syscall_emul.hh (13569:47a2291177a7) syscall_emul.hh (13570:b6484720c6a9)
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <poll.h>
81#include <sys/mman.h>
82#include <sys/socket.h>
83#include <sys/stat.h>
84#if (NO_STATFS == 0)
85#include <sys/statfs.h>
86#else
87#include <sys/mount.h>
88#endif
89#include <sys/time.h>
82#include <sys/mman.h>
83#include <sys/socket.h>
84#include <sys/stat.h>
85#if (NO_STATFS == 0)
86#include <sys/statfs.h>
87#else
88#include <sys/mount.h>
89#endif
90#include <sys/time.h>
91#include <sys/types.h>
90#include <sys/uio.h>
91#include <unistd.h>
92
93#include <cerrno>
94#include <memory>
95#include <string>
96
97#include "arch/generic/tlb.hh"
98#include "arch/utility.hh"
99#include "base/intmath.hh"
100#include "base/loader/object_file.hh"
101#include "base/logging.hh"
102#include "base/trace.hh"
103#include "base/types.hh"
104#include "config/the_isa.hh"
105#include "cpu/base.hh"
106#include "cpu/thread_context.hh"
107#include "mem/page_table.hh"
108#include "params/Process.hh"
109#include "sim/emul_driver.hh"
110#include "sim/futex_map.hh"
111#include "sim/process.hh"
112#include "sim/syscall_debug_macros.hh"
113#include "sim/syscall_desc.hh"
114#include "sim/syscall_emul_buf.hh"
115#include "sim/syscall_return.hh"
116
117//////////////////////////////////////////////////////////////////////
118//
119// The following emulation functions are generic enough that they
120// don't need to be recompiled for different emulated OS's. They are
121// defined in sim/syscall_emul.cc.
122//
123//////////////////////////////////////////////////////////////////////
124
125
126/// Handler for unimplemented syscalls that we haven't thought about.
127SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
128 Process *p, ThreadContext *tc);
129
130/// Handler for unimplemented syscalls that we never intend to
131/// implement (signal handling, etc.) and should not affect the correct
132/// behavior of the program. Print a warning only if the appropriate
133/// trace flag is enabled. Return success to the target program.
134SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
135 Process *p, ThreadContext *tc);
136
137// Target fallocateFunc() handler.
138SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
139 Process *p, ThreadContext *tc);
140
141/// Target exit() handler: terminate current context.
142SyscallReturn exitFunc(SyscallDesc *desc, int num,
143 Process *p, ThreadContext *tc);
144
145/// Target exit_group() handler: terminate simulation. (exit all threads)
146SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
147 Process *p, ThreadContext *tc);
148
149/// Target set_tid_address() handler.
150SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
151 Process *p, ThreadContext *tc);
152
153/// Target getpagesize() handler.
154SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
155 Process *p, ThreadContext *tc);
156
157/// Target brk() handler: set brk address.
158SyscallReturn brkFunc(SyscallDesc *desc, int num,
159 Process *p, ThreadContext *tc);
160
161/// Target close() handler.
162SyscallReturn closeFunc(SyscallDesc *desc, int num,
163 Process *p, ThreadContext *tc);
164
92#include <sys/uio.h>
93#include <unistd.h>
94
95#include <cerrno>
96#include <memory>
97#include <string>
98
99#include "arch/generic/tlb.hh"
100#include "arch/utility.hh"
101#include "base/intmath.hh"
102#include "base/loader/object_file.hh"
103#include "base/logging.hh"
104#include "base/trace.hh"
105#include "base/types.hh"
106#include "config/the_isa.hh"
107#include "cpu/base.hh"
108#include "cpu/thread_context.hh"
109#include "mem/page_table.hh"
110#include "params/Process.hh"
111#include "sim/emul_driver.hh"
112#include "sim/futex_map.hh"
113#include "sim/process.hh"
114#include "sim/syscall_debug_macros.hh"
115#include "sim/syscall_desc.hh"
116#include "sim/syscall_emul_buf.hh"
117#include "sim/syscall_return.hh"
118
119//////////////////////////////////////////////////////////////////////
120//
121// The following emulation functions are generic enough that they
122// don't need to be recompiled for different emulated OS's. They are
123// defined in sim/syscall_emul.cc.
124//
125//////////////////////////////////////////////////////////////////////
126
127
128/// Handler for unimplemented syscalls that we haven't thought about.
129SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
130 Process *p, ThreadContext *tc);
131
132/// Handler for unimplemented syscalls that we never intend to
133/// implement (signal handling, etc.) and should not affect the correct
134/// behavior of the program. Print a warning only if the appropriate
135/// trace flag is enabled. Return success to the target program.
136SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
137 Process *p, ThreadContext *tc);
138
139// Target fallocateFunc() handler.
140SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
141 Process *p, ThreadContext *tc);
142
143/// Target exit() handler: terminate current context.
144SyscallReturn exitFunc(SyscallDesc *desc, int num,
145 Process *p, ThreadContext *tc);
146
147/// Target exit_group() handler: terminate simulation. (exit all threads)
148SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
149 Process *p, ThreadContext *tc);
150
151/// Target set_tid_address() handler.
152SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
153 Process *p, ThreadContext *tc);
154
155/// Target getpagesize() handler.
156SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
157 Process *p, ThreadContext *tc);
158
159/// Target brk() handler: set brk address.
160SyscallReturn brkFunc(SyscallDesc *desc, int num,
161 Process *p, ThreadContext *tc);
162
163/// Target close() handler.
164SyscallReturn closeFunc(SyscallDesc *desc, int num,
165 Process *p, ThreadContext *tc);
166
165// Target read() handler.
166SyscallReturn readFunc(SyscallDesc *desc, int num,
167 Process *p, ThreadContext *tc);
168
169/// Target write() handler.
170SyscallReturn writeFunc(SyscallDesc *desc, int num,
171 Process *p, ThreadContext *tc);
172
173/// Target lseek() handler.
174SyscallReturn lseekFunc(SyscallDesc *desc, int num,
175 Process *p, ThreadContext *tc);
176
177/// Target _llseek() handler.
178SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
179 Process *p, ThreadContext *tc);
180
181/// Target munmap() handler.
182SyscallReturn munmapFunc(SyscallDesc *desc, int num,
183 Process *p, ThreadContext *tc);
184
185/// Target shutdown() handler.
186SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
187 Process *p, ThreadContext *tc);
188
189/// Target gethostname() handler.
190SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
191 Process *p, ThreadContext *tc);
192
193/// Target getcwd() handler.
194SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
195 Process *p, ThreadContext *tc);
196
197/// Target readlink() handler.
198SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
199 Process *p, ThreadContext *tc,
200 int index = 0);
201SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
202 Process *p, ThreadContext *tc);
203
204/// Target unlink() handler.
205SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
206 Process *p, ThreadContext *tc,
207 int index);
208SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
209 Process *p, ThreadContext *tc);
210
211/// Target link() handler
212SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
213 ThreadContext *tc);
214
215/// Target symlink() handler.
216SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
217 ThreadContext *tc);
218
219/// Target mkdir() handler.
220SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
221 Process *p, ThreadContext *tc);
222
223/// Target mknod() handler.
224SyscallReturn mknodFunc(SyscallDesc *desc, int num,
225 Process *p, ThreadContext *tc);
226
227/// Target chdir() handler.
228SyscallReturn chdirFunc(SyscallDesc *desc, int num,
229 Process *p, ThreadContext *tc);
230
231// Target rmdir() handler.
232SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
233 Process *p, ThreadContext *tc);
234
235/// Target rename() handler.
236SyscallReturn renameFunc(SyscallDesc *desc, int num,
237 Process *p, ThreadContext *tc);
238
239
240/// Target truncate() handler.
241SyscallReturn truncateFunc(SyscallDesc *desc, int num,
242 Process *p, ThreadContext *tc);
243
244
245/// Target ftruncate() handler.
246SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
247 Process *p, ThreadContext *tc);
248
249
250/// Target truncate64() handler.
251SyscallReturn truncate64Func(SyscallDesc *desc, int num,
252 Process *p, ThreadContext *tc);
253
254/// Target ftruncate64() handler.
255SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
256 Process *p, ThreadContext *tc);
257
258
259/// Target umask() handler.
260SyscallReturn umaskFunc(SyscallDesc *desc, int num,
261 Process *p, ThreadContext *tc);
262
263/// Target gettid() handler.
264SyscallReturn gettidFunc(SyscallDesc *desc, int num,
265 Process *p, ThreadContext *tc);
266
267/// Target chown() handler.
268SyscallReturn chownFunc(SyscallDesc *desc, int num,
269 Process *p, ThreadContext *tc);
270
271/// Target setpgid() handler.
272SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
273 Process *p, ThreadContext *tc);
274
275/// Target fchown() handler.
276SyscallReturn fchownFunc(SyscallDesc *desc, int num,
277 Process *p, ThreadContext *tc);
278
279/// Target dup() handler.
280SyscallReturn dupFunc(SyscallDesc *desc, int num,
281 Process *process, ThreadContext *tc);
282
283/// Target dup2() handler.
284SyscallReturn dup2Func(SyscallDesc *desc, int num,
285 Process *process, ThreadContext *tc);
286
287/// Target fcntl() handler.
288SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
289 Process *process, ThreadContext *tc);
290
291/// Target fcntl64() handler.
292SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
293 Process *process, ThreadContext *tc);
294
295/// Target setuid() handler.
296SyscallReturn setuidFunc(SyscallDesc *desc, int num,
297 Process *p, ThreadContext *tc);
298
299/// Target pipe() handler.
300SyscallReturn pipeFunc(SyscallDesc *desc, int num,
301 Process *p, ThreadContext *tc);
302
303/// Internal pipe() handler.
304SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
305 ThreadContext *tc, bool pseudoPipe);
306
307/// Target getpid() handler.
308SyscallReturn getpidFunc(SyscallDesc *desc, int num,
309 Process *p, ThreadContext *tc);
310
311// Target bind() handler.
312SyscallReturn bindFunc(SyscallDesc *desc, int num,
313 Process *p, ThreadContext *tc);
314
315// Target listen() handler.
316SyscallReturn listenFunc(SyscallDesc *desc, int num,
317 Process *p, ThreadContext *tc);
318
319// Target connect() handler.
320SyscallReturn connectFunc(SyscallDesc *desc, int num,
321 Process *p, ThreadContext *tc);
322
323#if defined(SYS_getdents)
324// Target getdents() handler.
325SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
326 Process *p, ThreadContext *tc);
327#endif
328
329#if defined(SYS_getdents64)
330// Target getdents() handler.
331SyscallReturn getdents64Func(SyscallDesc *desc, int num,
332 Process *p, ThreadContext *tc);
333#endif
334
335// Target sendto() handler.
336SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
337 Process *p, ThreadContext *tc);
338
339// Target recvfrom() handler.
340SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
341 Process *p, ThreadContext *tc);
342
343// Target recvmsg() handler.
344SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
345 Process *p, ThreadContext *tc);
346
347// Target sendmsg() handler.
348SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
349 Process *p, ThreadContext *tc);
350
351// Target getuid() handler.
352SyscallReturn getuidFunc(SyscallDesc *desc, int num,
353 Process *p, ThreadContext *tc);
354
355/// Target getgid() handler.
356SyscallReturn getgidFunc(SyscallDesc *desc, int num,
357 Process *p, ThreadContext *tc);
358
359/// Target getppid() handler.
360SyscallReturn getppidFunc(SyscallDesc *desc, int num,
361 Process *p, ThreadContext *tc);
362
363/// Target geteuid() handler.
364SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
365 Process *p, ThreadContext *tc);
366
367/// Target getegid() handler.
368SyscallReturn getegidFunc(SyscallDesc *desc, int num,
369 Process *p, ThreadContext *tc);
370
371/// Target access() handler
372SyscallReturn accessFunc(SyscallDesc *desc, int num,
373 Process *p, ThreadContext *tc);
374SyscallReturn accessFunc(SyscallDesc *desc, int num,
375 Process *p, ThreadContext *tc,
376 int index);
377
378/// Futex system call
379/// Implemented by Daniel Sanchez
380/// Used by printf's in multi-threaded apps
381template <class OS>
382SyscallReturn
383futexFunc(SyscallDesc *desc, int callnum, Process *process,
384 ThreadContext *tc)
385{
386 using namespace std;
387
388 int index = 0;
389 Addr uaddr = process->getSyscallArg(tc, index);
390 int op = process->getSyscallArg(tc, index);
391 int val = process->getSyscallArg(tc, index);
392
393 /*
394 * Unsupported option that does not affect the correctness of the
395 * application. This is a performance optimization utilized by Linux.
396 */
397 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
398
399 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
400
401 if (OS::TGT_FUTEX_WAIT == op) {
402 // Ensure futex system call accessed atomically.
403 BufferArg buf(uaddr, sizeof(int));
404 buf.copyIn(tc->getMemProxy());
405 int mem_val = *(int*)buf.bufferPtr();
406
407 /*
408 * The value in memory at uaddr is not equal with the expected val
409 * (a different thread must have changed it before the system call was
410 * invoked). In this case, we need to throw an error.
411 */
412 if (val != mem_val)
413 return -OS::TGT_EWOULDBLOCK;
414
415 futex_map.suspend(uaddr, process->tgid(), tc);
416
417 return 0;
418 } else if (OS::TGT_FUTEX_WAKE == op) {
419 return futex_map.wakeup(uaddr, process->tgid(), val);
420 }
421
422 warn("futex: op %d not implemented; ignoring.", op);
423 return -ENOSYS;
424}
425
426
427/// Pseudo Funcs - These functions use a different return convension,
428/// returning a second value in a register other than the normal return register
429SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
430 Process *process, ThreadContext *tc);
431
432/// Target getpidPseudo() handler.
433SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
434 Process *p, ThreadContext *tc);
435
436/// Target getuidPseudo() handler.
437SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
438 Process *p, ThreadContext *tc);
439
440/// Target getgidPseudo() handler.
441SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
442 Process *p, ThreadContext *tc);
443
444
445/// A readable name for 1,000,000, for converting microseconds to seconds.
446const int one_million = 1000000;
447/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
448const int one_billion = 1000000000;
449
450/// Approximate seconds since the epoch (1/1/1970). About a billion,
451/// by my reckoning. We want to keep this a constant (not use the
452/// real-world time) to keep simulations repeatable.
453const unsigned seconds_since_epoch = 1000000000;
454
455/// Helper function to convert current elapsed time to seconds and
456/// microseconds.
457template <class T1, class T2>
458void
459getElapsedTimeMicro(T1 &sec, T2 &usec)
460{
461 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
462 sec = elapsed_usecs / one_million;
463 usec = elapsed_usecs % one_million;
464}
465
466/// Helper function to convert current elapsed time to seconds and
467/// nanoseconds.
468template <class T1, class T2>
469void
470getElapsedTimeNano(T1 &sec, T2 &nsec)
471{
472 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
473 sec = elapsed_nsecs / one_billion;
474 nsec = elapsed_nsecs % one_billion;
475}
476
477//////////////////////////////////////////////////////////////////////
478//
479// The following emulation functions are generic, but need to be
480// templated to account for differences in types, constants, etc.
481//
482//////////////////////////////////////////////////////////////////////
483
484 typedef struct statfs hst_statfs;
485#if NO_STAT64
486 typedef struct stat hst_stat;
487 typedef struct stat hst_stat64;
488#else
489 typedef struct stat hst_stat;
490 typedef struct stat64 hst_stat64;
491#endif
492
493//// Helper function to convert a host stat buffer to a target stat
494//// buffer. Also copies the target buffer out to the simulated
495//// memory space. Used by stat(), fstat(), and lstat().
496
497template <typename target_stat, typename host_stat>
498void
499convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
500{
501 using namespace TheISA;
502
503 if (fakeTTY)
504 tgt->st_dev = 0xA;
505 else
506 tgt->st_dev = host->st_dev;
507 tgt->st_dev = TheISA::htog(tgt->st_dev);
508 tgt->st_ino = host->st_ino;
509 tgt->st_ino = TheISA::htog(tgt->st_ino);
510 tgt->st_mode = host->st_mode;
511 if (fakeTTY) {
512 // Claim to be a character device
513 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
514 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
515 }
516 tgt->st_mode = TheISA::htog(tgt->st_mode);
517 tgt->st_nlink = host->st_nlink;
518 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
519 tgt->st_uid = host->st_uid;
520 tgt->st_uid = TheISA::htog(tgt->st_uid);
521 tgt->st_gid = host->st_gid;
522 tgt->st_gid = TheISA::htog(tgt->st_gid);
523 if (fakeTTY)
524 tgt->st_rdev = 0x880d;
525 else
526 tgt->st_rdev = host->st_rdev;
527 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
528 tgt->st_size = host->st_size;
529 tgt->st_size = TheISA::htog(tgt->st_size);
530 tgt->st_atimeX = host->st_atime;
531 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
532 tgt->st_mtimeX = host->st_mtime;
533 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
534 tgt->st_ctimeX = host->st_ctime;
535 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
536 // Force the block size to be 8KB. This helps to ensure buffered io works
537 // consistently across different hosts.
538 tgt->st_blksize = 0x2000;
539 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
540 tgt->st_blocks = host->st_blocks;
541 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
542}
543
544// Same for stat64
545
546template <typename target_stat, typename host_stat64>
547void
548convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
549{
550 using namespace TheISA;
551
552 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
553#if defined(STAT_HAVE_NSEC)
554 tgt->st_atime_nsec = host->st_atime_nsec;
555 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
556 tgt->st_mtime_nsec = host->st_mtime_nsec;
557 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
558 tgt->st_ctime_nsec = host->st_ctime_nsec;
559 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
560#else
561 tgt->st_atime_nsec = 0;
562 tgt->st_mtime_nsec = 0;
563 tgt->st_ctime_nsec = 0;
564#endif
565}
566
567// Here are a couple of convenience functions
568template<class OS>
569void
570copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
571 hst_stat *host, bool fakeTTY = false)
572{
573 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
574 tgt_stat_buf tgt(addr);
575 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
576 tgt.copyOut(mem);
577}
578
579template<class OS>
580void
581copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
582 hst_stat64 *host, bool fakeTTY = false)
583{
584 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
585 tgt_stat_buf tgt(addr);
586 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
587 tgt.copyOut(mem);
588}
589
590template <class OS>
591void
592copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
593 hst_statfs *host)
594{
595 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
596
597 tgt->f_type = TheISA::htog(host->f_type);
598#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
599 tgt->f_bsize = TheISA::htog(host->f_iosize);
600#else
601 tgt->f_bsize = TheISA::htog(host->f_bsize);
602#endif
603 tgt->f_blocks = TheISA::htog(host->f_blocks);
604 tgt->f_bfree = TheISA::htog(host->f_bfree);
605 tgt->f_bavail = TheISA::htog(host->f_bavail);
606 tgt->f_files = TheISA::htog(host->f_files);
607 tgt->f_ffree = TheISA::htog(host->f_ffree);
608 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
609#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
610 tgt->f_namelen = TheISA::htog(host->f_namemax);
611 tgt->f_frsize = TheISA::htog(host->f_bsize);
612#elif defined(__APPLE__)
613 tgt->f_namelen = 0;
614 tgt->f_frsize = 0;
615#else
616 tgt->f_namelen = TheISA::htog(host->f_namelen);
617 tgt->f_frsize = TheISA::htog(host->f_frsize);
618#endif
619#if defined(__linux__)
620 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
621#else
622 /*
623 * The fields are different sizes per OS. Don't bother with
624 * f_spare or f_reserved on non-Linux for now.
625 */
626 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
627#endif
628
629 tgt.copyOut(mem);
630}
631
632/// Target ioctl() handler. For the most part, programs call ioctl()
633/// only to find out if their stdout is a tty, to determine whether to
634/// do line or block buffering. We always claim that output fds are
635/// not TTYs to provide repeatable results.
636template <class OS>
637SyscallReturn
638ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
639{
640 int index = 0;
641 int tgt_fd = p->getSyscallArg(tc, index);
642 unsigned req = p->getSyscallArg(tc, index);
643
644 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
645
646 if (OS::isTtyReq(req))
647 return -ENOTTY;
648
649 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
650 if (!dfdp)
651 return -EBADF;
652
653 /**
654 * If the driver is valid, issue the ioctl through it. Otherwise,
655 * there's an implicit assumption that the device is a TTY type and we
656 * return that we do not have a valid TTY.
657 */
658 EmulatedDriver *emul_driver = dfdp->getDriver();
659 if (emul_driver)
660 return emul_driver->ioctl(p, tc, req);
661
662 /**
663 * For lack of a better return code, return ENOTTY. Ideally, we should
664 * return something better here, but at least we issue the warning.
665 */
666 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
667 tgt_fd, req, tc->pcState());
668 return -ENOTTY;
669}
670
671template <class OS>
672SyscallReturn
673openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
674 bool isopenat)
675{
676 int index = 0;
677 int tgt_dirfd = -1;
678
679 /**
680 * If using the openat variant, read in the target directory file
681 * descriptor from the simulated process.
682 */
683 if (isopenat)
684 tgt_dirfd = p->getSyscallArg(tc, index);
685
686 /**
687 * Retrieve the simulated process' memory proxy and then read in the path
688 * string from that memory space into the host's working memory space.
689 */
690 std::string path;
691 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
692 return -EFAULT;
693
694#ifdef __CYGWIN32__
695 int host_flags = O_BINARY;
696#else
697 int host_flags = 0;
698#endif
699 /**
700 * Translate target flags into host flags. Flags exist which are not
701 * ported between architectures which can cause check failures.
702 */
703 int tgt_flags = p->getSyscallArg(tc, index);
704 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
705 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
706 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
707 host_flags |= OS::openFlagTable[i].hostFlag;
708 }
709 }
710 if (tgt_flags) {
711 warn("open%s: cannot decode flags 0x%x",
712 isopenat ? "at" : "", tgt_flags);
713 }
714#ifdef __CYGWIN32__
715 host_flags |= O_BINARY;
716#endif
717
718 int mode = p->getSyscallArg(tc, index);
719
720 /**
721 * If the simulated process called open or openat with AT_FDCWD specified,
722 * take the current working directory value which was passed into the
723 * process class as a Python parameter and append the current path to
724 * create a full path.
725 * Otherwise, openat with a valid target directory file descriptor has
726 * been called. If the path option, which was passed in as a parameter,
727 * is not absolute, retrieve the directory file descriptor's path and
728 * prepend it to the path passed in as a parameter.
729 * In every case, we should have a full path (which is relevant to the
730 * host) to work with after this block has been passed.
731 */
732 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
733 path = p->fullPath(path);
734 } else if (!startswith(path, "/")) {
735 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
736 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
737 if (!ffdp)
738 return -EBADF;
739 path.insert(0, ffdp->getFileName() + "/");
740 }
741
742 /**
743 * Since this is an emulated environment, we create pseudo file
744 * descriptors for device requests that have been registered with
745 * the process class through Python; this allows us to create a file
746 * descriptor for subsequent ioctl or mmap calls.
747 */
748 if (startswith(path, "/dev/")) {
749 std::string filename = path.substr(strlen("/dev/"));
750 EmulatedDriver *drv = p->findDriver(filename);
751 if (drv) {
752 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
753 "driver open with path[%s]\n",
754 isopenat ? "at" : "", path.c_str());
755 return drv->open(p, tc, mode, host_flags);
756 }
757 /**
758 * Fall through here for pass through to host devices, such
759 * as /dev/zero
760 */
761 }
762
763 /**
764 * Some special paths and files cannot be called on the host and need
765 * to be handled as special cases inside the simulator.
766 * If the full path that was created above does not match any of the
767 * special cases, pass it through to the open call on the host to let
768 * the host open the file on our behalf.
769 * If the host cannot open the file, return the host's error code back
770 * through the system call to the simulated process.
771 */
772 int sim_fd = -1;
773 std::vector<std::string> special_paths =
774 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
775 for (auto entry : special_paths) {
776 if (startswith(path, entry))
777 sim_fd = OS::openSpecialFile(path, p, tc);
778 }
779 if (sim_fd == -1) {
780 sim_fd = open(path.c_str(), host_flags, mode);
781 }
782 if (sim_fd == -1) {
783 int local = -errno;
784 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
785 isopenat ? "at" : "", path.c_str());
786 return local;
787 }
788
789 /**
790 * The file was opened successfully and needs to be recorded in the
791 * process' file descriptor array so that it can be retrieved later.
792 * The target file descriptor that is chosen will be the lowest unused
793 * file descriptor.
794 * Return the indirect target file descriptor back to the simulated
795 * process to act as a handle for the opened file.
796 */
797 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
798 int tgt_fd = p->fds->allocFD(ffdp);
799 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
800 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
801 return tgt_fd;
802}
803
804/// Target open() handler.
805template <class OS>
806SyscallReturn
807openFunc(SyscallDesc *desc, int callnum, Process *process,
808 ThreadContext *tc)
809{
810 return openImpl<OS>(desc, callnum, process, tc, false);
811}
812
813/// Target openat() handler.
814template <class OS>
815SyscallReturn
816openatFunc(SyscallDesc *desc, int callnum, Process *process,
817 ThreadContext *tc)
818{
819 return openImpl<OS>(desc, callnum, process, tc, true);
820}
821
822/// Target unlinkat() handler.
823template <class OS>
824SyscallReturn
825unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
826 ThreadContext *tc)
827{
828 int index = 0;
829 int dirfd = process->getSyscallArg(tc, index);
830 if (dirfd != OS::TGT_AT_FDCWD)
831 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
832
833 return unlinkHelper(desc, callnum, process, tc, 1);
834}
835
836/// Target facessat() handler
837template <class OS>
838SyscallReturn
839faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
840 ThreadContext *tc)
841{
842 int index = 0;
843 int dirfd = process->getSyscallArg(tc, index);
844 if (dirfd != OS::TGT_AT_FDCWD)
845 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
846 return accessFunc(desc, callnum, process, tc, 1);
847}
848
849/// Target readlinkat() handler
850template <class OS>
851SyscallReturn
852readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
853 ThreadContext *tc)
854{
855 int index = 0;
856 int dirfd = process->getSyscallArg(tc, index);
857 if (dirfd != OS::TGT_AT_FDCWD)
858 warn("openat: first argument not AT_FDCWD; unlikely to work");
859 return readlinkFunc(desc, callnum, process, tc, 1);
860}
861
862/// Target renameat() handler.
863template <class OS>
864SyscallReturn
865renameatFunc(SyscallDesc *desc, int callnum, Process *process,
866 ThreadContext *tc)
867{
868 int index = 0;
869
870 int olddirfd = process->getSyscallArg(tc, index);
871 if (olddirfd != OS::TGT_AT_FDCWD)
872 warn("renameat: first argument not AT_FDCWD; unlikely to work");
873
874 std::string old_name;
875
876 if (!tc->getMemProxy().tryReadString(old_name,
877 process->getSyscallArg(tc, index)))
878 return -EFAULT;
879
880 int newdirfd = process->getSyscallArg(tc, index);
881 if (newdirfd != OS::TGT_AT_FDCWD)
882 warn("renameat: third argument not AT_FDCWD; unlikely to work");
883
884 std::string new_name;
885
886 if (!tc->getMemProxy().tryReadString(new_name,
887 process->getSyscallArg(tc, index)))
888 return -EFAULT;
889
890 // Adjust path for current working directory
891 old_name = process->fullPath(old_name);
892 new_name = process->fullPath(new_name);
893
894 int result = rename(old_name.c_str(), new_name.c_str());
895 return (result == -1) ? -errno : result;
896}
897
898/// Target sysinfo() handler.
899template <class OS>
900SyscallReturn
901sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
902 ThreadContext *tc)
903{
904
905 int index = 0;
906 TypedBufferArg<typename OS::tgt_sysinfo>
907 sysinfo(process->getSyscallArg(tc, index));
908
909 sysinfo->uptime = seconds_since_epoch;
910 sysinfo->totalram = process->system->memSize();
911 sysinfo->mem_unit = 1;
912
913 sysinfo.copyOut(tc->getMemProxy());
914
915 return 0;
916}
917
918/// Target chmod() handler.
919template <class OS>
920SyscallReturn
921chmodFunc(SyscallDesc *desc, int callnum, Process *process,
922 ThreadContext *tc)
923{
924 std::string path;
925
926 int index = 0;
927 if (!tc->getMemProxy().tryReadString(path,
928 process->getSyscallArg(tc, index))) {
929 return -EFAULT;
930 }
931
932 uint32_t mode = process->getSyscallArg(tc, index);
933 mode_t hostMode = 0;
934
935 // XXX translate mode flags via OS::something???
936 hostMode = mode;
937
938 // Adjust path for current working directory
939 path = process->fullPath(path);
940
941 // do the chmod
942 int result = chmod(path.c_str(), hostMode);
943 if (result < 0)
944 return -errno;
945
946 return 0;
947}
948
167/// Target lseek() handler.
168SyscallReturn lseekFunc(SyscallDesc *desc, int num,
169 Process *p, ThreadContext *tc);
170
171/// Target _llseek() handler.
172SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
173 Process *p, ThreadContext *tc);
174
175/// Target munmap() handler.
176SyscallReturn munmapFunc(SyscallDesc *desc, int num,
177 Process *p, ThreadContext *tc);
178
179/// Target shutdown() handler.
180SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
181 Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185 Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189 Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193 Process *p, ThreadContext *tc,
194 int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196 Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200 Process *p, ThreadContext *tc,
201 int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203 Process *p, ThreadContext *tc);
204
205/// Target link() handler
206SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
207 ThreadContext *tc);
208
209/// Target symlink() handler.
210SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
211 ThreadContext *tc);
212
213/// Target mkdir() handler.
214SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
215 Process *p, ThreadContext *tc);
216
217/// Target mknod() handler.
218SyscallReturn mknodFunc(SyscallDesc *desc, int num,
219 Process *p, ThreadContext *tc);
220
221/// Target chdir() handler.
222SyscallReturn chdirFunc(SyscallDesc *desc, int num,
223 Process *p, ThreadContext *tc);
224
225// Target rmdir() handler.
226SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
227 Process *p, ThreadContext *tc);
228
229/// Target rename() handler.
230SyscallReturn renameFunc(SyscallDesc *desc, int num,
231 Process *p, ThreadContext *tc);
232
233
234/// Target truncate() handler.
235SyscallReturn truncateFunc(SyscallDesc *desc, int num,
236 Process *p, ThreadContext *tc);
237
238
239/// Target ftruncate() handler.
240SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
241 Process *p, ThreadContext *tc);
242
243
244/// Target truncate64() handler.
245SyscallReturn truncate64Func(SyscallDesc *desc, int num,
246 Process *p, ThreadContext *tc);
247
248/// Target ftruncate64() handler.
249SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
250 Process *p, ThreadContext *tc);
251
252
253/// Target umask() handler.
254SyscallReturn umaskFunc(SyscallDesc *desc, int num,
255 Process *p, ThreadContext *tc);
256
257/// Target gettid() handler.
258SyscallReturn gettidFunc(SyscallDesc *desc, int num,
259 Process *p, ThreadContext *tc);
260
261/// Target chown() handler.
262SyscallReturn chownFunc(SyscallDesc *desc, int num,
263 Process *p, ThreadContext *tc);
264
265/// Target setpgid() handler.
266SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
267 Process *p, ThreadContext *tc);
268
269/// Target fchown() handler.
270SyscallReturn fchownFunc(SyscallDesc *desc, int num,
271 Process *p, ThreadContext *tc);
272
273/// Target dup() handler.
274SyscallReturn dupFunc(SyscallDesc *desc, int num,
275 Process *process, ThreadContext *tc);
276
277/// Target dup2() handler.
278SyscallReturn dup2Func(SyscallDesc *desc, int num,
279 Process *process, ThreadContext *tc);
280
281/// Target fcntl() handler.
282SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
283 Process *process, ThreadContext *tc);
284
285/// Target fcntl64() handler.
286SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
287 Process *process, ThreadContext *tc);
288
289/// Target setuid() handler.
290SyscallReturn setuidFunc(SyscallDesc *desc, int num,
291 Process *p, ThreadContext *tc);
292
293/// Target pipe() handler.
294SyscallReturn pipeFunc(SyscallDesc *desc, int num,
295 Process *p, ThreadContext *tc);
296
297/// Internal pipe() handler.
298SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
299 ThreadContext *tc, bool pseudoPipe);
300
301/// Target getpid() handler.
302SyscallReturn getpidFunc(SyscallDesc *desc, int num,
303 Process *p, ThreadContext *tc);
304
305// Target bind() handler.
306SyscallReturn bindFunc(SyscallDesc *desc, int num,
307 Process *p, ThreadContext *tc);
308
309// Target listen() handler.
310SyscallReturn listenFunc(SyscallDesc *desc, int num,
311 Process *p, ThreadContext *tc);
312
313// Target connect() handler.
314SyscallReturn connectFunc(SyscallDesc *desc, int num,
315 Process *p, ThreadContext *tc);
316
317#if defined(SYS_getdents)
318// Target getdents() handler.
319SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
320 Process *p, ThreadContext *tc);
321#endif
322
323#if defined(SYS_getdents64)
324// Target getdents() handler.
325SyscallReturn getdents64Func(SyscallDesc *desc, int num,
326 Process *p, ThreadContext *tc);
327#endif
328
329// Target sendto() handler.
330SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
331 Process *p, ThreadContext *tc);
332
333// Target recvfrom() handler.
334SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
335 Process *p, ThreadContext *tc);
336
337// Target recvmsg() handler.
338SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
339 Process *p, ThreadContext *tc);
340
341// Target sendmsg() handler.
342SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
343 Process *p, ThreadContext *tc);
344
345// Target getuid() handler.
346SyscallReturn getuidFunc(SyscallDesc *desc, int num,
347 Process *p, ThreadContext *tc);
348
349/// Target getgid() handler.
350SyscallReturn getgidFunc(SyscallDesc *desc, int num,
351 Process *p, ThreadContext *tc);
352
353/// Target getppid() handler.
354SyscallReturn getppidFunc(SyscallDesc *desc, int num,
355 Process *p, ThreadContext *tc);
356
357/// Target geteuid() handler.
358SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
359 Process *p, ThreadContext *tc);
360
361/// Target getegid() handler.
362SyscallReturn getegidFunc(SyscallDesc *desc, int num,
363 Process *p, ThreadContext *tc);
364
365/// Target access() handler
366SyscallReturn accessFunc(SyscallDesc *desc, int num,
367 Process *p, ThreadContext *tc);
368SyscallReturn accessFunc(SyscallDesc *desc, int num,
369 Process *p, ThreadContext *tc,
370 int index);
371
372/// Futex system call
373/// Implemented by Daniel Sanchez
374/// Used by printf's in multi-threaded apps
375template <class OS>
376SyscallReturn
377futexFunc(SyscallDesc *desc, int callnum, Process *process,
378 ThreadContext *tc)
379{
380 using namespace std;
381
382 int index = 0;
383 Addr uaddr = process->getSyscallArg(tc, index);
384 int op = process->getSyscallArg(tc, index);
385 int val = process->getSyscallArg(tc, index);
386
387 /*
388 * Unsupported option that does not affect the correctness of the
389 * application. This is a performance optimization utilized by Linux.
390 */
391 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
392
393 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
394
395 if (OS::TGT_FUTEX_WAIT == op) {
396 // Ensure futex system call accessed atomically.
397 BufferArg buf(uaddr, sizeof(int));
398 buf.copyIn(tc->getMemProxy());
399 int mem_val = *(int*)buf.bufferPtr();
400
401 /*
402 * The value in memory at uaddr is not equal with the expected val
403 * (a different thread must have changed it before the system call was
404 * invoked). In this case, we need to throw an error.
405 */
406 if (val != mem_val)
407 return -OS::TGT_EWOULDBLOCK;
408
409 futex_map.suspend(uaddr, process->tgid(), tc);
410
411 return 0;
412 } else if (OS::TGT_FUTEX_WAKE == op) {
413 return futex_map.wakeup(uaddr, process->tgid(), val);
414 }
415
416 warn("futex: op %d not implemented; ignoring.", op);
417 return -ENOSYS;
418}
419
420
421/// Pseudo Funcs - These functions use a different return convension,
422/// returning a second value in a register other than the normal return register
423SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
424 Process *process, ThreadContext *tc);
425
426/// Target getpidPseudo() handler.
427SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
428 Process *p, ThreadContext *tc);
429
430/// Target getuidPseudo() handler.
431SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
432 Process *p, ThreadContext *tc);
433
434/// Target getgidPseudo() handler.
435SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
436 Process *p, ThreadContext *tc);
437
438
439/// A readable name for 1,000,000, for converting microseconds to seconds.
440const int one_million = 1000000;
441/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
442const int one_billion = 1000000000;
443
444/// Approximate seconds since the epoch (1/1/1970). About a billion,
445/// by my reckoning. We want to keep this a constant (not use the
446/// real-world time) to keep simulations repeatable.
447const unsigned seconds_since_epoch = 1000000000;
448
449/// Helper function to convert current elapsed time to seconds and
450/// microseconds.
451template <class T1, class T2>
452void
453getElapsedTimeMicro(T1 &sec, T2 &usec)
454{
455 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
456 sec = elapsed_usecs / one_million;
457 usec = elapsed_usecs % one_million;
458}
459
460/// Helper function to convert current elapsed time to seconds and
461/// nanoseconds.
462template <class T1, class T2>
463void
464getElapsedTimeNano(T1 &sec, T2 &nsec)
465{
466 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
467 sec = elapsed_nsecs / one_billion;
468 nsec = elapsed_nsecs % one_billion;
469}
470
471//////////////////////////////////////////////////////////////////////
472//
473// The following emulation functions are generic, but need to be
474// templated to account for differences in types, constants, etc.
475//
476//////////////////////////////////////////////////////////////////////
477
478 typedef struct statfs hst_statfs;
479#if NO_STAT64
480 typedef struct stat hst_stat;
481 typedef struct stat hst_stat64;
482#else
483 typedef struct stat hst_stat;
484 typedef struct stat64 hst_stat64;
485#endif
486
487//// Helper function to convert a host stat buffer to a target stat
488//// buffer. Also copies the target buffer out to the simulated
489//// memory space. Used by stat(), fstat(), and lstat().
490
491template <typename target_stat, typename host_stat>
492void
493convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
494{
495 using namespace TheISA;
496
497 if (fakeTTY)
498 tgt->st_dev = 0xA;
499 else
500 tgt->st_dev = host->st_dev;
501 tgt->st_dev = TheISA::htog(tgt->st_dev);
502 tgt->st_ino = host->st_ino;
503 tgt->st_ino = TheISA::htog(tgt->st_ino);
504 tgt->st_mode = host->st_mode;
505 if (fakeTTY) {
506 // Claim to be a character device
507 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
508 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
509 }
510 tgt->st_mode = TheISA::htog(tgt->st_mode);
511 tgt->st_nlink = host->st_nlink;
512 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
513 tgt->st_uid = host->st_uid;
514 tgt->st_uid = TheISA::htog(tgt->st_uid);
515 tgt->st_gid = host->st_gid;
516 tgt->st_gid = TheISA::htog(tgt->st_gid);
517 if (fakeTTY)
518 tgt->st_rdev = 0x880d;
519 else
520 tgt->st_rdev = host->st_rdev;
521 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
522 tgt->st_size = host->st_size;
523 tgt->st_size = TheISA::htog(tgt->st_size);
524 tgt->st_atimeX = host->st_atime;
525 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
526 tgt->st_mtimeX = host->st_mtime;
527 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
528 tgt->st_ctimeX = host->st_ctime;
529 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
530 // Force the block size to be 8KB. This helps to ensure buffered io works
531 // consistently across different hosts.
532 tgt->st_blksize = 0x2000;
533 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
534 tgt->st_blocks = host->st_blocks;
535 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
536}
537
538// Same for stat64
539
540template <typename target_stat, typename host_stat64>
541void
542convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
543{
544 using namespace TheISA;
545
546 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
547#if defined(STAT_HAVE_NSEC)
548 tgt->st_atime_nsec = host->st_atime_nsec;
549 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
550 tgt->st_mtime_nsec = host->st_mtime_nsec;
551 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
552 tgt->st_ctime_nsec = host->st_ctime_nsec;
553 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
554#else
555 tgt->st_atime_nsec = 0;
556 tgt->st_mtime_nsec = 0;
557 tgt->st_ctime_nsec = 0;
558#endif
559}
560
561// Here are a couple of convenience functions
562template<class OS>
563void
564copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
565 hst_stat *host, bool fakeTTY = false)
566{
567 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
568 tgt_stat_buf tgt(addr);
569 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
570 tgt.copyOut(mem);
571}
572
573template<class OS>
574void
575copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
576 hst_stat64 *host, bool fakeTTY = false)
577{
578 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
579 tgt_stat_buf tgt(addr);
580 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
581 tgt.copyOut(mem);
582}
583
584template <class OS>
585void
586copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
587 hst_statfs *host)
588{
589 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
590
591 tgt->f_type = TheISA::htog(host->f_type);
592#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
593 tgt->f_bsize = TheISA::htog(host->f_iosize);
594#else
595 tgt->f_bsize = TheISA::htog(host->f_bsize);
596#endif
597 tgt->f_blocks = TheISA::htog(host->f_blocks);
598 tgt->f_bfree = TheISA::htog(host->f_bfree);
599 tgt->f_bavail = TheISA::htog(host->f_bavail);
600 tgt->f_files = TheISA::htog(host->f_files);
601 tgt->f_ffree = TheISA::htog(host->f_ffree);
602 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
603#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
604 tgt->f_namelen = TheISA::htog(host->f_namemax);
605 tgt->f_frsize = TheISA::htog(host->f_bsize);
606#elif defined(__APPLE__)
607 tgt->f_namelen = 0;
608 tgt->f_frsize = 0;
609#else
610 tgt->f_namelen = TheISA::htog(host->f_namelen);
611 tgt->f_frsize = TheISA::htog(host->f_frsize);
612#endif
613#if defined(__linux__)
614 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
615#else
616 /*
617 * The fields are different sizes per OS. Don't bother with
618 * f_spare or f_reserved on non-Linux for now.
619 */
620 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
621#endif
622
623 tgt.copyOut(mem);
624}
625
626/// Target ioctl() handler. For the most part, programs call ioctl()
627/// only to find out if their stdout is a tty, to determine whether to
628/// do line or block buffering. We always claim that output fds are
629/// not TTYs to provide repeatable results.
630template <class OS>
631SyscallReturn
632ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
633{
634 int index = 0;
635 int tgt_fd = p->getSyscallArg(tc, index);
636 unsigned req = p->getSyscallArg(tc, index);
637
638 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
639
640 if (OS::isTtyReq(req))
641 return -ENOTTY;
642
643 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
644 if (!dfdp)
645 return -EBADF;
646
647 /**
648 * If the driver is valid, issue the ioctl through it. Otherwise,
649 * there's an implicit assumption that the device is a TTY type and we
650 * return that we do not have a valid TTY.
651 */
652 EmulatedDriver *emul_driver = dfdp->getDriver();
653 if (emul_driver)
654 return emul_driver->ioctl(p, tc, req);
655
656 /**
657 * For lack of a better return code, return ENOTTY. Ideally, we should
658 * return something better here, but at least we issue the warning.
659 */
660 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
661 tgt_fd, req, tc->pcState());
662 return -ENOTTY;
663}
664
665template <class OS>
666SyscallReturn
667openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
668 bool isopenat)
669{
670 int index = 0;
671 int tgt_dirfd = -1;
672
673 /**
674 * If using the openat variant, read in the target directory file
675 * descriptor from the simulated process.
676 */
677 if (isopenat)
678 tgt_dirfd = p->getSyscallArg(tc, index);
679
680 /**
681 * Retrieve the simulated process' memory proxy and then read in the path
682 * string from that memory space into the host's working memory space.
683 */
684 std::string path;
685 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
686 return -EFAULT;
687
688#ifdef __CYGWIN32__
689 int host_flags = O_BINARY;
690#else
691 int host_flags = 0;
692#endif
693 /**
694 * Translate target flags into host flags. Flags exist which are not
695 * ported between architectures which can cause check failures.
696 */
697 int tgt_flags = p->getSyscallArg(tc, index);
698 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
699 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
700 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
701 host_flags |= OS::openFlagTable[i].hostFlag;
702 }
703 }
704 if (tgt_flags) {
705 warn("open%s: cannot decode flags 0x%x",
706 isopenat ? "at" : "", tgt_flags);
707 }
708#ifdef __CYGWIN32__
709 host_flags |= O_BINARY;
710#endif
711
712 int mode = p->getSyscallArg(tc, index);
713
714 /**
715 * If the simulated process called open or openat with AT_FDCWD specified,
716 * take the current working directory value which was passed into the
717 * process class as a Python parameter and append the current path to
718 * create a full path.
719 * Otherwise, openat with a valid target directory file descriptor has
720 * been called. If the path option, which was passed in as a parameter,
721 * is not absolute, retrieve the directory file descriptor's path and
722 * prepend it to the path passed in as a parameter.
723 * In every case, we should have a full path (which is relevant to the
724 * host) to work with after this block has been passed.
725 */
726 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
727 path = p->fullPath(path);
728 } else if (!startswith(path, "/")) {
729 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
730 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
731 if (!ffdp)
732 return -EBADF;
733 path.insert(0, ffdp->getFileName() + "/");
734 }
735
736 /**
737 * Since this is an emulated environment, we create pseudo file
738 * descriptors for device requests that have been registered with
739 * the process class through Python; this allows us to create a file
740 * descriptor for subsequent ioctl or mmap calls.
741 */
742 if (startswith(path, "/dev/")) {
743 std::string filename = path.substr(strlen("/dev/"));
744 EmulatedDriver *drv = p->findDriver(filename);
745 if (drv) {
746 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
747 "driver open with path[%s]\n",
748 isopenat ? "at" : "", path.c_str());
749 return drv->open(p, tc, mode, host_flags);
750 }
751 /**
752 * Fall through here for pass through to host devices, such
753 * as /dev/zero
754 */
755 }
756
757 /**
758 * Some special paths and files cannot be called on the host and need
759 * to be handled as special cases inside the simulator.
760 * If the full path that was created above does not match any of the
761 * special cases, pass it through to the open call on the host to let
762 * the host open the file on our behalf.
763 * If the host cannot open the file, return the host's error code back
764 * through the system call to the simulated process.
765 */
766 int sim_fd = -1;
767 std::vector<std::string> special_paths =
768 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
769 for (auto entry : special_paths) {
770 if (startswith(path, entry))
771 sim_fd = OS::openSpecialFile(path, p, tc);
772 }
773 if (sim_fd == -1) {
774 sim_fd = open(path.c_str(), host_flags, mode);
775 }
776 if (sim_fd == -1) {
777 int local = -errno;
778 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
779 isopenat ? "at" : "", path.c_str());
780 return local;
781 }
782
783 /**
784 * The file was opened successfully and needs to be recorded in the
785 * process' file descriptor array so that it can be retrieved later.
786 * The target file descriptor that is chosen will be the lowest unused
787 * file descriptor.
788 * Return the indirect target file descriptor back to the simulated
789 * process to act as a handle for the opened file.
790 */
791 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
792 int tgt_fd = p->fds->allocFD(ffdp);
793 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
794 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
795 return tgt_fd;
796}
797
798/// Target open() handler.
799template <class OS>
800SyscallReturn
801openFunc(SyscallDesc *desc, int callnum, Process *process,
802 ThreadContext *tc)
803{
804 return openImpl<OS>(desc, callnum, process, tc, false);
805}
806
807/// Target openat() handler.
808template <class OS>
809SyscallReturn
810openatFunc(SyscallDesc *desc, int callnum, Process *process,
811 ThreadContext *tc)
812{
813 return openImpl<OS>(desc, callnum, process, tc, true);
814}
815
816/// Target unlinkat() handler.
817template <class OS>
818SyscallReturn
819unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
820 ThreadContext *tc)
821{
822 int index = 0;
823 int dirfd = process->getSyscallArg(tc, index);
824 if (dirfd != OS::TGT_AT_FDCWD)
825 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
826
827 return unlinkHelper(desc, callnum, process, tc, 1);
828}
829
830/// Target facessat() handler
831template <class OS>
832SyscallReturn
833faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
834 ThreadContext *tc)
835{
836 int index = 0;
837 int dirfd = process->getSyscallArg(tc, index);
838 if (dirfd != OS::TGT_AT_FDCWD)
839 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
840 return accessFunc(desc, callnum, process, tc, 1);
841}
842
843/// Target readlinkat() handler
844template <class OS>
845SyscallReturn
846readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
847 ThreadContext *tc)
848{
849 int index = 0;
850 int dirfd = process->getSyscallArg(tc, index);
851 if (dirfd != OS::TGT_AT_FDCWD)
852 warn("openat: first argument not AT_FDCWD; unlikely to work");
853 return readlinkFunc(desc, callnum, process, tc, 1);
854}
855
856/// Target renameat() handler.
857template <class OS>
858SyscallReturn
859renameatFunc(SyscallDesc *desc, int callnum, Process *process,
860 ThreadContext *tc)
861{
862 int index = 0;
863
864 int olddirfd = process->getSyscallArg(tc, index);
865 if (olddirfd != OS::TGT_AT_FDCWD)
866 warn("renameat: first argument not AT_FDCWD; unlikely to work");
867
868 std::string old_name;
869
870 if (!tc->getMemProxy().tryReadString(old_name,
871 process->getSyscallArg(tc, index)))
872 return -EFAULT;
873
874 int newdirfd = process->getSyscallArg(tc, index);
875 if (newdirfd != OS::TGT_AT_FDCWD)
876 warn("renameat: third argument not AT_FDCWD; unlikely to work");
877
878 std::string new_name;
879
880 if (!tc->getMemProxy().tryReadString(new_name,
881 process->getSyscallArg(tc, index)))
882 return -EFAULT;
883
884 // Adjust path for current working directory
885 old_name = process->fullPath(old_name);
886 new_name = process->fullPath(new_name);
887
888 int result = rename(old_name.c_str(), new_name.c_str());
889 return (result == -1) ? -errno : result;
890}
891
892/// Target sysinfo() handler.
893template <class OS>
894SyscallReturn
895sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
896 ThreadContext *tc)
897{
898
899 int index = 0;
900 TypedBufferArg<typename OS::tgt_sysinfo>
901 sysinfo(process->getSyscallArg(tc, index));
902
903 sysinfo->uptime = seconds_since_epoch;
904 sysinfo->totalram = process->system->memSize();
905 sysinfo->mem_unit = 1;
906
907 sysinfo.copyOut(tc->getMemProxy());
908
909 return 0;
910}
911
912/// Target chmod() handler.
913template <class OS>
914SyscallReturn
915chmodFunc(SyscallDesc *desc, int callnum, Process *process,
916 ThreadContext *tc)
917{
918 std::string path;
919
920 int index = 0;
921 if (!tc->getMemProxy().tryReadString(path,
922 process->getSyscallArg(tc, index))) {
923 return -EFAULT;
924 }
925
926 uint32_t mode = process->getSyscallArg(tc, index);
927 mode_t hostMode = 0;
928
929 // XXX translate mode flags via OS::something???
930 hostMode = mode;
931
932 // Adjust path for current working directory
933 path = process->fullPath(path);
934
935 // do the chmod
936 int result = chmod(path.c_str(), hostMode);
937 if (result < 0)
938 return -errno;
939
940 return 0;
941}
942
943template <class OS>
944SyscallReturn
945pollFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
946{
947 int index = 0;
948 Addr fdsPtr = p->getSyscallArg(tc, index);
949 int nfds = p->getSyscallArg(tc, index);
950 int tmout = p->getSyscallArg(tc, index);
949
951
952 BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds);
953 fdsBuf.copyIn(tc->getMemProxy());
954
955 /**
956 * Record the target file descriptors in a local variable. We need to
957 * replace them with host file descriptors but we need a temporary copy
958 * for later. Afterwards, replace each target file descriptor in the
959 * poll_fd array with its host_fd.
960 */
961 int temp_tgt_fds[nfds];
962 for (index = 0; index < nfds; index++) {
963 temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd;
964 auto tgt_fd = temp_tgt_fds[index];
965 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
966 if (!hbfdp)
967 return -EBADF;
968 auto host_fd = hbfdp->getSimFD();
969 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd;
970 }
971
972 /**
973 * We cannot allow an infinite poll to occur or it will inevitably cause
974 * a deadlock in the gem5 simulator with clone. We must pass in tmout with
975 * a non-negative value, however it also makes no sense to poll on the
976 * underlying host for any other time than tmout a zero timeout.
977 */
978 int status;
979 if (tmout < 0) {
980 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
981 if (status == 0) {
982 /**
983 * If blocking indefinitely, check the signal list to see if a
984 * signal would break the poll out of the retry cycle and try
985 * to return the signal interrupt instead.
986 */
987 System *sysh = tc->getSystemPtr();
988 std::list<BasicSignal>::iterator it;
989 for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++)
990 if (it->receiver == p)
991 return -EINTR;
992 return SyscallReturn::retry();
993 }
994 } else
995 status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0);
996
997 if (status == -1)
998 return -errno;
999
1000 /**
1001 * Replace each host_fd in the returned poll_fd array with its original
1002 * target file descriptor.
1003 */
1004 for (index = 0; index < nfds; index++) {
1005 auto tgt_fd = temp_tgt_fds[index];
1006 ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd;
1007 }
1008
1009 /**
1010 * Copy out the pollfd struct because the host may have updated fields
1011 * in the structure.
1012 */
1013 fdsBuf.copyOut(tc->getMemProxy());
1014
1015 return status;
1016}
1017
950/// Target fchmod() handler.
951template <class OS>
952SyscallReturn
953fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
954{
955 int index = 0;
956 int tgt_fd = p->getSyscallArg(tc, index);
957 uint32_t mode = p->getSyscallArg(tc, index);
958
959 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
960 if (!ffdp)
961 return -EBADF;
962 int sim_fd = ffdp->getSimFD();
963
964 mode_t hostMode = mode;
965
966 int result = fchmod(sim_fd, hostMode);
967
968 return (result < 0) ? -errno : 0;
969}
970
971/// Target mremap() handler.
972template <class OS>
973SyscallReturn
974mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
975{
976 int index = 0;
977 Addr start = process->getSyscallArg(tc, index);
978 uint64_t old_length = process->getSyscallArg(tc, index);
979 uint64_t new_length = process->getSyscallArg(tc, index);
980 uint64_t flags = process->getSyscallArg(tc, index);
981 uint64_t provided_address = 0;
982 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
983
984 if (use_provided_address)
985 provided_address = process->getSyscallArg(tc, index);
986
987 if ((start % TheISA::PageBytes != 0) ||
988 (provided_address % TheISA::PageBytes != 0)) {
989 warn("mremap failing: arguments not page aligned");
990 return -EINVAL;
991 }
992
993 new_length = roundUp(new_length, TheISA::PageBytes);
994
995 if (new_length > old_length) {
996 std::shared_ptr<MemState> mem_state = process->memState;
997 Addr mmap_end = mem_state->getMmapEnd();
998
999 if ((start + old_length) == mmap_end &&
1000 (!use_provided_address || provided_address == start)) {
1001 // This case cannot occur when growing downward, as
1002 // start is greater than or equal to mmap_end.
1003 uint64_t diff = new_length - old_length;
1004 process->allocateMem(mmap_end, diff);
1005 mem_state->setMmapEnd(mmap_end + diff);
1006 return start;
1007 } else {
1008 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1009 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1010 return -ENOMEM;
1011 } else {
1012 uint64_t new_start = provided_address;
1013 if (!use_provided_address) {
1014 new_start = process->mmapGrowsDown() ?
1015 mmap_end - new_length : mmap_end;
1016 mmap_end = process->mmapGrowsDown() ?
1017 new_start : mmap_end + new_length;
1018 mem_state->setMmapEnd(mmap_end);
1019 }
1020
1021 process->pTable->remap(start, old_length, new_start);
1022 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1023 new_start, new_start + new_length,
1024 new_length - old_length);
1025 // add on the remaining unallocated pages
1026 process->allocateMem(new_start + old_length,
1027 new_length - old_length,
1028 use_provided_address /* clobber */);
1029 if (use_provided_address &&
1030 ((new_start + new_length > mem_state->getMmapEnd() &&
1031 !process->mmapGrowsDown()) ||
1032 (new_start < mem_state->getMmapEnd() &&
1033 process->mmapGrowsDown()))) {
1034 // something fishy going on here, at least notify the user
1035 // @todo: increase mmap_end?
1036 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1037 }
1038 warn("returning %08p as start\n", new_start);
1039 return new_start;
1040 }
1041 }
1042 } else {
1043 if (use_provided_address && provided_address != start)
1044 process->pTable->remap(start, new_length, provided_address);
1045 process->pTable->unmap(start + new_length, old_length - new_length);
1046 return use_provided_address ? provided_address : start;
1047 }
1048}
1049
1050/// Target stat() handler.
1051template <class OS>
1052SyscallReturn
1053statFunc(SyscallDesc *desc, int callnum, Process *process,
1054 ThreadContext *tc)
1055{
1056 std::string path;
1057
1058 int index = 0;
1059 if (!tc->getMemProxy().tryReadString(path,
1060 process->getSyscallArg(tc, index))) {
1061 return -EFAULT;
1062 }
1063 Addr bufPtr = process->getSyscallArg(tc, index);
1064
1065 // Adjust path for current working directory
1066 path = process->fullPath(path);
1067
1068 struct stat hostBuf;
1069 int result = stat(path.c_str(), &hostBuf);
1070
1071 if (result < 0)
1072 return -errno;
1073
1074 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1075
1076 return 0;
1077}
1078
1079
1080/// Target stat64() handler.
1081template <class OS>
1082SyscallReturn
1083stat64Func(SyscallDesc *desc, int callnum, Process *process,
1084 ThreadContext *tc)
1085{
1086 std::string path;
1087
1088 int index = 0;
1089 if (!tc->getMemProxy().tryReadString(path,
1090 process->getSyscallArg(tc, index)))
1091 return -EFAULT;
1092 Addr bufPtr = process->getSyscallArg(tc, index);
1093
1094 // Adjust path for current working directory
1095 path = process->fullPath(path);
1096
1097#if NO_STAT64
1098 struct stat hostBuf;
1099 int result = stat(path.c_str(), &hostBuf);
1100#else
1101 struct stat64 hostBuf;
1102 int result = stat64(path.c_str(), &hostBuf);
1103#endif
1104
1105 if (result < 0)
1106 return -errno;
1107
1108 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1109
1110 return 0;
1111}
1112
1113
1114/// Target fstatat64() handler.
1115template <class OS>
1116SyscallReturn
1117fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1118 ThreadContext *tc)
1119{
1120 int index = 0;
1121 int dirfd = process->getSyscallArg(tc, index);
1122 if (dirfd != OS::TGT_AT_FDCWD)
1123 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1124
1125 std::string path;
1126 if (!tc->getMemProxy().tryReadString(path,
1127 process->getSyscallArg(tc, index)))
1128 return -EFAULT;
1129 Addr bufPtr = process->getSyscallArg(tc, index);
1130
1131 // Adjust path for current working directory
1132 path = process->fullPath(path);
1133
1134#if NO_STAT64
1135 struct stat hostBuf;
1136 int result = stat(path.c_str(), &hostBuf);
1137#else
1138 struct stat64 hostBuf;
1139 int result = stat64(path.c_str(), &hostBuf);
1140#endif
1141
1142 if (result < 0)
1143 return -errno;
1144
1145 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1146
1147 return 0;
1148}
1149
1150
1151/// Target fstat64() handler.
1152template <class OS>
1153SyscallReturn
1154fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1155{
1156 int index = 0;
1157 int tgt_fd = p->getSyscallArg(tc, index);
1158 Addr bufPtr = p->getSyscallArg(tc, index);
1159
1160 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1161 if (!ffdp)
1162 return -EBADF;
1163 int sim_fd = ffdp->getSimFD();
1164
1165#if NO_STAT64
1166 struct stat hostBuf;
1167 int result = fstat(sim_fd, &hostBuf);
1168#else
1169 struct stat64 hostBuf;
1170 int result = fstat64(sim_fd, &hostBuf);
1171#endif
1172
1173 if (result < 0)
1174 return -errno;
1175
1176 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1177
1178 return 0;
1179}
1180
1181
1182/// Target lstat() handler.
1183template <class OS>
1184SyscallReturn
1185lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1186 ThreadContext *tc)
1187{
1188 std::string path;
1189
1190 int index = 0;
1191 if (!tc->getMemProxy().tryReadString(path,
1192 process->getSyscallArg(tc, index))) {
1193 return -EFAULT;
1194 }
1195 Addr bufPtr = process->getSyscallArg(tc, index);
1196
1197 // Adjust path for current working directory
1198 path = process->fullPath(path);
1199
1200 struct stat hostBuf;
1201 int result = lstat(path.c_str(), &hostBuf);
1202
1203 if (result < 0)
1204 return -errno;
1205
1206 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1207
1208 return 0;
1209}
1210
1211/// Target lstat64() handler.
1212template <class OS>
1213SyscallReturn
1214lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1215 ThreadContext *tc)
1216{
1217 std::string path;
1218
1219 int index = 0;
1220 if (!tc->getMemProxy().tryReadString(path,
1221 process->getSyscallArg(tc, index))) {
1222 return -EFAULT;
1223 }
1224 Addr bufPtr = process->getSyscallArg(tc, index);
1225
1226 // Adjust path for current working directory
1227 path = process->fullPath(path);
1228
1229#if NO_STAT64
1230 struct stat hostBuf;
1231 int result = lstat(path.c_str(), &hostBuf);
1232#else
1233 struct stat64 hostBuf;
1234 int result = lstat64(path.c_str(), &hostBuf);
1235#endif
1236
1237 if (result < 0)
1238 return -errno;
1239
1240 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1241
1242 return 0;
1243}
1244
1245/// Target fstat() handler.
1246template <class OS>
1247SyscallReturn
1248fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1249{
1250 int index = 0;
1251 int tgt_fd = p->getSyscallArg(tc, index);
1252 Addr bufPtr = p->getSyscallArg(tc, index);
1253
1254 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1255
1256 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1257 if (!ffdp)
1258 return -EBADF;
1259 int sim_fd = ffdp->getSimFD();
1260
1261 struct stat hostBuf;
1262 int result = fstat(sim_fd, &hostBuf);
1263
1264 if (result < 0)
1265 return -errno;
1266
1267 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1268
1269 return 0;
1270}
1271
1018/// Target fchmod() handler.
1019template <class OS>
1020SyscallReturn
1021fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1022{
1023 int index = 0;
1024 int tgt_fd = p->getSyscallArg(tc, index);
1025 uint32_t mode = p->getSyscallArg(tc, index);
1026
1027 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1028 if (!ffdp)
1029 return -EBADF;
1030 int sim_fd = ffdp->getSimFD();
1031
1032 mode_t hostMode = mode;
1033
1034 int result = fchmod(sim_fd, hostMode);
1035
1036 return (result < 0) ? -errno : 0;
1037}
1038
1039/// Target mremap() handler.
1040template <class OS>
1041SyscallReturn
1042mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1043{
1044 int index = 0;
1045 Addr start = process->getSyscallArg(tc, index);
1046 uint64_t old_length = process->getSyscallArg(tc, index);
1047 uint64_t new_length = process->getSyscallArg(tc, index);
1048 uint64_t flags = process->getSyscallArg(tc, index);
1049 uint64_t provided_address = 0;
1050 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
1051
1052 if (use_provided_address)
1053 provided_address = process->getSyscallArg(tc, index);
1054
1055 if ((start % TheISA::PageBytes != 0) ||
1056 (provided_address % TheISA::PageBytes != 0)) {
1057 warn("mremap failing: arguments not page aligned");
1058 return -EINVAL;
1059 }
1060
1061 new_length = roundUp(new_length, TheISA::PageBytes);
1062
1063 if (new_length > old_length) {
1064 std::shared_ptr<MemState> mem_state = process->memState;
1065 Addr mmap_end = mem_state->getMmapEnd();
1066
1067 if ((start + old_length) == mmap_end &&
1068 (!use_provided_address || provided_address == start)) {
1069 // This case cannot occur when growing downward, as
1070 // start is greater than or equal to mmap_end.
1071 uint64_t diff = new_length - old_length;
1072 process->allocateMem(mmap_end, diff);
1073 mem_state->setMmapEnd(mmap_end + diff);
1074 return start;
1075 } else {
1076 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1077 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1078 return -ENOMEM;
1079 } else {
1080 uint64_t new_start = provided_address;
1081 if (!use_provided_address) {
1082 new_start = process->mmapGrowsDown() ?
1083 mmap_end - new_length : mmap_end;
1084 mmap_end = process->mmapGrowsDown() ?
1085 new_start : mmap_end + new_length;
1086 mem_state->setMmapEnd(mmap_end);
1087 }
1088
1089 process->pTable->remap(start, old_length, new_start);
1090 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1091 new_start, new_start + new_length,
1092 new_length - old_length);
1093 // add on the remaining unallocated pages
1094 process->allocateMem(new_start + old_length,
1095 new_length - old_length,
1096 use_provided_address /* clobber */);
1097 if (use_provided_address &&
1098 ((new_start + new_length > mem_state->getMmapEnd() &&
1099 !process->mmapGrowsDown()) ||
1100 (new_start < mem_state->getMmapEnd() &&
1101 process->mmapGrowsDown()))) {
1102 // something fishy going on here, at least notify the user
1103 // @todo: increase mmap_end?
1104 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1105 }
1106 warn("returning %08p as start\n", new_start);
1107 return new_start;
1108 }
1109 }
1110 } else {
1111 if (use_provided_address && provided_address != start)
1112 process->pTable->remap(start, new_length, provided_address);
1113 process->pTable->unmap(start + new_length, old_length - new_length);
1114 return use_provided_address ? provided_address : start;
1115 }
1116}
1117
1118/// Target stat() handler.
1119template <class OS>
1120SyscallReturn
1121statFunc(SyscallDesc *desc, int callnum, Process *process,
1122 ThreadContext *tc)
1123{
1124 std::string path;
1125
1126 int index = 0;
1127 if (!tc->getMemProxy().tryReadString(path,
1128 process->getSyscallArg(tc, index))) {
1129 return -EFAULT;
1130 }
1131 Addr bufPtr = process->getSyscallArg(tc, index);
1132
1133 // Adjust path for current working directory
1134 path = process->fullPath(path);
1135
1136 struct stat hostBuf;
1137 int result = stat(path.c_str(), &hostBuf);
1138
1139 if (result < 0)
1140 return -errno;
1141
1142 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1143
1144 return 0;
1145}
1146
1147
1148/// Target stat64() handler.
1149template <class OS>
1150SyscallReturn
1151stat64Func(SyscallDesc *desc, int callnum, Process *process,
1152 ThreadContext *tc)
1153{
1154 std::string path;
1155
1156 int index = 0;
1157 if (!tc->getMemProxy().tryReadString(path,
1158 process->getSyscallArg(tc, index)))
1159 return -EFAULT;
1160 Addr bufPtr = process->getSyscallArg(tc, index);
1161
1162 // Adjust path for current working directory
1163 path = process->fullPath(path);
1164
1165#if NO_STAT64
1166 struct stat hostBuf;
1167 int result = stat(path.c_str(), &hostBuf);
1168#else
1169 struct stat64 hostBuf;
1170 int result = stat64(path.c_str(), &hostBuf);
1171#endif
1172
1173 if (result < 0)
1174 return -errno;
1175
1176 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1177
1178 return 0;
1179}
1180
1181
1182/// Target fstatat64() handler.
1183template <class OS>
1184SyscallReturn
1185fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1186 ThreadContext *tc)
1187{
1188 int index = 0;
1189 int dirfd = process->getSyscallArg(tc, index);
1190 if (dirfd != OS::TGT_AT_FDCWD)
1191 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1192
1193 std::string path;
1194 if (!tc->getMemProxy().tryReadString(path,
1195 process->getSyscallArg(tc, index)))
1196 return -EFAULT;
1197 Addr bufPtr = process->getSyscallArg(tc, index);
1198
1199 // Adjust path for current working directory
1200 path = process->fullPath(path);
1201
1202#if NO_STAT64
1203 struct stat hostBuf;
1204 int result = stat(path.c_str(), &hostBuf);
1205#else
1206 struct stat64 hostBuf;
1207 int result = stat64(path.c_str(), &hostBuf);
1208#endif
1209
1210 if (result < 0)
1211 return -errno;
1212
1213 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1214
1215 return 0;
1216}
1217
1218
1219/// Target fstat64() handler.
1220template <class OS>
1221SyscallReturn
1222fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1223{
1224 int index = 0;
1225 int tgt_fd = p->getSyscallArg(tc, index);
1226 Addr bufPtr = p->getSyscallArg(tc, index);
1227
1228 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1229 if (!ffdp)
1230 return -EBADF;
1231 int sim_fd = ffdp->getSimFD();
1232
1233#if NO_STAT64
1234 struct stat hostBuf;
1235 int result = fstat(sim_fd, &hostBuf);
1236#else
1237 struct stat64 hostBuf;
1238 int result = fstat64(sim_fd, &hostBuf);
1239#endif
1240
1241 if (result < 0)
1242 return -errno;
1243
1244 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1245
1246 return 0;
1247}
1248
1249
1250/// Target lstat() handler.
1251template <class OS>
1252SyscallReturn
1253lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1254 ThreadContext *tc)
1255{
1256 std::string path;
1257
1258 int index = 0;
1259 if (!tc->getMemProxy().tryReadString(path,
1260 process->getSyscallArg(tc, index))) {
1261 return -EFAULT;
1262 }
1263 Addr bufPtr = process->getSyscallArg(tc, index);
1264
1265 // Adjust path for current working directory
1266 path = process->fullPath(path);
1267
1268 struct stat hostBuf;
1269 int result = lstat(path.c_str(), &hostBuf);
1270
1271 if (result < 0)
1272 return -errno;
1273
1274 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1275
1276 return 0;
1277}
1278
1279/// Target lstat64() handler.
1280template <class OS>
1281SyscallReturn
1282lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1283 ThreadContext *tc)
1284{
1285 std::string path;
1286
1287 int index = 0;
1288 if (!tc->getMemProxy().tryReadString(path,
1289 process->getSyscallArg(tc, index))) {
1290 return -EFAULT;
1291 }
1292 Addr bufPtr = process->getSyscallArg(tc, index);
1293
1294 // Adjust path for current working directory
1295 path = process->fullPath(path);
1296
1297#if NO_STAT64
1298 struct stat hostBuf;
1299 int result = lstat(path.c_str(), &hostBuf);
1300#else
1301 struct stat64 hostBuf;
1302 int result = lstat64(path.c_str(), &hostBuf);
1303#endif
1304
1305 if (result < 0)
1306 return -errno;
1307
1308 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1309
1310 return 0;
1311}
1312
1313/// Target fstat() handler.
1314template <class OS>
1315SyscallReturn
1316fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1317{
1318 int index = 0;
1319 int tgt_fd = p->getSyscallArg(tc, index);
1320 Addr bufPtr = p->getSyscallArg(tc, index);
1321
1322 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1323
1324 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1325 if (!ffdp)
1326 return -EBADF;
1327 int sim_fd = ffdp->getSimFD();
1328
1329 struct stat hostBuf;
1330 int result = fstat(sim_fd, &hostBuf);
1331
1332 if (result < 0)
1333 return -errno;
1334
1335 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1336
1337 return 0;
1338}
1339
1272
1273/// Target statfs() handler.
1274template <class OS>
1275SyscallReturn
1276statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1277 ThreadContext *tc)
1278{
1279#if NO_STATFS
1280 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1281#else
1282 std::string path;
1283
1284 int index = 0;
1285 if (!tc->getMemProxy().tryReadString(path,
1286 process->getSyscallArg(tc, index))) {
1287 return -EFAULT;
1288 }
1289 Addr bufPtr = process->getSyscallArg(tc, index);
1290
1291 // Adjust path for current working directory
1292 path = process->fullPath(path);
1293
1294 struct statfs hostBuf;
1295 int result = statfs(path.c_str(), &hostBuf);
1296
1297 if (result < 0)
1298 return -errno;
1299
1300 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1301#endif
1302 return 0;
1303}
1304
1305template <class OS>
1306SyscallReturn
1307cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1308{
1309 int index = 0;
1310
1311 RegVal flags = p->getSyscallArg(tc, index);
1312 RegVal newStack = p->getSyscallArg(tc, index);
1313 Addr ptidPtr = p->getSyscallArg(tc, index);
1314
1315#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1316 /**
1317 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1318 * The flag defines the list of clone() arguments in the following
1319 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1320 */
1321 Addr tlsPtr = p->getSyscallArg(tc, index);
1322 Addr ctidPtr = p->getSyscallArg(tc, index);
1323#else
1324 Addr ctidPtr = p->getSyscallArg(tc, index);
1325 Addr tlsPtr = p->getSyscallArg(tc, index);
1326#endif
1327
1328 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1329 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1330 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1331 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1332 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1333 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1334 return -EINVAL;
1335
1336 ThreadContext *ctc;
1337 if (!(ctc = p->findFreeContext()))
1338 fatal("clone: no spare thread context in system");
1339
1340 /**
1341 * Note that ProcessParams is generated by swig and there are no other
1342 * examples of how to create anything but this default constructor. The
1343 * fields are manually initialized instead of passing parameters to the
1344 * constructor.
1345 */
1346 ProcessParams *pp = new ProcessParams();
1347 pp->executable.assign(*(new std::string(p->progName())));
1348 pp->cmd.push_back(*(new std::string(p->progName())));
1349 pp->system = p->system;
1350 pp->cwd.assign(p->getcwd());
1351 pp->input.assign("stdin");
1352 pp->output.assign("stdout");
1353 pp->errout.assign("stderr");
1354 pp->uid = p->uid();
1355 pp->euid = p->euid();
1356 pp->gid = p->gid();
1357 pp->egid = p->egid();
1358
1359 /* Find the first free PID that's less than the maximum */
1360 std::set<int> const& pids = p->system->PIDs;
1361 int temp_pid = *pids.begin();
1362 do {
1363 temp_pid++;
1364 } while (pids.find(temp_pid) != pids.end());
1365 if (temp_pid >= System::maxPID)
1366 fatal("temp_pid is too large: %d", temp_pid);
1367
1368 pp->pid = temp_pid;
1369 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1370 Process *cp = pp->create();
1371 delete pp;
1372
1373 Process *owner = ctc->getProcessPtr();
1374 ctc->setProcessPtr(cp);
1375 cp->assignThreadContext(ctc->contextId());
1376 owner->revokeThreadContext(ctc->contextId());
1377
1378 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1379 BufferArg ptidBuf(ptidPtr, sizeof(long));
1380 long *ptid = (long *)ptidBuf.bufferPtr();
1381 *ptid = cp->pid();
1382 ptidBuf.copyOut(tc->getMemProxy());
1383 }
1384
1385 cp->initState();
1386 p->clone(tc, ctc, cp, flags);
1387
1388 if (flags & OS::TGT_CLONE_THREAD) {
1389 delete cp->sigchld;
1390 cp->sigchld = p->sigchld;
1391 } else if (flags & OS::TGT_SIGCHLD) {
1392 *cp->sigchld = true;
1393 }
1394
1395 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1396 BufferArg ctidBuf(ctidPtr, sizeof(long));
1397 long *ctid = (long *)ctidBuf.bufferPtr();
1398 *ctid = cp->pid();
1399 ctidBuf.copyOut(ctc->getMemProxy());
1400 }
1401
1402 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1403 cp->childClearTID = (uint64_t)ctidPtr;
1404
1405 ctc->clearArchRegs();
1406
1407 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1408
1409 cp->setSyscallReturn(ctc, 0);
1410
1411#if THE_ISA == ALPHA_ISA
1412 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1413#elif THE_ISA == SPARC_ISA
1414 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1415 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1416#endif
1417
1418 TheISA::PCState cpc = tc->pcState();
1419 cpc.advance();
1420 ctc->pcState(cpc);
1421 ctc->activate();
1422
1423 return cp->pid();
1424}
1425
1426/// Target fstatfs() handler.
1427template <class OS>
1428SyscallReturn
1429fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1430{
1431 int index = 0;
1432 int tgt_fd = p->getSyscallArg(tc, index);
1433 Addr bufPtr = p->getSyscallArg(tc, index);
1434
1435 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1436 if (!ffdp)
1437 return -EBADF;
1438 int sim_fd = ffdp->getSimFD();
1439
1440 struct statfs hostBuf;
1441 int result = fstatfs(sim_fd, &hostBuf);
1442
1443 if (result < 0)
1444 return -errno;
1445
1446 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1447
1448 return 0;
1449}
1450
1451
1452/// Target writev() handler.
1453template <class OS>
1454SyscallReturn
1455writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1456{
1457 int index = 0;
1458 int tgt_fd = p->getSyscallArg(tc, index);
1459
1460 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1461 if (!hbfdp)
1462 return -EBADF;
1463 int sim_fd = hbfdp->getSimFD();
1464
1465 SETranslatingPortProxy &prox = tc->getMemProxy();
1466 uint64_t tiov_base = p->getSyscallArg(tc, index);
1467 size_t count = p->getSyscallArg(tc, index);
1468 struct iovec hiov[count];
1469 for (size_t i = 0; i < count; ++i) {
1470 typename OS::tgt_iovec tiov;
1471
1472 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1473 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1474 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1475 hiov[i].iov_base = new char [hiov[i].iov_len];
1476 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1477 hiov[i].iov_len);
1478 }
1479
1480 int result = writev(sim_fd, hiov, count);
1481
1482 for (size_t i = 0; i < count; ++i)
1483 delete [] (char *)hiov[i].iov_base;
1484
1485 if (result < 0)
1486 return -errno;
1487
1488 return result;
1489}
1490
1491/// Real mmap handler.
1492template <class OS>
1493SyscallReturn
1494mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1495 bool is_mmap2)
1496{
1497 int index = 0;
1498 Addr start = p->getSyscallArg(tc, index);
1499 uint64_t length = p->getSyscallArg(tc, index);
1500 int prot = p->getSyscallArg(tc, index);
1501 int tgt_flags = p->getSyscallArg(tc, index);
1502 int tgt_fd = p->getSyscallArg(tc, index);
1503 int offset = p->getSyscallArg(tc, index);
1504
1505 if (is_mmap2)
1506 offset *= TheISA::PageBytes;
1507
1508 if (start & (TheISA::PageBytes - 1) ||
1509 offset & (TheISA::PageBytes - 1) ||
1510 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1511 tgt_flags & OS::TGT_MAP_SHARED) ||
1512 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1513 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1514 !length) {
1515 return -EINVAL;
1516 }
1517
1518 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1519 // With shared mmaps, there are two cases to consider:
1520 // 1) anonymous: writes should modify the mapping and this should be
1521 // visible to observers who share the mapping. Currently, it's
1522 // difficult to update the shared mapping because there's no
1523 // structure which maintains information about the which virtual
1524 // memory areas are shared. If that structure existed, it would be
1525 // possible to make the translations point to the same frames.
1526 // 2) file-backed: writes should modify the mapping and the file
1527 // which is backed by the mapping. The shared mapping problem is the
1528 // same as what was mentioned about the anonymous mappings. For
1529 // file-backed mappings, the writes to the file are difficult
1530 // because it requires syncing what the mapping holds with the file
1531 // that resides on the host system. So, any write on a real system
1532 // would cause the change to be propagated to the file mapping at
1533 // some point in the future (the inode is tracked along with the
1534 // mapping). This isn't guaranteed to always happen, but it usually
1535 // works well enough. The guarantee is provided by the msync system
1536 // call. We could force the change through with shared mappings with
1537 // a call to msync, but that again would require more information
1538 // than we currently maintain.
1539 warn("mmap: writing to shared mmap region is currently "
1540 "unsupported. The write succeeds on the target, but it "
1541 "will not be propagated to the host or shared mappings");
1542 }
1543
1544 length = roundUp(length, TheISA::PageBytes);
1545
1546 int sim_fd = -1;
1547 uint8_t *pmap = nullptr;
1548 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1549 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1550
1551 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1552 if (dfdp) {
1553 EmulatedDriver *emul_driver = dfdp->getDriver();
1554 return emul_driver->mmap(p, tc, start, length, prot,
1555 tgt_flags, tgt_fd, offset);
1556 }
1557
1558 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1559 if (!ffdp)
1560 return -EBADF;
1561 sim_fd = ffdp->getSimFD();
1562
1563 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1564 sim_fd, offset);
1565
1566 if (pmap == (decltype(pmap))-1) {
1567 warn("mmap: failed to map file into host address space");
1568 return -errno;
1569 }
1570 }
1571
1572 // Extend global mmap region if necessary. Note that we ignore the
1573 // start address unless MAP_FIXED is specified.
1574 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1575 std::shared_ptr<MemState> mem_state = p->memState;
1576 Addr mmap_end = mem_state->getMmapEnd();
1577
1578 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1579 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1580
1581 mem_state->setMmapEnd(mmap_end);
1582 }
1583
1584 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1585 start, start + length - 1);
1586
1587 // We only allow mappings to overwrite existing mappings if
1588 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1589 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1590 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1591 if (clobber) {
1592 for (auto tc : p->system->threadContexts) {
1593 // If we might be overwriting old mappings, we need to
1594 // invalidate potentially stale mappings out of the TLBs.
1595 tc->getDTBPtr()->flushAll();
1596 tc->getITBPtr()->flushAll();
1597 }
1598 }
1599
1600 // Allocate physical memory and map it in. If the page table is already
1601 // mapped and clobber is not set, the simulator will issue throw a
1602 // fatal and bail out of the simulation.
1603 p->allocateMem(start, length, clobber);
1604
1605 // Transfer content into target address space.
1606 SETranslatingPortProxy &tp = tc->getMemProxy();
1607 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1608 // In general, we should zero the mapped area for anonymous mappings,
1609 // with something like:
1610 // tp.memsetBlob(start, 0, length);
1611 // However, given that we don't support sparse mappings, and
1612 // some applications can map a couple of gigabytes of space
1613 // (intending sparse usage), that can get painfully expensive.
1614 // Fortunately, since we don't properly implement munmap either,
1615 // there's no danger of remapping used memory, so for now all
1616 // newly mapped memory should already be zeroed so we can skip it.
1617 } else {
1618 // It is possible to mmap an area larger than a file, however
1619 // accessing unmapped portions the system triggers a "Bus error"
1620 // on the host. We must know when to stop copying the file from
1621 // the host into the target address space.
1622 struct stat file_stat;
1623 if (fstat(sim_fd, &file_stat) > 0)
1624 fatal("mmap: cannot stat file");
1625
1626 // Copy the portion of the file that is resident. This requires
1627 // checking both the mmap size and the filesize that we are
1628 // trying to mmap into this space; the mmap size also depends
1629 // on the specified offset into the file.
1630 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1631 length);
1632 tp.writeBlob(start, pmap, size);
1633
1634 // Cleanup the mmap region before exiting this function.
1635 munmap(pmap, length);
1636
1637 // Maintain the symbol table for dynamic executables.
1638 // The loader will call mmap to map the images into its address
1639 // space and we intercept that here. We can verify that we are
1640 // executing inside the loader by checking the program counter value.
1641 // XXX: with multiprogrammed workloads or multi-node configurations,
1642 // this will not work since there is a single global symbol table.
1643 ObjectFile *interpreter = p->getInterpreter();
1644 if (interpreter) {
1645 Addr text_start = interpreter->textBase();
1646 Addr text_end = text_start + interpreter->textSize();
1647
1648 Addr pc = tc->pcState().pc();
1649
1650 if (pc >= text_start && pc < text_end) {
1651 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1652 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1653 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1654
1655 if (lib) {
1656 lib->loadAllSymbols(debugSymbolTable,
1657 lib->textBase(), start);
1658 }
1659 }
1660 }
1661
1662 // Note that we do not zero out the remainder of the mapping. This
1663 // is done by a real system, but it probably will not affect
1664 // execution (hopefully).
1665 }
1666
1667 return start;
1668}
1669
1670template <class OS>
1671SyscallReturn
1672pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1673{
1674 int index = 0;
1675 int tgt_fd = p->getSyscallArg(tc, index);
1676 Addr bufPtr = p->getSyscallArg(tc, index);
1677 int nbytes = p->getSyscallArg(tc, index);
1678 int offset = p->getSyscallArg(tc, index);
1679
1680 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1681 if (!ffdp)
1682 return -EBADF;
1683 int sim_fd = ffdp->getSimFD();
1684
1685 BufferArg bufArg(bufPtr, nbytes);
1686 bufArg.copyIn(tc->getMemProxy());
1687
1688 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1689
1690 return (bytes_written == -1) ? -errno : bytes_written;
1691}
1692
1693/// Target mmap() handler.
1694template <class OS>
1695SyscallReturn
1696mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1697{
1698 return mmapImpl<OS>(desc, num, p, tc, false);
1699}
1700
1701/// Target mmap2() handler.
1702template <class OS>
1703SyscallReturn
1704mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1705{
1706 return mmapImpl<OS>(desc, num, p, tc, true);
1707}
1708
1709/// Target getrlimit() handler.
1710template <class OS>
1711SyscallReturn
1712getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1713 ThreadContext *tc)
1714{
1715 int index = 0;
1716 unsigned resource = process->getSyscallArg(tc, index);
1717 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1718
1719 switch (resource) {
1720 case OS::TGT_RLIMIT_STACK:
1721 // max stack size in bytes: make up a number (8MB for now)
1722 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1723 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1724 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1725 break;
1726
1727 case OS::TGT_RLIMIT_DATA:
1728 // max data segment size in bytes: make up a number
1729 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1730 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1731 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1732 break;
1733
1734 default:
1735 warn("getrlimit: unimplemented resource %d", resource);
1736 return -EINVAL;
1737 break;
1738 }
1739
1740 rlp.copyOut(tc->getMemProxy());
1741 return 0;
1742}
1743
1744template <class OS>
1745SyscallReturn
1746prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1747 ThreadContext *tc)
1748{
1749 int index = 0;
1750 if (process->getSyscallArg(tc, index) != 0)
1751 {
1752 warn("prlimit: ignoring rlimits for nonzero pid");
1753 return -EPERM;
1754 }
1755 int resource = process->getSyscallArg(tc, index);
1756 Addr n = process->getSyscallArg(tc, index);
1757 if (n != 0)
1758 warn("prlimit: ignoring new rlimit");
1759 Addr o = process->getSyscallArg(tc, index);
1760 if (o != 0)
1761 {
1762 TypedBufferArg<typename OS::rlimit> rlp(o);
1763 switch (resource) {
1764 case OS::TGT_RLIMIT_STACK:
1765 // max stack size in bytes: make up a number (8MB for now)
1766 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1767 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1768 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1769 break;
1770 case OS::TGT_RLIMIT_DATA:
1771 // max data segment size in bytes: make up a number
1772 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1773 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1774 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1775 break;
1776 default:
1777 warn("prlimit: unimplemented resource %d", resource);
1778 return -EINVAL;
1779 break;
1780 }
1781 rlp.copyOut(tc->getMemProxy());
1782 }
1783 return 0;
1784}
1785
1786/// Target clock_gettime() function.
1787template <class OS>
1788SyscallReturn
1789clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1790{
1791 int index = 1;
1792 //int clk_id = p->getSyscallArg(tc, index);
1793 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1794
1795 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1796 tp->tv_sec += seconds_since_epoch;
1797 tp->tv_sec = TheISA::htog(tp->tv_sec);
1798 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1799
1800 tp.copyOut(tc->getMemProxy());
1801
1802 return 0;
1803}
1804
1805/// Target clock_getres() function.
1806template <class OS>
1807SyscallReturn
1808clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1809{
1810 int index = 1;
1811 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1812
1813 // Set resolution at ns, which is what clock_gettime() returns
1814 tp->tv_sec = 0;
1815 tp->tv_nsec = 1;
1816
1817 tp.copyOut(tc->getMemProxy());
1818
1819 return 0;
1820}
1821
1822/// Target gettimeofday() handler.
1823template <class OS>
1824SyscallReturn
1825gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1826 ThreadContext *tc)
1827{
1828 int index = 0;
1829 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1830
1831 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1832 tp->tv_sec += seconds_since_epoch;
1833 tp->tv_sec = TheISA::htog(tp->tv_sec);
1834 tp->tv_usec = TheISA::htog(tp->tv_usec);
1835
1836 tp.copyOut(tc->getMemProxy());
1837
1838 return 0;
1839}
1840
1841
1842/// Target utimes() handler.
1843template <class OS>
1844SyscallReturn
1845utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1846 ThreadContext *tc)
1847{
1848 std::string path;
1849
1850 int index = 0;
1851 if (!tc->getMemProxy().tryReadString(path,
1852 process->getSyscallArg(tc, index))) {
1853 return -EFAULT;
1854 }
1855
1856 TypedBufferArg<typename OS::timeval [2]>
1857 tp(process->getSyscallArg(tc, index));
1858 tp.copyIn(tc->getMemProxy());
1859
1860 struct timeval hostTimeval[2];
1861 for (int i = 0; i < 2; ++i) {
1862 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1863 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1864 }
1865
1866 // Adjust path for current working directory
1867 path = process->fullPath(path);
1868
1869 int result = utimes(path.c_str(), hostTimeval);
1870
1871 if (result < 0)
1872 return -errno;
1873
1874 return 0;
1875}
1876
1877template <class OS>
1878SyscallReturn
1879execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1880{
1881 desc->setFlags(0);
1882
1883 int index = 0;
1884 std::string path;
1885 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1886 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1887 return -EFAULT;
1888
1889 if (access(path.c_str(), F_OK) == -1)
1890 return -EACCES;
1891
1892 auto read_in = [](std::vector<std::string> & vect,
1893 SETranslatingPortProxy & mem_proxy,
1894 Addr mem_loc)
1895 {
1896 for (int inc = 0; ; inc++) {
1897 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1898 b.copyIn(mem_proxy);
1899
1900 if (!*(Addr*)b.bufferPtr())
1901 break;
1902
1903 vect.push_back(std::string());
1904 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1905 }
1906 };
1907
1908 /**
1909 * Note that ProcessParams is generated by swig and there are no other
1910 * examples of how to create anything but this default constructor. The
1911 * fields are manually initialized instead of passing parameters to the
1912 * constructor.
1913 */
1914 ProcessParams *pp = new ProcessParams();
1915 pp->executable = path;
1916 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1917 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1918 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1919 read_in(pp->env, mem_proxy, envp_mem_loc);
1920 pp->uid = p->uid();
1921 pp->egid = p->egid();
1922 pp->euid = p->euid();
1923 pp->gid = p->gid();
1924 pp->ppid = p->ppid();
1925 pp->pid = p->pid();
1926 pp->input.assign("cin");
1927 pp->output.assign("cout");
1928 pp->errout.assign("cerr");
1929 pp->cwd.assign(p->getcwd());
1930 pp->system = p->system;
1931 /**
1932 * Prevent process object creation with identical PIDs (which will trip
1933 * a fatal check in Process constructor). The execve call is supposed to
1934 * take over the currently executing process' identity but replace
1935 * whatever it is doing with a new process image. Instead of hijacking
1936 * the process object in the simulator, we create a new process object
1937 * and bind to the previous process' thread below (hijacking the thread).
1938 */
1939 p->system->PIDs.erase(p->pid());
1940 Process *new_p = pp->create();
1941 delete pp;
1942
1943 /**
1944 * Work through the file descriptor array and close any files marked
1945 * close-on-exec.
1946 */
1947 new_p->fds = p->fds;
1948 for (int i = 0; i < new_p->fds->getSize(); i++) {
1949 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1950 if (fdep && fdep->getCOE())
1951 new_p->fds->closeFDEntry(i);
1952 }
1953
1954 *new_p->sigchld = true;
1955
1956 delete p;
1957 tc->clearArchRegs();
1958 tc->setProcessPtr(new_p);
1959 new_p->assignThreadContext(tc->contextId());
1960 new_p->initState();
1961 tc->activate();
1962 TheISA::PCState pcState = tc->pcState();
1963 tc->setNPC(pcState.instAddr());
1964
1965 desc->setFlags(SyscallDesc::SuppressReturnValue);
1966 return 0;
1967}
1968
1969/// Target getrusage() function.
1970template <class OS>
1971SyscallReturn
1972getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1973 ThreadContext *tc)
1974{
1975 int index = 0;
1976 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1977 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1978
1979 rup->ru_utime.tv_sec = 0;
1980 rup->ru_utime.tv_usec = 0;
1981 rup->ru_stime.tv_sec = 0;
1982 rup->ru_stime.tv_usec = 0;
1983 rup->ru_maxrss = 0;
1984 rup->ru_ixrss = 0;
1985 rup->ru_idrss = 0;
1986 rup->ru_isrss = 0;
1987 rup->ru_minflt = 0;
1988 rup->ru_majflt = 0;
1989 rup->ru_nswap = 0;
1990 rup->ru_inblock = 0;
1991 rup->ru_oublock = 0;
1992 rup->ru_msgsnd = 0;
1993 rup->ru_msgrcv = 0;
1994 rup->ru_nsignals = 0;
1995 rup->ru_nvcsw = 0;
1996 rup->ru_nivcsw = 0;
1997
1998 switch (who) {
1999 case OS::TGT_RUSAGE_SELF:
2000 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2001 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2002 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2003 break;
2004
2005 case OS::TGT_RUSAGE_CHILDREN:
2006 // do nothing. We have no child processes, so they take no time.
2007 break;
2008
2009 default:
2010 // don't really handle THREAD or CHILDREN, but just warn and
2011 // plow ahead
2012 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2013 who);
2014 }
2015
2016 rup.copyOut(tc->getMemProxy());
2017
2018 return 0;
2019}
2020
2021/// Target times() function.
2022template <class OS>
2023SyscallReturn
2024timesFunc(SyscallDesc *desc, int callnum, Process *process,
2025 ThreadContext *tc)
2026{
2027 int index = 0;
2028 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2029
2030 // Fill in the time structure (in clocks)
2031 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2032 bufp->tms_utime = clocks;
2033 bufp->tms_stime = 0;
2034 bufp->tms_cutime = 0;
2035 bufp->tms_cstime = 0;
2036
2037 // Convert to host endianness
2038 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2039
2040 // Write back
2041 bufp.copyOut(tc->getMemProxy());
2042
2043 // Return clock ticks since system boot
2044 return clocks;
2045}
2046
2047/// Target time() function.
2048template <class OS>
2049SyscallReturn
2050timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2051{
2052 typename OS::time_t sec, usec;
2053 getElapsedTimeMicro(sec, usec);
2054 sec += seconds_since_epoch;
2055
2056 int index = 0;
2057 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2058 if (taddr != 0) {
2059 typename OS::time_t t = sec;
2060 t = TheISA::htog(t);
2061 SETranslatingPortProxy &p = tc->getMemProxy();
2062 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2063 }
2064 return sec;
2065}
2066
2067template <class OS>
2068SyscallReturn
2069tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2070{
2071 int index = 0;
2072 int tgid = process->getSyscallArg(tc, index);
2073 int tid = process->getSyscallArg(tc, index);
2074 int sig = process->getSyscallArg(tc, index);
2075
2076 /**
2077 * This system call is intended to allow killing a specific thread
2078 * within an arbitrary thread group if sanctioned with permission checks.
2079 * It's usually true that threads share the termination signal as pointed
2080 * out by the pthread_kill man page and this seems to be the intended
2081 * usage. Due to this being an emulated environment, assume the following:
2082 * Threads are allowed to call tgkill because the EUID for all threads
2083 * should be the same. There is no signal handling mechanism for kernel
2084 * registration of signal handlers since signals are poorly supported in
2085 * emulation mode. Since signal handlers cannot be registered, all
2086 * threads within in a thread group must share the termination signal.
2087 * We never exhaust PIDs so there's no chance of finding the wrong one
2088 * due to PID rollover.
2089 */
2090
2091 System *sys = tc->getSystemPtr();
2092 Process *tgt_proc = nullptr;
2093 for (int i = 0; i < sys->numContexts(); i++) {
2094 Process *temp = sys->threadContexts[i]->getProcessPtr();
2095 if (temp->pid() == tid) {
2096 tgt_proc = temp;
2097 break;
2098 }
2099 }
2100
2101 if (sig != 0 || sig != OS::TGT_SIGABRT)
2102 return -EINVAL;
2103
2104 if (tgt_proc == nullptr)
2105 return -ESRCH;
2106
2107 if (tgid != -1 && tgt_proc->tgid() != tgid)
2108 return -ESRCH;
2109
2110 if (sig == OS::TGT_SIGABRT)
2111 exitGroupFunc(desc, 252, process, tc);
2112
2113 return 0;
2114}
2115
2116template <class OS>
2117SyscallReturn
2118socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2119{
2120 int index = 0;
2121 int domain = p->getSyscallArg(tc, index);
2122 int type = p->getSyscallArg(tc, index);
2123 int prot = p->getSyscallArg(tc, index);
2124
2125 int sim_fd = socket(domain, type, prot);
2126 if (sim_fd == -1)
2127 return -errno;
2128
2129 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2130 int tgt_fd = p->fds->allocFD(sfdp);
2131
2132 return tgt_fd;
2133}
2134
2135template <class OS>
2136SyscallReturn
2137socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2138{
2139 int index = 0;
2140 int domain = p->getSyscallArg(tc, index);
2141 int type = p->getSyscallArg(tc, index);
2142 int prot = p->getSyscallArg(tc, index);
2143 Addr svPtr = p->getSyscallArg(tc, index);
2144
2145 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2146 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2147 if (status == -1)
2148 return -errno;
2149
2150 int *fds = (int *)svBuf.bufferPtr();
2151
2152 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2153 fds[0] = p->fds->allocFD(sfdp1);
2154 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2155 fds[1] = p->fds->allocFD(sfdp2);
2156 svBuf.copyOut(tc->getMemProxy());
2157
2158 return status;
2159}
2160
1340/// Target statfs() handler.
1341template <class OS>
1342SyscallReturn
1343statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1344 ThreadContext *tc)
1345{
1346#if NO_STATFS
1347 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1348#else
1349 std::string path;
1350
1351 int index = 0;
1352 if (!tc->getMemProxy().tryReadString(path,
1353 process->getSyscallArg(tc, index))) {
1354 return -EFAULT;
1355 }
1356 Addr bufPtr = process->getSyscallArg(tc, index);
1357
1358 // Adjust path for current working directory
1359 path = process->fullPath(path);
1360
1361 struct statfs hostBuf;
1362 int result = statfs(path.c_str(), &hostBuf);
1363
1364 if (result < 0)
1365 return -errno;
1366
1367 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1368#endif
1369 return 0;
1370}
1371
1372template <class OS>
1373SyscallReturn
1374cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1375{
1376 int index = 0;
1377
1378 RegVal flags = p->getSyscallArg(tc, index);
1379 RegVal newStack = p->getSyscallArg(tc, index);
1380 Addr ptidPtr = p->getSyscallArg(tc, index);
1381
1382#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1383 /**
1384 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1385 * The flag defines the list of clone() arguments in the following
1386 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1387 */
1388 Addr tlsPtr = p->getSyscallArg(tc, index);
1389 Addr ctidPtr = p->getSyscallArg(tc, index);
1390#else
1391 Addr ctidPtr = p->getSyscallArg(tc, index);
1392 Addr tlsPtr = p->getSyscallArg(tc, index);
1393#endif
1394
1395 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1396 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1397 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1398 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1399 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1400 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1401 return -EINVAL;
1402
1403 ThreadContext *ctc;
1404 if (!(ctc = p->findFreeContext()))
1405 fatal("clone: no spare thread context in system");
1406
1407 /**
1408 * Note that ProcessParams is generated by swig and there are no other
1409 * examples of how to create anything but this default constructor. The
1410 * fields are manually initialized instead of passing parameters to the
1411 * constructor.
1412 */
1413 ProcessParams *pp = new ProcessParams();
1414 pp->executable.assign(*(new std::string(p->progName())));
1415 pp->cmd.push_back(*(new std::string(p->progName())));
1416 pp->system = p->system;
1417 pp->cwd.assign(p->getcwd());
1418 pp->input.assign("stdin");
1419 pp->output.assign("stdout");
1420 pp->errout.assign("stderr");
1421 pp->uid = p->uid();
1422 pp->euid = p->euid();
1423 pp->gid = p->gid();
1424 pp->egid = p->egid();
1425
1426 /* Find the first free PID that's less than the maximum */
1427 std::set<int> const& pids = p->system->PIDs;
1428 int temp_pid = *pids.begin();
1429 do {
1430 temp_pid++;
1431 } while (pids.find(temp_pid) != pids.end());
1432 if (temp_pid >= System::maxPID)
1433 fatal("temp_pid is too large: %d", temp_pid);
1434
1435 pp->pid = temp_pid;
1436 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1437 Process *cp = pp->create();
1438 delete pp;
1439
1440 Process *owner = ctc->getProcessPtr();
1441 ctc->setProcessPtr(cp);
1442 cp->assignThreadContext(ctc->contextId());
1443 owner->revokeThreadContext(ctc->contextId());
1444
1445 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1446 BufferArg ptidBuf(ptidPtr, sizeof(long));
1447 long *ptid = (long *)ptidBuf.bufferPtr();
1448 *ptid = cp->pid();
1449 ptidBuf.copyOut(tc->getMemProxy());
1450 }
1451
1452 cp->initState();
1453 p->clone(tc, ctc, cp, flags);
1454
1455 if (flags & OS::TGT_CLONE_THREAD) {
1456 delete cp->sigchld;
1457 cp->sigchld = p->sigchld;
1458 } else if (flags & OS::TGT_SIGCHLD) {
1459 *cp->sigchld = true;
1460 }
1461
1462 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1463 BufferArg ctidBuf(ctidPtr, sizeof(long));
1464 long *ctid = (long *)ctidBuf.bufferPtr();
1465 *ctid = cp->pid();
1466 ctidBuf.copyOut(ctc->getMemProxy());
1467 }
1468
1469 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1470 cp->childClearTID = (uint64_t)ctidPtr;
1471
1472 ctc->clearArchRegs();
1473
1474 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1475
1476 cp->setSyscallReturn(ctc, 0);
1477
1478#if THE_ISA == ALPHA_ISA
1479 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1480#elif THE_ISA == SPARC_ISA
1481 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1482 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1483#endif
1484
1485 TheISA::PCState cpc = tc->pcState();
1486 cpc.advance();
1487 ctc->pcState(cpc);
1488 ctc->activate();
1489
1490 return cp->pid();
1491}
1492
1493/// Target fstatfs() handler.
1494template <class OS>
1495SyscallReturn
1496fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1497{
1498 int index = 0;
1499 int tgt_fd = p->getSyscallArg(tc, index);
1500 Addr bufPtr = p->getSyscallArg(tc, index);
1501
1502 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1503 if (!ffdp)
1504 return -EBADF;
1505 int sim_fd = ffdp->getSimFD();
1506
1507 struct statfs hostBuf;
1508 int result = fstatfs(sim_fd, &hostBuf);
1509
1510 if (result < 0)
1511 return -errno;
1512
1513 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1514
1515 return 0;
1516}
1517
1518
1519/// Target writev() handler.
1520template <class OS>
1521SyscallReturn
1522writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1523{
1524 int index = 0;
1525 int tgt_fd = p->getSyscallArg(tc, index);
1526
1527 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1528 if (!hbfdp)
1529 return -EBADF;
1530 int sim_fd = hbfdp->getSimFD();
1531
1532 SETranslatingPortProxy &prox = tc->getMemProxy();
1533 uint64_t tiov_base = p->getSyscallArg(tc, index);
1534 size_t count = p->getSyscallArg(tc, index);
1535 struct iovec hiov[count];
1536 for (size_t i = 0; i < count; ++i) {
1537 typename OS::tgt_iovec tiov;
1538
1539 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1540 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1541 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1542 hiov[i].iov_base = new char [hiov[i].iov_len];
1543 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1544 hiov[i].iov_len);
1545 }
1546
1547 int result = writev(sim_fd, hiov, count);
1548
1549 for (size_t i = 0; i < count; ++i)
1550 delete [] (char *)hiov[i].iov_base;
1551
1552 if (result < 0)
1553 return -errno;
1554
1555 return result;
1556}
1557
1558/// Real mmap handler.
1559template <class OS>
1560SyscallReturn
1561mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1562 bool is_mmap2)
1563{
1564 int index = 0;
1565 Addr start = p->getSyscallArg(tc, index);
1566 uint64_t length = p->getSyscallArg(tc, index);
1567 int prot = p->getSyscallArg(tc, index);
1568 int tgt_flags = p->getSyscallArg(tc, index);
1569 int tgt_fd = p->getSyscallArg(tc, index);
1570 int offset = p->getSyscallArg(tc, index);
1571
1572 if (is_mmap2)
1573 offset *= TheISA::PageBytes;
1574
1575 if (start & (TheISA::PageBytes - 1) ||
1576 offset & (TheISA::PageBytes - 1) ||
1577 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1578 tgt_flags & OS::TGT_MAP_SHARED) ||
1579 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1580 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1581 !length) {
1582 return -EINVAL;
1583 }
1584
1585 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1586 // With shared mmaps, there are two cases to consider:
1587 // 1) anonymous: writes should modify the mapping and this should be
1588 // visible to observers who share the mapping. Currently, it's
1589 // difficult to update the shared mapping because there's no
1590 // structure which maintains information about the which virtual
1591 // memory areas are shared. If that structure existed, it would be
1592 // possible to make the translations point to the same frames.
1593 // 2) file-backed: writes should modify the mapping and the file
1594 // which is backed by the mapping. The shared mapping problem is the
1595 // same as what was mentioned about the anonymous mappings. For
1596 // file-backed mappings, the writes to the file are difficult
1597 // because it requires syncing what the mapping holds with the file
1598 // that resides on the host system. So, any write on a real system
1599 // would cause the change to be propagated to the file mapping at
1600 // some point in the future (the inode is tracked along with the
1601 // mapping). This isn't guaranteed to always happen, but it usually
1602 // works well enough. The guarantee is provided by the msync system
1603 // call. We could force the change through with shared mappings with
1604 // a call to msync, but that again would require more information
1605 // than we currently maintain.
1606 warn("mmap: writing to shared mmap region is currently "
1607 "unsupported. The write succeeds on the target, but it "
1608 "will not be propagated to the host or shared mappings");
1609 }
1610
1611 length = roundUp(length, TheISA::PageBytes);
1612
1613 int sim_fd = -1;
1614 uint8_t *pmap = nullptr;
1615 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1616 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1617
1618 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1619 if (dfdp) {
1620 EmulatedDriver *emul_driver = dfdp->getDriver();
1621 return emul_driver->mmap(p, tc, start, length, prot,
1622 tgt_flags, tgt_fd, offset);
1623 }
1624
1625 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1626 if (!ffdp)
1627 return -EBADF;
1628 sim_fd = ffdp->getSimFD();
1629
1630 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1631 sim_fd, offset);
1632
1633 if (pmap == (decltype(pmap))-1) {
1634 warn("mmap: failed to map file into host address space");
1635 return -errno;
1636 }
1637 }
1638
1639 // Extend global mmap region if necessary. Note that we ignore the
1640 // start address unless MAP_FIXED is specified.
1641 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1642 std::shared_ptr<MemState> mem_state = p->memState;
1643 Addr mmap_end = mem_state->getMmapEnd();
1644
1645 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1646 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1647
1648 mem_state->setMmapEnd(mmap_end);
1649 }
1650
1651 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1652 start, start + length - 1);
1653
1654 // We only allow mappings to overwrite existing mappings if
1655 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1656 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1657 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1658 if (clobber) {
1659 for (auto tc : p->system->threadContexts) {
1660 // If we might be overwriting old mappings, we need to
1661 // invalidate potentially stale mappings out of the TLBs.
1662 tc->getDTBPtr()->flushAll();
1663 tc->getITBPtr()->flushAll();
1664 }
1665 }
1666
1667 // Allocate physical memory and map it in. If the page table is already
1668 // mapped and clobber is not set, the simulator will issue throw a
1669 // fatal and bail out of the simulation.
1670 p->allocateMem(start, length, clobber);
1671
1672 // Transfer content into target address space.
1673 SETranslatingPortProxy &tp = tc->getMemProxy();
1674 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1675 // In general, we should zero the mapped area for anonymous mappings,
1676 // with something like:
1677 // tp.memsetBlob(start, 0, length);
1678 // However, given that we don't support sparse mappings, and
1679 // some applications can map a couple of gigabytes of space
1680 // (intending sparse usage), that can get painfully expensive.
1681 // Fortunately, since we don't properly implement munmap either,
1682 // there's no danger of remapping used memory, so for now all
1683 // newly mapped memory should already be zeroed so we can skip it.
1684 } else {
1685 // It is possible to mmap an area larger than a file, however
1686 // accessing unmapped portions the system triggers a "Bus error"
1687 // on the host. We must know when to stop copying the file from
1688 // the host into the target address space.
1689 struct stat file_stat;
1690 if (fstat(sim_fd, &file_stat) > 0)
1691 fatal("mmap: cannot stat file");
1692
1693 // Copy the portion of the file that is resident. This requires
1694 // checking both the mmap size and the filesize that we are
1695 // trying to mmap into this space; the mmap size also depends
1696 // on the specified offset into the file.
1697 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1698 length);
1699 tp.writeBlob(start, pmap, size);
1700
1701 // Cleanup the mmap region before exiting this function.
1702 munmap(pmap, length);
1703
1704 // Maintain the symbol table for dynamic executables.
1705 // The loader will call mmap to map the images into its address
1706 // space and we intercept that here. We can verify that we are
1707 // executing inside the loader by checking the program counter value.
1708 // XXX: with multiprogrammed workloads or multi-node configurations,
1709 // this will not work since there is a single global symbol table.
1710 ObjectFile *interpreter = p->getInterpreter();
1711 if (interpreter) {
1712 Addr text_start = interpreter->textBase();
1713 Addr text_end = text_start + interpreter->textSize();
1714
1715 Addr pc = tc->pcState().pc();
1716
1717 if (pc >= text_start && pc < text_end) {
1718 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1719 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1720 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1721
1722 if (lib) {
1723 lib->loadAllSymbols(debugSymbolTable,
1724 lib->textBase(), start);
1725 }
1726 }
1727 }
1728
1729 // Note that we do not zero out the remainder of the mapping. This
1730 // is done by a real system, but it probably will not affect
1731 // execution (hopefully).
1732 }
1733
1734 return start;
1735}
1736
1737template <class OS>
1738SyscallReturn
1739pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1740{
1741 int index = 0;
1742 int tgt_fd = p->getSyscallArg(tc, index);
1743 Addr bufPtr = p->getSyscallArg(tc, index);
1744 int nbytes = p->getSyscallArg(tc, index);
1745 int offset = p->getSyscallArg(tc, index);
1746
1747 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1748 if (!ffdp)
1749 return -EBADF;
1750 int sim_fd = ffdp->getSimFD();
1751
1752 BufferArg bufArg(bufPtr, nbytes);
1753 bufArg.copyIn(tc->getMemProxy());
1754
1755 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1756
1757 return (bytes_written == -1) ? -errno : bytes_written;
1758}
1759
1760/// Target mmap() handler.
1761template <class OS>
1762SyscallReturn
1763mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1764{
1765 return mmapImpl<OS>(desc, num, p, tc, false);
1766}
1767
1768/// Target mmap2() handler.
1769template <class OS>
1770SyscallReturn
1771mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1772{
1773 return mmapImpl<OS>(desc, num, p, tc, true);
1774}
1775
1776/// Target getrlimit() handler.
1777template <class OS>
1778SyscallReturn
1779getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1780 ThreadContext *tc)
1781{
1782 int index = 0;
1783 unsigned resource = process->getSyscallArg(tc, index);
1784 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1785
1786 switch (resource) {
1787 case OS::TGT_RLIMIT_STACK:
1788 // max stack size in bytes: make up a number (8MB for now)
1789 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1790 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1791 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1792 break;
1793
1794 case OS::TGT_RLIMIT_DATA:
1795 // max data segment size in bytes: make up a number
1796 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1797 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1798 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1799 break;
1800
1801 default:
1802 warn("getrlimit: unimplemented resource %d", resource);
1803 return -EINVAL;
1804 break;
1805 }
1806
1807 rlp.copyOut(tc->getMemProxy());
1808 return 0;
1809}
1810
1811template <class OS>
1812SyscallReturn
1813prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1814 ThreadContext *tc)
1815{
1816 int index = 0;
1817 if (process->getSyscallArg(tc, index) != 0)
1818 {
1819 warn("prlimit: ignoring rlimits for nonzero pid");
1820 return -EPERM;
1821 }
1822 int resource = process->getSyscallArg(tc, index);
1823 Addr n = process->getSyscallArg(tc, index);
1824 if (n != 0)
1825 warn("prlimit: ignoring new rlimit");
1826 Addr o = process->getSyscallArg(tc, index);
1827 if (o != 0)
1828 {
1829 TypedBufferArg<typename OS::rlimit> rlp(o);
1830 switch (resource) {
1831 case OS::TGT_RLIMIT_STACK:
1832 // max stack size in bytes: make up a number (8MB for now)
1833 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1834 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1835 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1836 break;
1837 case OS::TGT_RLIMIT_DATA:
1838 // max data segment size in bytes: make up a number
1839 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1840 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1841 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1842 break;
1843 default:
1844 warn("prlimit: unimplemented resource %d", resource);
1845 return -EINVAL;
1846 break;
1847 }
1848 rlp.copyOut(tc->getMemProxy());
1849 }
1850 return 0;
1851}
1852
1853/// Target clock_gettime() function.
1854template <class OS>
1855SyscallReturn
1856clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1857{
1858 int index = 1;
1859 //int clk_id = p->getSyscallArg(tc, index);
1860 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1861
1862 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1863 tp->tv_sec += seconds_since_epoch;
1864 tp->tv_sec = TheISA::htog(tp->tv_sec);
1865 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1866
1867 tp.copyOut(tc->getMemProxy());
1868
1869 return 0;
1870}
1871
1872/// Target clock_getres() function.
1873template <class OS>
1874SyscallReturn
1875clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1876{
1877 int index = 1;
1878 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1879
1880 // Set resolution at ns, which is what clock_gettime() returns
1881 tp->tv_sec = 0;
1882 tp->tv_nsec = 1;
1883
1884 tp.copyOut(tc->getMemProxy());
1885
1886 return 0;
1887}
1888
1889/// Target gettimeofday() handler.
1890template <class OS>
1891SyscallReturn
1892gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1893 ThreadContext *tc)
1894{
1895 int index = 0;
1896 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1897
1898 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1899 tp->tv_sec += seconds_since_epoch;
1900 tp->tv_sec = TheISA::htog(tp->tv_sec);
1901 tp->tv_usec = TheISA::htog(tp->tv_usec);
1902
1903 tp.copyOut(tc->getMemProxy());
1904
1905 return 0;
1906}
1907
1908
1909/// Target utimes() handler.
1910template <class OS>
1911SyscallReturn
1912utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1913 ThreadContext *tc)
1914{
1915 std::string path;
1916
1917 int index = 0;
1918 if (!tc->getMemProxy().tryReadString(path,
1919 process->getSyscallArg(tc, index))) {
1920 return -EFAULT;
1921 }
1922
1923 TypedBufferArg<typename OS::timeval [2]>
1924 tp(process->getSyscallArg(tc, index));
1925 tp.copyIn(tc->getMemProxy());
1926
1927 struct timeval hostTimeval[2];
1928 for (int i = 0; i < 2; ++i) {
1929 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1930 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1931 }
1932
1933 // Adjust path for current working directory
1934 path = process->fullPath(path);
1935
1936 int result = utimes(path.c_str(), hostTimeval);
1937
1938 if (result < 0)
1939 return -errno;
1940
1941 return 0;
1942}
1943
1944template <class OS>
1945SyscallReturn
1946execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1947{
1948 desc->setFlags(0);
1949
1950 int index = 0;
1951 std::string path;
1952 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1953 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1954 return -EFAULT;
1955
1956 if (access(path.c_str(), F_OK) == -1)
1957 return -EACCES;
1958
1959 auto read_in = [](std::vector<std::string> & vect,
1960 SETranslatingPortProxy & mem_proxy,
1961 Addr mem_loc)
1962 {
1963 for (int inc = 0; ; inc++) {
1964 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1965 b.copyIn(mem_proxy);
1966
1967 if (!*(Addr*)b.bufferPtr())
1968 break;
1969
1970 vect.push_back(std::string());
1971 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1972 }
1973 };
1974
1975 /**
1976 * Note that ProcessParams is generated by swig and there are no other
1977 * examples of how to create anything but this default constructor. The
1978 * fields are manually initialized instead of passing parameters to the
1979 * constructor.
1980 */
1981 ProcessParams *pp = new ProcessParams();
1982 pp->executable = path;
1983 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1984 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1985 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1986 read_in(pp->env, mem_proxy, envp_mem_loc);
1987 pp->uid = p->uid();
1988 pp->egid = p->egid();
1989 pp->euid = p->euid();
1990 pp->gid = p->gid();
1991 pp->ppid = p->ppid();
1992 pp->pid = p->pid();
1993 pp->input.assign("cin");
1994 pp->output.assign("cout");
1995 pp->errout.assign("cerr");
1996 pp->cwd.assign(p->getcwd());
1997 pp->system = p->system;
1998 /**
1999 * Prevent process object creation with identical PIDs (which will trip
2000 * a fatal check in Process constructor). The execve call is supposed to
2001 * take over the currently executing process' identity but replace
2002 * whatever it is doing with a new process image. Instead of hijacking
2003 * the process object in the simulator, we create a new process object
2004 * and bind to the previous process' thread below (hijacking the thread).
2005 */
2006 p->system->PIDs.erase(p->pid());
2007 Process *new_p = pp->create();
2008 delete pp;
2009
2010 /**
2011 * Work through the file descriptor array and close any files marked
2012 * close-on-exec.
2013 */
2014 new_p->fds = p->fds;
2015 for (int i = 0; i < new_p->fds->getSize(); i++) {
2016 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
2017 if (fdep && fdep->getCOE())
2018 new_p->fds->closeFDEntry(i);
2019 }
2020
2021 *new_p->sigchld = true;
2022
2023 delete p;
2024 tc->clearArchRegs();
2025 tc->setProcessPtr(new_p);
2026 new_p->assignThreadContext(tc->contextId());
2027 new_p->initState();
2028 tc->activate();
2029 TheISA::PCState pcState = tc->pcState();
2030 tc->setNPC(pcState.instAddr());
2031
2032 desc->setFlags(SyscallDesc::SuppressReturnValue);
2033 return 0;
2034}
2035
2036/// Target getrusage() function.
2037template <class OS>
2038SyscallReturn
2039getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
2040 ThreadContext *tc)
2041{
2042 int index = 0;
2043 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
2044 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
2045
2046 rup->ru_utime.tv_sec = 0;
2047 rup->ru_utime.tv_usec = 0;
2048 rup->ru_stime.tv_sec = 0;
2049 rup->ru_stime.tv_usec = 0;
2050 rup->ru_maxrss = 0;
2051 rup->ru_ixrss = 0;
2052 rup->ru_idrss = 0;
2053 rup->ru_isrss = 0;
2054 rup->ru_minflt = 0;
2055 rup->ru_majflt = 0;
2056 rup->ru_nswap = 0;
2057 rup->ru_inblock = 0;
2058 rup->ru_oublock = 0;
2059 rup->ru_msgsnd = 0;
2060 rup->ru_msgrcv = 0;
2061 rup->ru_nsignals = 0;
2062 rup->ru_nvcsw = 0;
2063 rup->ru_nivcsw = 0;
2064
2065 switch (who) {
2066 case OS::TGT_RUSAGE_SELF:
2067 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2068 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2069 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2070 break;
2071
2072 case OS::TGT_RUSAGE_CHILDREN:
2073 // do nothing. We have no child processes, so they take no time.
2074 break;
2075
2076 default:
2077 // don't really handle THREAD or CHILDREN, but just warn and
2078 // plow ahead
2079 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2080 who);
2081 }
2082
2083 rup.copyOut(tc->getMemProxy());
2084
2085 return 0;
2086}
2087
2088/// Target times() function.
2089template <class OS>
2090SyscallReturn
2091timesFunc(SyscallDesc *desc, int callnum, Process *process,
2092 ThreadContext *tc)
2093{
2094 int index = 0;
2095 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2096
2097 // Fill in the time structure (in clocks)
2098 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2099 bufp->tms_utime = clocks;
2100 bufp->tms_stime = 0;
2101 bufp->tms_cutime = 0;
2102 bufp->tms_cstime = 0;
2103
2104 // Convert to host endianness
2105 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2106
2107 // Write back
2108 bufp.copyOut(tc->getMemProxy());
2109
2110 // Return clock ticks since system boot
2111 return clocks;
2112}
2113
2114/// Target time() function.
2115template <class OS>
2116SyscallReturn
2117timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2118{
2119 typename OS::time_t sec, usec;
2120 getElapsedTimeMicro(sec, usec);
2121 sec += seconds_since_epoch;
2122
2123 int index = 0;
2124 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2125 if (taddr != 0) {
2126 typename OS::time_t t = sec;
2127 t = TheISA::htog(t);
2128 SETranslatingPortProxy &p = tc->getMemProxy();
2129 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2130 }
2131 return sec;
2132}
2133
2134template <class OS>
2135SyscallReturn
2136tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2137{
2138 int index = 0;
2139 int tgid = process->getSyscallArg(tc, index);
2140 int tid = process->getSyscallArg(tc, index);
2141 int sig = process->getSyscallArg(tc, index);
2142
2143 /**
2144 * This system call is intended to allow killing a specific thread
2145 * within an arbitrary thread group if sanctioned with permission checks.
2146 * It's usually true that threads share the termination signal as pointed
2147 * out by the pthread_kill man page and this seems to be the intended
2148 * usage. Due to this being an emulated environment, assume the following:
2149 * Threads are allowed to call tgkill because the EUID for all threads
2150 * should be the same. There is no signal handling mechanism for kernel
2151 * registration of signal handlers since signals are poorly supported in
2152 * emulation mode. Since signal handlers cannot be registered, all
2153 * threads within in a thread group must share the termination signal.
2154 * We never exhaust PIDs so there's no chance of finding the wrong one
2155 * due to PID rollover.
2156 */
2157
2158 System *sys = tc->getSystemPtr();
2159 Process *tgt_proc = nullptr;
2160 for (int i = 0; i < sys->numContexts(); i++) {
2161 Process *temp = sys->threadContexts[i]->getProcessPtr();
2162 if (temp->pid() == tid) {
2163 tgt_proc = temp;
2164 break;
2165 }
2166 }
2167
2168 if (sig != 0 || sig != OS::TGT_SIGABRT)
2169 return -EINVAL;
2170
2171 if (tgt_proc == nullptr)
2172 return -ESRCH;
2173
2174 if (tgid != -1 && tgt_proc->tgid() != tgid)
2175 return -ESRCH;
2176
2177 if (sig == OS::TGT_SIGABRT)
2178 exitGroupFunc(desc, 252, process, tc);
2179
2180 return 0;
2181}
2182
2183template <class OS>
2184SyscallReturn
2185socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2186{
2187 int index = 0;
2188 int domain = p->getSyscallArg(tc, index);
2189 int type = p->getSyscallArg(tc, index);
2190 int prot = p->getSyscallArg(tc, index);
2191
2192 int sim_fd = socket(domain, type, prot);
2193 if (sim_fd == -1)
2194 return -errno;
2195
2196 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2197 int tgt_fd = p->fds->allocFD(sfdp);
2198
2199 return tgt_fd;
2200}
2201
2202template <class OS>
2203SyscallReturn
2204socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2205{
2206 int index = 0;
2207 int domain = p->getSyscallArg(tc, index);
2208 int type = p->getSyscallArg(tc, index);
2209 int prot = p->getSyscallArg(tc, index);
2210 Addr svPtr = p->getSyscallArg(tc, index);
2211
2212 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2213 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2214 if (status == -1)
2215 return -errno;
2216
2217 int *fds = (int *)svBuf.bufferPtr();
2218
2219 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2220 fds[0] = p->fds->allocFD(sfdp1);
2221 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2222 fds[1] = p->fds->allocFD(sfdp2);
2223 svBuf.copyOut(tc->getMemProxy());
2224
2225 return status;
2226}
2227
2228template <class OS>
2229SyscallReturn
2230selectFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
2231{
2232 int retval;
2233
2234 int index = 0;
2235 int nfds_t = p->getSyscallArg(tc, index);
2236 Addr fds_read_ptr = p->getSyscallArg(tc, index);
2237 Addr fds_writ_ptr = p->getSyscallArg(tc, index);
2238 Addr fds_excp_ptr = p->getSyscallArg(tc, index);
2239 Addr time_val_ptr = p->getSyscallArg(tc, index);
2240
2241 TypedBufferArg<typename OS::fd_set> rd_t(fds_read_ptr);
2242 TypedBufferArg<typename OS::fd_set> wr_t(fds_writ_ptr);
2243 TypedBufferArg<typename OS::fd_set> ex_t(fds_excp_ptr);
2244 TypedBufferArg<typename OS::timeval> tp(time_val_ptr);
2245
2246 /**
2247 * Host fields. Notice that these use the definitions from the system
2248 * headers instead of the gem5 headers and libraries. If the host and
2249 * target have different header file definitions, this will not work.
2250 */
2251 fd_set rd_h;
2252 FD_ZERO(&rd_h);
2253 fd_set wr_h;
2254 FD_ZERO(&wr_h);
2255 fd_set ex_h;
2256 FD_ZERO(&ex_h);
2257
2258 /**
2259 * Copy in the fd_set from the target.
2260 */
2261 if (fds_read_ptr)
2262 rd_t.copyIn(tc->getMemProxy());
2263 if (fds_writ_ptr)
2264 wr_t.copyIn(tc->getMemProxy());
2265 if (fds_excp_ptr)
2266 ex_t.copyIn(tc->getMemProxy());
2267
2268 /**
2269 * We need to translate the target file descriptor set into a host file
2270 * descriptor set. This involves both our internal process fd array
2271 * and the fd_set defined in Linux header files. The nfds field also
2272 * needs to be updated as it will be only target specific after
2273 * retrieving it from the target; the nfds value is expected to be the
2274 * highest file descriptor that needs to be checked, so we need to extend
2275 * it out for nfds_h when we do the update.
2276 */
2277 int nfds_h = 0;
2278 std::map<int, int> trans_map;
2279 auto try_add_host_set = [&](fd_set *tgt_set_entry,
2280 fd_set *hst_set_entry,
2281 int iter) -> bool
2282 {
2283 /**
2284 * By this point, we know that we are looking at a valid file
2285 * descriptor set on the target. We need to check if the target file
2286 * descriptor value passed in as iter is part of the set.
2287 */
2288 if (FD_ISSET(iter, tgt_set_entry)) {
2289 /**
2290 * We know that the target file descriptor belongs to the set,
2291 * but we do not yet know if the file descriptor is valid or
2292 * that we have a host mapping. Check that now.
2293 */
2294 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[iter]);
2295 if (!hbfdp)
2296 return true;
2297 auto sim_fd = hbfdp->getSimFD();
2298
2299 /**
2300 * Add the sim_fd to tgt_fd translation into trans_map for use
2301 * later when we need to zero the target fd_set structures and
2302 * then update them with hits returned from the host select call.
2303 */
2304 trans_map[sim_fd] = iter;
2305
2306 /**
2307 * We know that the host file descriptor exists so now we check
2308 * if we need to update the max count for nfds_h before passing
2309 * the duplicated structure into the host.
2310 */
2311 nfds_h = std::max(nfds_h - 1, sim_fd + 1);
2312
2313 /**
2314 * Add the host file descriptor to the set that we are going to
2315 * pass into the host.
2316 */
2317 FD_SET(sim_fd, hst_set_entry);
2318 }
2319 return false;
2320 };
2321
2322 for (int i = 0; i < nfds_t; i++) {
2323 if (fds_read_ptr) {
2324 bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i);
2325 if (ebadf) return -EBADF;
2326 }
2327 if (fds_writ_ptr) {
2328 bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i);
2329 if (ebadf) return -EBADF;
2330 }
2331 if (fds_excp_ptr) {
2332 bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i);
2333 if (ebadf) return -EBADF;
2334 }
2335 }
2336
2337 if (time_val_ptr) {
2338 /**
2339 * It might be possible to decrement the timeval based on some
2340 * derivation of wall clock determined from elapsed simulator ticks
2341 * but that seems like overkill. Rather, we just set the timeval with
2342 * zero timeout. (There is no reason to block during the simulation
2343 * as it only decreases simulator performance.)
2344 */
2345 tp->tv_sec = 0;
2346 tp->tv_usec = 0;
2347
2348 retval = select(nfds_h,
2349 fds_read_ptr ? &rd_h : nullptr,
2350 fds_writ_ptr ? &wr_h : nullptr,
2351 fds_excp_ptr ? &ex_h : nullptr,
2352 (timeval*)&*tp);
2353 } else {
2354 /**
2355 * If the timeval pointer is null, setup a new timeval structure to
2356 * pass into the host select call. Unfortunately, we will need to
2357 * manually check the return value and throw a retry fault if the
2358 * return value is zero. Allowing the system call to block will
2359 * likely deadlock the event queue.
2360 */
2361 struct timeval tv = { 0, 0 };
2362
2363 retval = select(nfds_h,
2364 fds_read_ptr ? &rd_h : nullptr,
2365 fds_writ_ptr ? &wr_h : nullptr,
2366 fds_excp_ptr ? &ex_h : nullptr,
2367 &tv);
2368
2369 if (retval == 0) {
2370 /**
2371 * If blocking indefinitely, check the signal list to see if a
2372 * signal would break the poll out of the retry cycle and try to
2373 * return the signal interrupt instead.
2374 */
2375 for (auto sig : tc->getSystemPtr()->signalList)
2376 if (sig.receiver == p)
2377 return -EINTR;
2378 return SyscallReturn::retry();
2379 }
2380 }
2381
2382 if (retval == -1)
2383 return -errno;
2384
2385 FD_ZERO((fd_set*)&*rd_t);
2386 FD_ZERO((fd_set*)&*wr_t);
2387 FD_ZERO((fd_set*)&*ex_t);
2388
2389 /**
2390 * We need to translate the host file descriptor set into a target file
2391 * descriptor set. This involves both our internal process fd array
2392 * and the fd_set defined in header files.
2393 */
2394 for (int i = 0; i < nfds_h; i++) {
2395 if (fds_read_ptr) {
2396 if (FD_ISSET(i, &rd_h))
2397 FD_SET(trans_map[i], (fd_set*)&*rd_t);
2398 }
2399
2400 if (fds_writ_ptr) {
2401 if (FD_ISSET(i, &wr_h))
2402 FD_SET(trans_map[i], (fd_set*)&*wr_t);
2403 }
2404
2405 if (fds_excp_ptr) {
2406 if (FD_ISSET(i, &ex_h))
2407 FD_SET(trans_map[i], (fd_set*)&*ex_t);
2408 }
2409 }
2410
2411 if (fds_read_ptr)
2412 rd_t.copyOut(tc->getMemProxy());
2413 if (fds_writ_ptr)
2414 wr_t.copyOut(tc->getMemProxy());
2415 if (fds_excp_ptr)
2416 ex_t.copyOut(tc->getMemProxy());
2417 if (time_val_ptr)
2418 tp.copyOut(tc->getMemProxy());
2419
2420 return retval;
2421}
2422
2423template <class OS>
2424SyscallReturn
2425readFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2426{
2427 int index = 0;
2428 int tgt_fd = p->getSyscallArg(tc, index);
2429 Addr buf_ptr = p->getSyscallArg(tc, index);
2430 int nbytes = p->getSyscallArg(tc, index);
2431
2432 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2433 if (!hbfdp)
2434 return -EBADF;
2435 int sim_fd = hbfdp->getSimFD();
2436
2437 struct pollfd pfd;
2438 pfd.fd = sim_fd;
2439 pfd.events = POLLIN | POLLPRI;
2440 if ((poll(&pfd, 1, 0) == 0)
2441 && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK))
2442 return SyscallReturn::retry();
2443
2444 BufferArg buf_arg(buf_ptr, nbytes);
2445 int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes);
2446
2447 if (bytes_read > 0)
2448 buf_arg.copyOut(tc->getMemProxy());
2449
2450 return (bytes_read == -1) ? -errno : bytes_read;
2451}
2452
2453template <class OS>
2454SyscallReturn
2455writeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2456{
2457 int index = 0;
2458 int tgt_fd = p->getSyscallArg(tc, index);
2459 Addr buf_ptr = p->getSyscallArg(tc, index);
2460 int nbytes = p->getSyscallArg(tc, index);
2461
2462 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
2463 if (!hbfdp)
2464 return -EBADF;
2465 int sim_fd = hbfdp->getSimFD();
2466
2467 BufferArg buf_arg(buf_ptr, nbytes);
2468 buf_arg.copyIn(tc->getMemProxy());
2469
2470 struct pollfd pfd;
2471 pfd.fd = sim_fd;
2472 pfd.events = POLLOUT;
2473
2474 /**
2475 * We don't want to poll on /dev/random. The kernel will not enable the
2476 * file descriptor for writing unless the entropy in the system falls
2477 * below write_wakeup_threshold. This is not guaranteed to happen
2478 * depending on host settings.
2479 */
2480 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(hbfdp);
2481 if (ffdp && (ffdp->getFileName() != "/dev/random")) {
2482 if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK))
2483 return SyscallReturn::retry();
2484 }
2485
2486 int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes);
2487
2488 if (bytes_written != -1)
2489 fsync(sim_fd);
2490
2491 return (bytes_written == -1) ? -errno : bytes_written;
2492}
2493
2494template <class OS>
2495SyscallReturn
2496wait4Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2497{
2498 int index = 0;
2499 pid_t pid = p->getSyscallArg(tc, index);
2500 Addr statPtr = p->getSyscallArg(tc, index);
2501 int options = p->getSyscallArg(tc, index);
2502 Addr rusagePtr = p->getSyscallArg(tc, index);
2503
2504 if (rusagePtr)
2505 DPRINTFR(SyscallVerbose,
2506 "%d: %s: syscall wait4: rusage pointer provided however "
2507 "functionality not supported. Ignoring rusage pointer.\n",
2508 curTick(), tc->getCpuPtr()->name());
2509
2510 /**
2511 * Currently, wait4 is only implemented so that it will wait for children
2512 * exit conditions which are denoted by a SIGCHLD signals posted into the
2513 * system signal list. We return no additional information via any of the
2514 * parameters supplied to wait4. If nothing is found in the system signal
2515 * list, we will wait indefinitely for SIGCHLD to post by retrying the
2516 * call.
2517 */
2518 System *sysh = tc->getSystemPtr();
2519 std::list<BasicSignal>::iterator iter;
2520 for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) {
2521 if (iter->receiver == p) {
2522 if (pid < -1) {
2523 if ((iter->sender->pgid() == -pid)
2524 && (iter->signalValue == OS::TGT_SIGCHLD))
2525 goto success;
2526 } else if (pid == -1) {
2527 if (iter->signalValue == OS::TGT_SIGCHLD)
2528 goto success;
2529 } else if (pid == 0) {
2530 if ((iter->sender->pgid() == p->pgid())
2531 && (iter->signalValue == OS::TGT_SIGCHLD))
2532 goto success;
2533 } else {
2534 if ((iter->sender->pid() == pid)
2535 && (iter->signalValue == OS::TGT_SIGCHLD))
2536 goto success;
2537 }
2538 }
2539 }
2540
2541 return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry();
2542
2543success:
2544 // Set status to EXITED for WIFEXITED evaluations.
2545 const int EXITED = 0;
2546 BufferArg statusBuf(statPtr, sizeof(int));
2547 *(int *)statusBuf.bufferPtr() = EXITED;
2548 statusBuf.copyOut(tc->getMemProxy());
2549
2550 // Return the child PID.
2551 pid_t retval = iter->sender->pid();
2552 sysh->signalList.erase(iter);
2553 return retval;
2554}
2555
2556template <class OS>
2557SyscallReturn
2558acceptFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2559{
2560 struct sockaddr sa;
2561 socklen_t addrLen;
2562 int host_fd;
2563 int index = 0;
2564 int tgt_fd = p->getSyscallArg(tc, index);
2565 Addr addrPtr = p->getSyscallArg(tc, index);
2566 Addr lenPtr = p->getSyscallArg(tc, index);
2567
2568 BufferArg *lenBufPtr = nullptr;
2569 BufferArg *addrBufPtr = nullptr;
2570
2571 auto sfdp = std::dynamic_pointer_cast<SocketFDEntry>((*p->fds)[tgt_fd]);
2572 if (!sfdp)
2573 return -EBADF;
2574 int sim_fd = sfdp->getSimFD();
2575
2576 /**
2577 * We poll the socket file descriptor first to guarantee that we do not
2578 * block on our accept call. The socket can be opened without the
2579 * non-blocking flag (it blocks). This will cause deadlocks between
2580 * communicating processes.
2581 */
2582 struct pollfd pfd;
2583 pfd.fd = sim_fd;
2584 pfd.events = POLLIN | POLLPRI;
2585 if ((poll(&pfd, 1, 0) == 0)
2586 && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK))
2587 return SyscallReturn::retry();
2588
2589 if (lenPtr) {
2590 lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t));
2591 lenBufPtr->copyIn(tc->getMemProxy());
2592 memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(),
2593 sizeof(socklen_t));
2594 }
2595
2596 if (addrPtr) {
2597 addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr));
2598 addrBufPtr->copyIn(tc->getMemProxy());
2599 memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(),
2600 sizeof(struct sockaddr));
2601 }
2602
2603 host_fd = accept(sim_fd, &sa, &addrLen);
2604
2605 if (host_fd == -1)
2606 return -errno;
2607
2608 if (addrPtr) {
2609 memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa));
2610 addrBufPtr->copyOut(tc->getMemProxy());
2611 delete(addrBufPtr);
2612 }
2613
2614 if (lenPtr) {
2615 *(socklen_t *)lenBufPtr->bufferPtr() = addrLen;
2616 lenBufPtr->copyOut(tc->getMemProxy());
2617 delete(lenBufPtr);
2618 }
2619
2620 auto afdp = std::make_shared<SocketFDEntry>(host_fd, sfdp->_domain,
2621 sfdp->_type, sfdp->_protocol);
2622 return p->fds->allocFD(afdp);
2623}
2624
2161#endif // __SIM_SYSCALL_EMUL_HH__
2625#endif // __SIM_SYSCALL_EMUL_HH__