocks;
2286}
2287
2288/// Target time() function.
2289template <class OS>
2290SyscallReturn
2291timeFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2292{
2293 typename OS::time_t sec, usec;
2294 getElapsedTimeMicro(sec, usec);
2295 sec += seconds_since_epoch;
2296
2297 int index = 0;
2298 auto process = tc->getProcessPtr();
2299 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2300 if (taddr != 0) {
2301 typename OS::time_t t = sec;
2302 t = TheISA::htog(t);
2303 PortProxy &p = tc->getMemProxy();
2303 PortProxy &p = tc->getVirtProxy();
2304 p.writeBlob(taddr, &t, (int)sizeof(typename OS::time_t));
2305 }
2306 return sec;
2307}
2308
2309template <class OS>
2310SyscallReturn
2311tgkillFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2312{
2313 int index = 0;
2314 auto process = tc->getProcessPtr();
2315 int tgid = process->getSyscallArg(tc, index);
2316 int tid = process->getSyscallArg(tc, index);
2317 int sig = process->getSyscallArg(tc, index);
2318
2319 /**
2320 * This system call is intended to allow killing a specific thread
2321 * within an arbitrary thread group if sanctioned with permission checks.
2322 * It's usually true that threads share the termination signal as pointed
2323 * out by the pthread_kill man page and this seems to be the intended
2324 * usage. Due to this being an emulated environment, assume the following:
2325 * Threads are allowed to call tgkill because the EUID for all threads
2326 * should be the same. There is no signal handling mechanism for kernel
2327 * registration of signal handlers since signals are poorly supported in
2328 * emulation mode. Since signal handlers cannot be registered, all
2329 * threads within in a thread group must share the termination signal.
2330 * We never exhaust PIDs so there's no chance of finding the wrong one
2331 * due to PID rollover.
2332 */
2333
2334 System *sys = tc->getSystemPtr();
2335 Process *tgt_proc = nullptr;
2336 for (int i = 0; i < sys->numContexts(); i++) {
2337 Process *temp = sys->threadContexts[i]->getProcessPtr();
2338 if (temp->pid() == tid) {
2339 tgt_proc = temp;
2340 break;
2341 }
2342 }
2343
2344 if (sig != 0 || sig != OS::TGT_SIGABRT)
2345 return -EINVAL;
2346
2347 if (tgt_proc == nullptr)
2348 return -ESRCH;
2349
2350 if (tgid != -1 && tgt_proc->tgid() != tgid)
2351 return -ESRCH;
2352
2353 if (sig == OS::TGT_SIGABRT)
2354 exitGroupFunc(desc, 252, tc);
2355
2356 return 0;
2357}
2358
2359template <class OS>
2360SyscallReturn
2361socketFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2362{
2363 int index = 0;
2364 auto p = tc->getProcessPtr();
2365 int domain = p->getSyscallArg(tc, index);
2366 int type = p->getSyscallArg(tc, index);
2367 int prot = p->getSyscallArg(tc, index);
2368
2369 int sim_fd = socket(domain, type, prot);
2370 if (sim_fd == -1)
2371 return -errno;
2372
2373 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2374 int tgt_fd = p->fds->allocFD(sfdp);
2375
2376 return tgt_fd;
2377}
2378
2379template <class OS>
2380SyscallReturn
2381socketpairFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2382{
2383 int index = 0;
2384 auto p = tc->getProcessPtr();
2385 int domain = p->getSyscallArg(tc, index);
2386 int type = p->getSyscallArg(tc, index);
2387 int prot = p->getSyscallArg(tc, index);
2388 Addr svPtr = p->getSyscallArg(tc, index);
2389
2390 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2391 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2392 if (status == -1)
2393 return -errno;
2394
2395 int *fds = (int *)svBuf.bufferPtr();
2396
2397 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2398 fds[0] = p->fds->allocFD(sfdp1);
2399 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2400 fds[1] = p->fds->allocFD(sfdp2);
2304 p.writeBlob(taddr, &t, (int)sizeof(typename OS::time_t));
2305 }
2306 return sec;
2307}
2308
2309template <class OS>
2310SyscallReturn
2311tgkillFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2312{
2313 int index = 0;
2314 auto process = tc->getProcessPtr();
2315 int tgid = process->getSyscallArg(tc, index);
2316 int tid = process->getSyscallArg(tc, index);
2317 int sig = process->getSyscallArg(tc, index);
2318
2319 /**
2320 * This system call is intended to allow killing a specific thread
2321 * within an arbitrary thread group if sanctioned with permission checks.
2322 * It's usually true that threads share the termination signal as pointed
2323 * out by the pthread_kill man page and this seems to be the intended
2324 * usage. Due to this being an emulated environment, assume the following:
2325 * Threads are allowed to call tgkill because the EUID for all threads
2326 * should be the same. There is no signal handling mechanism for kernel
2327 * registration of signal handlers since signals are poorly supported in
2328 * emulation mode. Since signal handlers cannot be registered, all
2329 * threads within in a thread group must share the termination signal.
2330 * We never exhaust PIDs so there's no chance of finding the wrong one
2331 * due to PID rollover.
2332 */
2333
2334 System *sys = tc->getSystemPtr();
2335 Process *tgt_proc = nullptr;
2336 for (int i = 0; i < sys->numContexts(); i++) {
2337 Process *temp = sys->threadContexts[i]->getProcessPtr();
2338 if (temp->pid() == tid) {
2339 tgt_proc = temp;
2340 break;
2341 }
2342 }
2343
2344 if (sig != 0 || sig != OS::TGT_SIGABRT)
2345 return -EINVAL;
2346
2347 if (tgt_proc == nullptr)
2348 return -ESRCH;
2349
2350 if (tgid != -1 && tgt_proc->tgid() != tgid)
2351 return -ESRCH;
2352
2353 if (sig == OS::TGT_SIGABRT)
2354 exitGroupFunc(desc, 252, tc);
2355
2356 return 0;
2357}
2358
2359template <class OS>
2360SyscallReturn
2361socketFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2362{
2363 int index = 0;
2364 auto p = tc->getProcessPtr();
2365 int domain = p->getSyscallArg(tc, index);
2366 int type = p->getSyscallArg(tc, index);
2367 int prot = p->getSyscallArg(tc, index);
2368
2369 int sim_fd = socket(domain, type, prot);
2370 if (sim_fd == -1)
2371 return -errno;
2372
2373 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2374 int tgt_fd = p->fds->allocFD(sfdp);
2375
2376 return tgt_fd;
2377}
2378
2379template <class OS>
2380SyscallReturn
2381socketpairFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2382{
2383 int index = 0;
2384 auto p = tc->getProcessPtr();
2385 int domain = p->getSyscallArg(tc, index);
2386 int type = p->getSyscallArg(tc, index);
2387 int prot = p->getSyscallArg(tc, index);
2388 Addr svPtr = p->getSyscallArg(tc, index);
2389
2390 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2391 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2392 if (status == -1)
2393 return -errno;
2394
2395 int *fds = (int *)svBuf.bufferPtr();
2396
2397 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2398 fds[0] = p->fds->allocFD(sfdp1);
2399 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2400 fds[1] = p->fds->allocFD(sfdp2);
2401 svBuf.copyOut(tc->getMemProxy());
2401 svBuf.copyOut(tc->getVirtProxy());
2402
2403 return status;
2404}
2405
2406template <class OS>
2407SyscallReturn
2408selectFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2409{
2410 int retval;
2411
2412 int index = 0;
2413 auto p = tc->getProcessPtr();
2414 int nfds_t = p->getSyscallArg(tc, index);
2415 Addr fds_read_ptr = p->getSyscallArg(tc, index);
2416 Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2417 Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2418 Addr time_val_ptr = p->getSyscallArg(tc, index);
2419
2420 TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2421 TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2422 TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2423 TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2424
2425 /**
2426 * Host fields. Notice that these use the definitions from the system
2427 * headers instead of the gem5 headers and libraries. If the host and
2428 * target have different header file definitions, this will not work.
2429 */
2430 fd_set rd_h;
2431 FD_ZERO(&rd_h);
2432 fd_set wr_h;
2433 FD_ZERO(&wr_h);
2434 fd_set ex_h;
2435 FD_ZERO(&ex_h);
2436
2437 /**
2438 * Copy in the fd_set from the target.
2439 */
2440 if (fds_read_ptr)
2402
2403 return status;
2404}
2405
2406template <class OS>
2407SyscallReturn
2408selectFunc(SyscallDesc *desc, int callnum, ThreadContext *tc)
2409{
2410 int retval;
2411
2412 int index = 0;
2413 auto p = tc->getProcessPtr();
2414 int nfds_t = p->getSyscallArg(tc, index);
2415 Addr fds_read_ptr = p->getSyscallArg(tc, index);
2416 Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2417 Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2418 Addr time_val_ptr = p->getSyscallArg(tc, index);
2419
2420 TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2421 TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2422 TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2423 TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2424
2425 /**
2426 * Host fields. Notice that these use the definitions from the system
2427 * headers instead of the gem5 headers and libraries. If the host and
2428 * target have different header file definitions, this will not work.
2429 */
2430 fd_set rd_h;
2431 FD_ZERO(&rd_h);
2432 fd_set wr_h;
2433 FD_ZERO(&wr_h);
2434 fd_set ex_h;
2435 FD_ZERO(&ex_h);
2436
2437 /**
2438 * Copy in the fd_set from the target.
2439 */
2440 if (fds_read_ptr)
2441 rd_t.copyIn(tc->getMemProxy());
2441 rd_t.copyIn(tc->getVirtProxy());
2442 if (fds_writ_ptr)
2442 if (fds_writ_ptr)
2443 wr_t.copyIn(tc->getMemProxy());
2443 wr_t.copyIn(tc->getVirtProxy());
2444 if (fds_excp_ptr)
2444 if (fds_excp_ptr)
2445 ex_t.copyIn(tc->getMemProxy());
2445 ex_t.copyIn(tc->getVirtProxy());
2446
2447 /**
2448 * We need to translate the target file descriptor set into a host file
2449 * descriptor set. This involves both our internal process fd array
2450 * and the fd_set defined in Linux header files. The nfds field also
2451 * needs to be updated as it will be only target specific after
2452 * retrieving it from the target; the nfds value is expected to be the
2453 * highest file descriptor that needs to be checked, so we need to extend
2454 * it out for nfds_h when we do the update.
2455 */
2456 int nfds_h = 0;
2457 std::map<int, int> trans_map;
2458 auto try_add_host_set = [&](fd_set *tgt_set_entry,
2459 fd_set *hst_set_entry,
2460 int iter) -> bool
2461 {
2462 /**
2463 * By this point, we know that we are looking at a valid file
2464 * descriptor set on the target. We need to check if the target file
2465 * descriptor value passed in as iter is part of the set.
2466 */
2467 if (FD_ISSET(iter, tgt_set_entry)) {
2468 /**
2469 * We know that the target file descriptor belongs to the set,
2470 * but we do not yet know if the file descriptor is valid or
2471 * that we have a host mapping. Check that now.
2472 */
2473 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2474 if (!hbfdp)
2475 return true;
2476 auto sim_fd = hbfdp->getSimFD();
2477
2478 /**
2479 * Add the sim_fd to tgt_fd translation into trans_map for use
2480 * later when we need to zero the target fd_set structures and
2481 * then update them with hits returned from the host select call.
2482 */
2483 trans_map[sim_fd] = iter;
2484
2485 /**
2486 * We know that the host file descriptor exists so now we check
2487 * if we need to update the max count for nfds_h before passing
2488 * the duplicated structure into the host.
2489 */
2490 nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2491
2492 /**
2493 * Add the host file descriptor to the set that we are going to
2494 * pass into the host.
2495 */
2496 FD_SET(sim_fd, hst_set_entry);
2497 }
2498 return false;
2499 };
2500
2501 for (int i = 0; i < nfds_t; i++) {
2502 if (fds_read_ptr) {
2503 bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2504 if (ebadf) return -EBADF;
2505 }
2506 if (fds_writ_ptr) {
2507 bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2508 if (ebadf) return -EBADF;
2509 }
2510 if (fds_excp_ptr) {
2511 bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2512 if (ebadf) return -EBADF;
2513 }
2514 }
2515
2516 if (time_val_ptr) {
2517 /**
2518 * It might be possible to decrement the timeval based on some
2519 * derivation of wall clock determined from elapsed simulator ticks
2520 * but that seems like overkill. Rather, we just set the timeval with
2521 * zero timeout. (There is no reason to block during the simulation
2522 * as it only decreases simulator performance.)
2523 */
2524 tp->tv_sec = 0;
2525 tp->tv_usec = 0;
2526
2527 retval = select(nfds_h,
2528 fds_read_ptr ? &rd_h : nullptr,
2529 fds_writ_ptr ? &wr_h : nullptr,
2530 fds_excp_ptr ? &ex_h : nullptr,
2531 (timeval*)&*tp);
2532 } else {
2533 /**
2534 * If the timeval pointer is null, setup a new timeval structure to
2535 * pass into the host select call. Unfortunately, we will need to
2536 * manually check the return value and throw a retry fault if the
2537 * return value is zero. Allowing the system call to block will
2538 * likely deadlock the event queue.
2539 */
2540 struct timeval tv = { 0, 0 };
2541
2542 retval = select(nfds_h,
2543 fds_read_ptr ? &rd_h : nullptr,
2544 fds_writ_ptr ? &wr_h : nullptr,
2545 fds_excp_ptr ? &ex_h : nullptr,
2546 &tv);
2547
2548 if (retval == 0) {
2549 /**
2550 * If blocking indefinitely, check the signal list to see if a
2551 * signal would break the poll out of the retry cycle and try to
2552 * return the signal interrupt instead.
2553 */
2554 for (auto sig : tc->getSystemPtr()->signalList)
2555 if (sig.receiver == p)
2556 return -EINTR;
2557 return SyscallReturn::retry();
2558 }
2559 }
2560
2561 if (retval == -1)
2562 return -errno;
2563
2564 FD_ZERO((fd_set*)&*rd_t);
2565 FD_ZERO((fd_set*)&*wr_t);
2566 FD_ZERO((fd_set*)&*ex_t);
2567
2568 /**
2569 * We need to translate the host file descriptor set into a target file
2570 * descriptor set. This involves both our internal process fd array
2571 * and the fd_set defined in header files.
2572 */
2573 for (int i = 0; i < nfds_h; i++) {
2574 if (fds_read_ptr) {
2575 if (FD_ISSET(i, &rd_h))
2576 FD_SET(trans_map[i], (fd_set*)&*rd_t);
2577 }
2578
2579 if (fds_writ_ptr) {
2580 if (FD_ISSET(i, &wr_h))
2581 FD_SET(trans_map[i], (fd_set*)&*wr_t);
2582 }
2583
2584 if (fds_excp_ptr) {
2585 if (FD_ISSET(i, &ex_h))
2586 FD_SET(trans_map[i], (fd_set*)&*ex_t);
2587 }
2588 }
2589
2590 if (fds_read_ptr)
2446
2447 /**
2448 * We need to translate the target file descriptor set into a host file
2449 * descriptor set. This involves both our internal process fd array
2450 * and the fd_set defined in Linux header files. The nfds field also
2451 * needs to be updated as it will be only target specific after
2452 * retrieving it from the target; the nfds value is expected to be the
2453 * highest file descriptor that needs to be checked, so we need to extend
2454 * it out for nfds_h when we do the update.
2455 */
2456 int nfds_h = 0;
2457 std::map<int, int> trans_map;
2458 auto try_add_host_set = [&](fd_set *tgt_set_entry,
2459 fd_set *hst_set_entry,
2460 int iter) -> bool
2461 {
2462 /**
2463 * By this point, we know that we are looking at a valid file
2464 * descriptor set on the target. We need to check if the target file
2465 * descriptor value passed in as iter is part of the set.
2466 */
2467 if (FD_ISSET(iter, tgt_set_entry)) {
2468 /**
2469 * We know that the target file descriptor belongs to the set,
2470 * but we do not yet know if the file descriptor is valid or
2471 * that we have a host mapping. Check that now.
2472 */
2473 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2474 if (!hbfdp)
2475 return true;
2476 auto sim_fd = hbfdp->getSimFD();
2477
2478 /**
2479 * Add the sim_fd to tgt_fd translation into trans_map for use
2480 * later when we need to zero the target fd_set structures and
2481 * then update them with hits returned from the host select call.
2482 */
2483 trans_map[sim_fd] = iter;
2484
2485 /**
2486 * We know that the host file descriptor exists so now we check
2487 * if we need to update the max count for nfds_h before passing
2488 * the duplicated structure into the host.
2489 */
2490 nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2491
2492 /**
2493 * Add the host file descriptor to the set that we are going to
2494 * pass into the host.
2495 */
2496 FD_SET(sim_fd, hst_set_entry);
2497 }
2498 return false;
2499 };
2500
2501 for (int i = 0; i < nfds_t; i++) {
2502 if (fds_read_ptr) {
2503 bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2504 if (ebadf) return -EBADF;
2505 }
2506 if (fds_writ_ptr) {
2507 bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2508 if (ebadf) return -EBADF;
2509 }
2510 if (fds_excp_ptr) {
2511 bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2512 if (ebadf) return -EBADF;
2513 }
2514 }
2515
2516 if (time_val_ptr) {
2517 /**
2518 * It might be possible to decrement the timeval based on some
2519 * derivation of wall clock determined from elapsed simulator ticks
2520 * but that seems like overkill. Rather, we just set the timeval with
2521 * zero timeout. (There is no reason to block during the simulation
2522 * as it only decreases simulator performance.)
2523 */
2524 tp->tv_sec = 0;
2525 tp->tv_usec = 0;
2526
2527 retval = select(nfds_h,
2528 fds_read_ptr ? &rd_h : nullptr,
2529 fds_writ_ptr ? &wr_h : nullptr,
2530 fds_excp_ptr ? &ex_h : nullptr,
2531 (timeval*)&*tp);
2532 } else {
2533 /**
2534 * If the timeval pointer is null, setup a new timeval structure to
2535 * pass into the host select call. Unfortunately, we will need to
2536 * manually check the return value and throw a retry fault if the
2537 * return value is zero. Allowing the system call to block will
2538 * likely deadlock the event queue.
2539 */
2540 struct timeval tv = { 0, 0 };
2541
2542 retval = select(nfds_h,
2543 fds_read_ptr ? &rd_h : nullptr,
2544 fds_writ_ptr ? &wr_h : nullptr,
2545 fds_excp_ptr ? &ex_h : nullptr,
2546 &tv);
2547
2548 if (retval == 0) {
2549 /**
2550 * If blocking indefinitely, check the signal list to see if a
2551 * signal would break the poll out of the retry cycle and try to
2552 * return the signal interrupt instead.
2553 */
2554 for (auto sig : tc->getSystemPtr()->signalList)
2555 if (sig.receiver == p)
2556 return -EINTR;
2557 return SyscallReturn::retry();
2558 }
2559 }
2560
2561 if (retval == -1)
2562 return -errno;
2563
2564 FD_ZERO((fd_set*)&*rd_t);
2565 FD_ZERO((fd_set*)&*wr_t);
2566 FD_ZERO((fd_set*)&*ex_t);
2567
2568 /**
2569 * We need to translate the host file descriptor set into a target file
2570 * descriptor set. This involves both our internal process fd array
2571 * and the fd_set defined in header files.
2572 */
2573 for (int i = 0; i < nfds_h; i++) {
2574 if (fds_read_ptr) {
2575 if (FD_ISSET(i, &rd_h))
2576 FD_SET(trans_map[i], (fd_set*)&*rd_t);
2577 }
2578
2579 if (fds_writ_ptr) {
2580 if (FD_ISSET(i, &wr_h))
2581 FD_SET(trans_map[i], (fd_set*)&*wr_t);
2582 }
2583
2584 if (fds_excp_ptr) {
2585 if (FD_ISSET(i, &ex_h))
2586 FD_SET(trans_map[i], (fd_set*)&*ex_t);
2587 }
2588 }
2589
2590 if (fds_read_ptr)
2591 rd_t.copyOut(tc->getMemProxy());
2591 rd_t.copyOut(tc->getVirtProxy());
2592 if (fds_writ_ptr)
2592 if (fds_writ_ptr)
2593 wr_t.copyOut(tc->getMemProxy());
2593 wr_t.copyOut(tc->getVirtProxy());
2594 if (fds_excp_ptr)
2594 if (fds_excp_ptr)
2595 ex_t.copyOut(tc->getMemProxy());
2595 ex_t.copyOut(tc->getVirtProxy());
2596 if (time_val_ptr)
2596 if (time_val_ptr)
2597 tp.copyOut(tc->getMemProxy());
2597 tp.copyOut(tc->getVirtProxy());
2598
2599 return retval;
2600}
2601
2602template <class OS>
2603SyscallReturn
2604readFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2605{
2606 int index = 0;
2607 auto p = tc->getProcessPtr();
2608 int tgt_fd = p->getSyscallArg(tc, index);
2609 Addr buf_ptr = p->getSyscallArg(tc, index);
2610 int nbytes = p->getSyscallArg(tc, index);
2611
2612 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2613 if (!hbfdp)
2614 return -EBADF;
2615 int sim_fd = hbfdp->getSimFD();
2616
2617 struct pollfd pfd;
2618 pfd.fd = sim_fd;
2619 pfd.events = POLLIN | POLLPRI;
2620 if ((poll(&pfd, 1, 0) == 0)
2621 && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2622 return SyscallReturn::retry();
2623
2624 BufferArg buf_arg(buf_ptr, nbytes);
2625 int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2626
2627 if (bytes_read > 0)
2598
2599 return retval;
2600}
2601
2602template <class OS>
2603SyscallReturn
2604readFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2605{
2606 int index = 0;
2607 auto p = tc->getProcessPtr();
2608 int tgt_fd = p->getSyscallArg(tc, index);
2609 Addr buf_ptr = p->getSyscallArg(tc, index);
2610 int nbytes = p->getSyscallArg(tc, index);
2611
2612 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2613 if (!hbfdp)
2614 return -EBADF;
2615 int sim_fd = hbfdp->getSimFD();
2616
2617 struct pollfd pfd;
2618 pfd.fd = sim_fd;
2619 pfd.events = POLLIN | POLLPRI;
2620 if ((poll(&pfd, 1, 0) == 0)
2621 && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2622 return SyscallReturn::retry();
2623
2624 BufferArg buf_arg(buf_ptr, nbytes);
2625 int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2626
2627 if (bytes_read > 0)
2628 buf_arg.copyOut(tc->getMemProxy());
2628 buf_arg.copyOut(tc->getVirtProxy());
2629
2630 return (bytes_read == -1) ? -errno : bytes_read;
2631}
2632
2633template <class OS>
2634SyscallReturn
2635writeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2636{
2637 int index = 0;
2638 auto p = tc->getProcessPtr();
2639 int tgt_fd = p->getSyscallArg(tc, index);
2640 Addr buf_ptr = p->getSyscallArg(tc, index);
2641 int nbytes = p->getSyscallArg(tc, index);
2642
2643 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2644 if (!hbfdp)
2645 return -EBADF;
2646 int sim_fd = hbfdp->getSimFD();
2647
2648 BufferArg buf_arg(buf_ptr, nbytes);
2629
2630 return (bytes_read == -1) ? -errno : bytes_read;
2631}
2632
2633template <class OS>
2634SyscallReturn
2635writeFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2636{
2637 int index = 0;
2638 auto p = tc->getProcessPtr();
2639 int tgt_fd = p->getSyscallArg(tc, index);
2640 Addr buf_ptr = p->getSyscallArg(tc, index);
2641 int nbytes = p->getSyscallArg(tc, index);
2642
2643 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2644 if (!hbfdp)
2645 return -EBADF;
2646 int sim_fd = hbfdp->getSimFD();
2647
2648 BufferArg buf_arg(buf_ptr, nbytes);
2649 buf_arg.copyIn(tc->getMemProxy());
2649 buf_arg.copyIn(tc->getVirtProxy());
2650
2651 struct pollfd pfd;
2652 pfd.fd = sim_fd;
2653 pfd.events = POLLOUT;
2654
2655 /**
2656 * We don't want to poll on /dev/random. The kernel will not enable the
2657 * file descriptor for writing unless the entropy in the system falls
2658 * below write_wakeup_threshold. This is not guaranteed to happen
2659 * depending on host settings.
2660 */
2661 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2662 if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2663 if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2664 return SyscallReturn::retry();
2665 }
2666
2667 int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2668
2669 if (bytes_written != -1)
2670 fsync(sim_fd);
2671
2672 return (bytes_written == -1) ? -errno : bytes_written;
2673}
2674
2675template <class OS>
2676SyscallReturn
2677wait4Func(SyscallDesc *desc, int num, ThreadContext *tc)
2678{
2679 int index = 0;
2680 auto p = tc->getProcessPtr();
2681 pid_t pid = p->getSyscallArg(tc, index);
2682 Addr statPtr = p->getSyscallArg(tc, index);
2683 int options = p->getSyscallArg(tc, index);
2684 Addr rusagePtr = p->getSyscallArg(tc, index);
2685
2686 if (rusagePtr)
2687 DPRINTF_SYSCALL(Verbose, "wait4: rusage pointer provided %lx, however "
2688 "functionality not supported. Ignoring rusage pointer.\n",
2689 rusagePtr);
2690
2691 /**
2692 * Currently, wait4 is only implemented so that it will wait for children
2693 * exit conditions which are denoted by a SIGCHLD signals posted into the
2694 * system signal list. We return no additional information via any of the
2695 * parameters supplied to wait4. If nothing is found in the system signal
2696 * list, we will wait indefinitely for SIGCHLD to post by retrying the
2697 * call.
2698 */
2699 System *sysh = tc->getSystemPtr();
2700 std::list<BasicSignal>::iterator iter;
2701 for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2702 if (iter->receiver == p) {
2703 if (pid < -1) {
2704 if ((iter->sender->pgid() == -pid)
2705 && (iter->signalValue == OS::TGT_SIGCHLD))
2706 goto success;
2707 } else if (pid == -1) {
2708 if (iter->signalValue == OS::TGT_SIGCHLD)
2709 goto success;
2710 } else if (pid == 0) {
2711 if ((iter->sender->pgid() == p->pgid())
2712 && (iter->signalValue == OS::TGT_SIGCHLD))
2713 goto success;
2714 } else {
2715 if ((iter->sender->pid() == pid)
2716 && (iter->signalValue == OS::TGT_SIGCHLD))
2717 goto success;
2718 }
2719 }
2720 }
2721
2722 return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2723
2724success:
2725 // Set status to EXITED for WIFEXITED evaluations.
2726 const int EXITED = 0;
2727 BufferArg statusBuf(statPtr, sizeof(int));
2728 *(int *)statusBuf.bufferPtr() = EXITED;
2650
2651 struct pollfd pfd;
2652 pfd.fd = sim_fd;
2653 pfd.events = POLLOUT;
2654
2655 /**
2656 * We don't want to poll on /dev/random. The kernel will not enable the
2657 * file descriptor for writing unless the entropy in the system falls
2658 * below write_wakeup_threshold. This is not guaranteed to happen
2659 * depending on host settings.
2660 */
2661 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2662 if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2663 if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2664 return SyscallReturn::retry();
2665 }
2666
2667 int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2668
2669 if (bytes_written != -1)
2670 fsync(sim_fd);
2671
2672 return (bytes_written == -1) ? -errno : bytes_written;
2673}
2674
2675template <class OS>
2676SyscallReturn
2677wait4Func(SyscallDesc *desc, int num, ThreadContext *tc)
2678{
2679 int index = 0;
2680 auto p = tc->getProcessPtr();
2681 pid_t pid = p->getSyscallArg(tc, index);
2682 Addr statPtr = p->getSyscallArg(tc, index);
2683 int options = p->getSyscallArg(tc, index);
2684 Addr rusagePtr = p->getSyscallArg(tc, index);
2685
2686 if (rusagePtr)
2687 DPRINTF_SYSCALL(Verbose, "wait4: rusage pointer provided %lx, however "
2688 "functionality not supported. Ignoring rusage pointer.\n",
2689 rusagePtr);
2690
2691 /**
2692 * Currently, wait4 is only implemented so that it will wait for children
2693 * exit conditions which are denoted by a SIGCHLD signals posted into the
2694 * system signal list. We return no additional information via any of the
2695 * parameters supplied to wait4. If nothing is found in the system signal
2696 * list, we will wait indefinitely for SIGCHLD to post by retrying the
2697 * call.
2698 */
2699 System *sysh = tc->getSystemPtr();
2700 std::list<BasicSignal>::iterator iter;
2701 for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2702 if (iter->receiver == p) {
2703 if (pid < -1) {
2704 if ((iter->sender->pgid() == -pid)
2705 && (iter->signalValue == OS::TGT_SIGCHLD))
2706 goto success;
2707 } else if (pid == -1) {
2708 if (iter->signalValue == OS::TGT_SIGCHLD)
2709 goto success;
2710 } else if (pid == 0) {
2711 if ((iter->sender->pgid() == p->pgid())
2712 && (iter->signalValue == OS::TGT_SIGCHLD))
2713 goto success;
2714 } else {
2715 if ((iter->sender->pid() == pid)
2716 && (iter->signalValue == OS::TGT_SIGCHLD))
2717 goto success;
2718 }
2719 }
2720 }
2721
2722 return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2723
2724success:
2725 // Set status to EXITED for WIFEXITED evaluations.
2726 const int EXITED = 0;
2727 BufferArg statusBuf(statPtr, sizeof(int));
2728 *(int *)statusBuf.bufferPtr() = EXITED;
2729 statusBuf.copyOut(tc->getMemProxy());
2729 statusBuf.copyOut(tc->getVirtProxy());
2730
2731 // Return the child PID.
2732 pid_t retval = iter->sender->pid();
2733 sysh->signalList.erase(iter);
2734 return retval;
2735}
2736
2737template <class OS>
2738SyscallReturn
2739acceptFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2740{
2741 struct sockaddr sa;
2742 socklen_t addrLen;
2743 int host_fd;
2744 int index = 0;
2745 auto p = tc->getProcessPtr();
2746 int tgt_fd = p->getSyscallArg(tc, index);
2747 Addr addrPtr = p->getSyscallArg(tc, index);
2748 Addr lenPtr = p->getSyscallArg(tc, index);
2749
2750 BufferArg *lenBufPtr = nullptr;
2751 BufferArg *addrBufPtr = nullptr;
2752
2753 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2754 if (!sfdp)
2755 return -EBADF;
2756 int sim_fd = sfdp->getSimFD();
2757
2758 /**
2759 * We poll the socket file descriptor first to guarantee that we do not
2760 * block on our accept call. The socket can be opened without the
2761 * non-blocking flag (it blocks). This will cause deadlocks between
2762 * communicating processes.
2763 */
2764 struct pollfd pfd;
2765 pfd.fd = sim_fd;
2766 pfd.events = POLLIN | POLLPRI;
2767 if ((poll(&pfd, 1, 0) == 0)
2768 && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2769 return SyscallReturn::retry();
2770
2771 if (lenPtr) {
2772 lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2730
2731 // Return the child PID.
2732 pid_t retval = iter->sender->pid();
2733 sysh->signalList.erase(iter);
2734 return retval;
2735}
2736
2737template <class OS>
2738SyscallReturn
2739acceptFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2740{
2741 struct sockaddr sa;
2742 socklen_t addrLen;
2743 int host_fd;
2744 int index = 0;
2745 auto p = tc->getProcessPtr();
2746 int tgt_fd = p->getSyscallArg(tc, index);
2747 Addr addrPtr = p->getSyscallArg(tc, index);
2748 Addr lenPtr = p->getSyscallArg(tc, index);
2749
2750 BufferArg *lenBufPtr = nullptr;
2751 BufferArg *addrBufPtr = nullptr;
2752
2753 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2754 if (!sfdp)
2755 return -EBADF;
2756 int sim_fd = sfdp->getSimFD();
2757
2758 /**
2759 * We poll the socket file descriptor first to guarantee that we do not
2760 * block on our accept call. The socket can be opened without the
2761 * non-blocking flag (it blocks). This will cause deadlocks between
2762 * communicating processes.
2763 */
2764 struct pollfd pfd;
2765 pfd.fd = sim_fd;
2766 pfd.events = POLLIN | POLLPRI;
2767 if ((poll(&pfd, 1, 0) == 0)
2768 && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2769 return SyscallReturn::retry();
2770
2771 if (lenPtr) {
2772 lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2773 lenBufPtr->copyIn(tc->getMemProxy());
2773 lenBufPtr->copyIn(tc->getVirtProxy());
2774 memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2775 sizeof(socklen_t));
2776 }
2777
2778 if (addrPtr) {
2779 addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2774 memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2775 sizeof(socklen_t));
2776 }
2777
2778 if (addrPtr) {
2779 addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2780 addrBufPtr->copyIn(tc->getMemProxy());
2780 addrBufPtr->copyIn(tc->getVirtProxy());
2781 memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2782 sizeof(struct sockaddr));
2783 }
2784
2785 host_fd = accept(sim_fd, &sa, &addrLen);
2786
2787 if (host_fd == -1)
2788 return -errno;
2789
2790 if (addrPtr) {
2791 memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2781 memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2782 sizeof(struct sockaddr));
2783 }
2784
2785 host_fd = accept(sim_fd, &sa, &addrLen);
2786
2787 if (host_fd == -1)
2788 return -errno;
2789
2790 if (addrPtr) {
2791 memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2792 addrBufPtr->copyOut(tc->getMemProxy());
2792 addrBufPtr->copyOut(tc->getVirtProxy());
2793 delete(addrBufPtr);
2794 }
2795
2796 if (lenPtr) {
2797 *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2793 delete(addrBufPtr);
2794 }
2795
2796 if (lenPtr) {
2797 *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2798 lenBufPtr->copyOut(tc->getMemProxy());
2798 lenBufPtr->copyOut(tc->getVirtProxy());
2799 delete(lenBufPtr);
2800 }
2801
2802 auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2803 sfdp->_type, sfdp->_protocol);
2804 return p->fds->allocFD(afdp);
2805}
2806
2807/// Target eventfd() function.
2808template <class OS>
2809SyscallReturn
2810eventfdFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2811{
2812#if defined(__linux__)
2813 int index = 0;
2814 auto p = tc->getProcessPtr();
2815 unsigned initval = p->getSyscallArg(tc, index);
2816 int in_flags = p->getSyscallArg(tc, index);
2817
2818 int sim_fd = eventfd(initval, in_flags);
2819 if (sim_fd == -1)
2820 return -errno;
2821
2822 bool cloexec = in_flags & OS::TGT_O_CLOEXEC;
2823
2824 int flags = cloexec ? OS::TGT_O_CLOEXEC : 0;
2825 flags |= (in_flags & OS::TGT_O_NONBLOCK) ? OS::TGT_O_NONBLOCK : 0;
2826
2827 auto hbfdp = std::make_shared<HBFDEntry>(flags, sim_fd, cloexec);
2828 int tgt_fd = p->fds->allocFD(hbfdp);
2829 return tgt_fd;
2830#else
2831 warnUnsupportedOS("eventfd");
2832 return -1;
2833#endif
2834}
2835
2836#endif // __SIM_SYSCALL_EMUL_HH__
2799 delete(lenBufPtr);
2800 }
2801
2802 auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2803 sfdp->_type, sfdp->_protocol);
2804 return p->fds->allocFD(afdp);
2805}
2806
2807/// Target eventfd() function.
2808template <class OS>
2809SyscallReturn
2810eventfdFunc(SyscallDesc *desc, int num, ThreadContext *tc)
2811{
2812#if defined(__linux__)
2813 int index = 0;
2814 auto p = tc->getProcessPtr();
2815 unsigned initval = p->getSyscallArg(tc, index);
2816 int in_flags = p->getSyscallArg(tc, index);
2817
2818 int sim_fd = eventfd(initval, in_flags);
2819 if (sim_fd == -1)
2820 return -errno;
2821
2822 bool cloexec = in_flags & OS::TGT_O_CLOEXEC;
2823
2824 int flags = cloexec ? OS::TGT_O_CLOEXEC : 0;
2825 flags |= (in_flags & OS::TGT_O_NONBLOCK) ? OS::TGT_O_NONBLOCK : 0;
2826
2827 auto hbfdp = std::make_shared<HBFDEntry>(flags, sim_fd, cloexec);
2828 int tgt_fd = p->fds->allocFD(hbfdp);
2829 return tgt_fd;
2830#else
2831 warnUnsupportedOS("eventfd");
2832 return -1;
2833#endif
2834}
2835
2836#endif // __SIM_SYSCALL_EMUL_HH__