syscall_emul.hh (12235:95ab7b9d1c57) syscall_emul.hh (12334:e0ab29a34764)
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/utility.hh"
97#include "base/intmath.hh"
98#include "base/loader/object_file.hh"
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/utility.hh"
97#include "base/intmath.hh"
98#include "base/loader/object_file.hh"
99#include "base/misc.hh"
99#include "base/logging.hh"
100#include "base/trace.hh"
101#include "base/types.hh"
102#include "config/the_isa.hh"
103#include "cpu/base.hh"
104#include "cpu/thread_context.hh"
105#include "mem/page_table.hh"
106#include "params/Process.hh"
107#include "sim/emul_driver.hh"
108#include "sim/futex_map.hh"
109#include "sim/process.hh"
110#include "sim/syscall_debug_macros.hh"
111#include "sim/syscall_desc.hh"
112#include "sim/syscall_emul_buf.hh"
113#include "sim/syscall_return.hh"
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's. They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123
124/// Handler for unimplemented syscalls that we haven't thought about.
125SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
126 Process *p, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program. Print a warning only if the appropriate
131/// trace flag is enabled. Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
133 Process *p, ThreadContext *tc);
134
135// Target fallocateFunc() handler.
136SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
137 Process *p, ThreadContext *tc);
138
139/// Target exit() handler: terminate current context.
140SyscallReturn exitFunc(SyscallDesc *desc, int num,
141 Process *p, ThreadContext *tc);
142
143/// Target exit_group() handler: terminate simulation. (exit all threads)
144SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
145 Process *p, ThreadContext *tc);
146
147/// Target set_tid_address() handler.
148SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
149 Process *p, ThreadContext *tc);
150
151/// Target getpagesize() handler.
152SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
153 Process *p, ThreadContext *tc);
154
155/// Target brk() handler: set brk address.
156SyscallReturn brkFunc(SyscallDesc *desc, int num,
157 Process *p, ThreadContext *tc);
158
159/// Target close() handler.
160SyscallReturn closeFunc(SyscallDesc *desc, int num,
161 Process *p, ThreadContext *tc);
162
163// Target read() handler.
164SyscallReturn readFunc(SyscallDesc *desc, int num,
165 Process *p, ThreadContext *tc);
166
167/// Target write() handler.
168SyscallReturn writeFunc(SyscallDesc *desc, int num,
169 Process *p, ThreadContext *tc);
170
171/// Target lseek() handler.
172SyscallReturn lseekFunc(SyscallDesc *desc, int num,
173 Process *p, ThreadContext *tc);
174
175/// Target _llseek() handler.
176SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
177 Process *p, ThreadContext *tc);
178
179/// Target munmap() handler.
180SyscallReturn munmapFunc(SyscallDesc *desc, int num,
181 Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185 Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189 Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193 Process *p, ThreadContext *tc,
194 int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196 Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200 Process *p, ThreadContext *tc,
201 int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203 Process *p, ThreadContext *tc);
204
205/// Target mkdir() handler.
206SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
207 Process *p, ThreadContext *tc);
208
209/// Target rename() handler.
210SyscallReturn renameFunc(SyscallDesc *desc, int num,
211 Process *p, ThreadContext *tc);
212
213
214/// Target truncate() handler.
215SyscallReturn truncateFunc(SyscallDesc *desc, int num,
216 Process *p, ThreadContext *tc);
217
218
219/// Target ftruncate() handler.
220SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
221 Process *p, ThreadContext *tc);
222
223
224/// Target truncate64() handler.
225SyscallReturn truncate64Func(SyscallDesc *desc, int num,
226 Process *p, ThreadContext *tc);
227
228/// Target ftruncate64() handler.
229SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
230 Process *p, ThreadContext *tc);
231
232
233/// Target umask() handler.
234SyscallReturn umaskFunc(SyscallDesc *desc, int num,
235 Process *p, ThreadContext *tc);
236
237/// Target gettid() handler.
238SyscallReturn gettidFunc(SyscallDesc *desc, int num,
239 Process *p, ThreadContext *tc);
240
241/// Target chown() handler.
242SyscallReturn chownFunc(SyscallDesc *desc, int num,
243 Process *p, ThreadContext *tc);
244
245/// Target setpgid() handler.
246SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
247 Process *p, ThreadContext *tc);
248
249/// Target fchown() handler.
250SyscallReturn fchownFunc(SyscallDesc *desc, int num,
251 Process *p, ThreadContext *tc);
252
253/// Target dup() handler.
254SyscallReturn dupFunc(SyscallDesc *desc, int num,
255 Process *process, ThreadContext *tc);
256
257/// Target dup2() handler.
258SyscallReturn dup2Func(SyscallDesc *desc, int num,
259 Process *process, ThreadContext *tc);
260
261/// Target fcntl() handler.
262SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
263 Process *process, ThreadContext *tc);
264
265/// Target fcntl64() handler.
266SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
267 Process *process, ThreadContext *tc);
268
269/// Target setuid() handler.
270SyscallReturn setuidFunc(SyscallDesc *desc, int num,
271 Process *p, ThreadContext *tc);
272
273/// Target pipe() handler.
274SyscallReturn pipeFunc(SyscallDesc *desc, int num,
275 Process *p, ThreadContext *tc);
276
277/// Internal pipe() handler.
278SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
279 ThreadContext *tc, bool pseudoPipe);
280
281/// Target getpid() handler.
282SyscallReturn getpidFunc(SyscallDesc *desc, int num,
283 Process *p, ThreadContext *tc);
284
285/// Target getuid() handler.
286SyscallReturn getuidFunc(SyscallDesc *desc, int num,
287 Process *p, ThreadContext *tc);
288
289/// Target getgid() handler.
290SyscallReturn getgidFunc(SyscallDesc *desc, int num,
291 Process *p, ThreadContext *tc);
292
293/// Target getppid() handler.
294SyscallReturn getppidFunc(SyscallDesc *desc, int num,
295 Process *p, ThreadContext *tc);
296
297/// Target geteuid() handler.
298SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
299 Process *p, ThreadContext *tc);
300
301/// Target getegid() handler.
302SyscallReturn getegidFunc(SyscallDesc *desc, int num,
303 Process *p, ThreadContext *tc);
304
305/// Target access() handler
306SyscallReturn accessFunc(SyscallDesc *desc, int num,
307 Process *p, ThreadContext *tc);
308SyscallReturn accessFunc(SyscallDesc *desc, int num,
309 Process *p, ThreadContext *tc,
310 int index);
311
312/// Futex system call
313/// Implemented by Daniel Sanchez
314/// Used by printf's in multi-threaded apps
315template <class OS>
316SyscallReturn
317futexFunc(SyscallDesc *desc, int callnum, Process *process,
318 ThreadContext *tc)
319{
320 using namespace std;
321
322 int index = 0;
323 Addr uaddr = process->getSyscallArg(tc, index);
324 int op = process->getSyscallArg(tc, index);
325 int val = process->getSyscallArg(tc, index);
326
327 /*
328 * Unsupported option that does not affect the correctness of the
329 * application. This is a performance optimization utilized by Linux.
330 */
331 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
332
333 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
334
335 if (OS::TGT_FUTEX_WAIT == op) {
336 // Ensure futex system call accessed atomically.
337 BufferArg buf(uaddr, sizeof(int));
338 buf.copyIn(tc->getMemProxy());
339 int mem_val = *(int*)buf.bufferPtr();
340
341 /*
342 * The value in memory at uaddr is not equal with the expected val
343 * (a different thread must have changed it before the system call was
344 * invoked). In this case, we need to throw an error.
345 */
346 if (val != mem_val)
347 return -OS::TGT_EWOULDBLOCK;
348
349 futex_map.suspend(uaddr, process->tgid(), tc);
350
351 return 0;
352 } else if (OS::TGT_FUTEX_WAKE == op) {
353 return futex_map.wakeup(uaddr, process->tgid(), val);
354 }
355
356 warn("futex: op %d not implemented; ignoring.", op);
357 return -ENOSYS;
358}
359
360
361/// Pseudo Funcs - These functions use a different return convension,
362/// returning a second value in a register other than the normal return register
363SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
364 Process *process, ThreadContext *tc);
365
366/// Target getpidPseudo() handler.
367SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
368 Process *p, ThreadContext *tc);
369
370/// Target getuidPseudo() handler.
371SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
372 Process *p, ThreadContext *tc);
373
374/// Target getgidPseudo() handler.
375SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
376 Process *p, ThreadContext *tc);
377
378
379/// A readable name for 1,000,000, for converting microseconds to seconds.
380const int one_million = 1000000;
381/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
382const int one_billion = 1000000000;
383
384/// Approximate seconds since the epoch (1/1/1970). About a billion,
385/// by my reckoning. We want to keep this a constant (not use the
386/// real-world time) to keep simulations repeatable.
387const unsigned seconds_since_epoch = 1000000000;
388
389/// Helper function to convert current elapsed time to seconds and
390/// microseconds.
391template <class T1, class T2>
392void
393getElapsedTimeMicro(T1 &sec, T2 &usec)
394{
395 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
396 sec = elapsed_usecs / one_million;
397 usec = elapsed_usecs % one_million;
398}
399
400/// Helper function to convert current elapsed time to seconds and
401/// nanoseconds.
402template <class T1, class T2>
403void
404getElapsedTimeNano(T1 &sec, T2 &nsec)
405{
406 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
407 sec = elapsed_nsecs / one_billion;
408 nsec = elapsed_nsecs % one_billion;
409}
410
411//////////////////////////////////////////////////////////////////////
412//
413// The following emulation functions are generic, but need to be
414// templated to account for differences in types, constants, etc.
415//
416//////////////////////////////////////////////////////////////////////
417
418 typedef struct statfs hst_statfs;
419#if NO_STAT64
420 typedef struct stat hst_stat;
421 typedef struct stat hst_stat64;
422#else
423 typedef struct stat hst_stat;
424 typedef struct stat64 hst_stat64;
425#endif
426
427//// Helper function to convert a host stat buffer to a target stat
428//// buffer. Also copies the target buffer out to the simulated
429//// memory space. Used by stat(), fstat(), and lstat().
430
431template <typename target_stat, typename host_stat>
432void
433convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
434{
435 using namespace TheISA;
436
437 if (fakeTTY)
438 tgt->st_dev = 0xA;
439 else
440 tgt->st_dev = host->st_dev;
441 tgt->st_dev = TheISA::htog(tgt->st_dev);
442 tgt->st_ino = host->st_ino;
443 tgt->st_ino = TheISA::htog(tgt->st_ino);
444 tgt->st_mode = host->st_mode;
445 if (fakeTTY) {
446 // Claim to be a character device
447 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
448 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
449 }
450 tgt->st_mode = TheISA::htog(tgt->st_mode);
451 tgt->st_nlink = host->st_nlink;
452 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
453 tgt->st_uid = host->st_uid;
454 tgt->st_uid = TheISA::htog(tgt->st_uid);
455 tgt->st_gid = host->st_gid;
456 tgt->st_gid = TheISA::htog(tgt->st_gid);
457 if (fakeTTY)
458 tgt->st_rdev = 0x880d;
459 else
460 tgt->st_rdev = host->st_rdev;
461 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
462 tgt->st_size = host->st_size;
463 tgt->st_size = TheISA::htog(tgt->st_size);
464 tgt->st_atimeX = host->st_atime;
465 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
466 tgt->st_mtimeX = host->st_mtime;
467 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
468 tgt->st_ctimeX = host->st_ctime;
469 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
470 // Force the block size to be 8KB. This helps to ensure buffered io works
471 // consistently across different hosts.
472 tgt->st_blksize = 0x2000;
473 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
474 tgt->st_blocks = host->st_blocks;
475 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
476}
477
478// Same for stat64
479
480template <typename target_stat, typename host_stat64>
481void
482convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
483{
484 using namespace TheISA;
485
486 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
487#if defined(STAT_HAVE_NSEC)
488 tgt->st_atime_nsec = host->st_atime_nsec;
489 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
490 tgt->st_mtime_nsec = host->st_mtime_nsec;
491 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
492 tgt->st_ctime_nsec = host->st_ctime_nsec;
493 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
494#else
495 tgt->st_atime_nsec = 0;
496 tgt->st_mtime_nsec = 0;
497 tgt->st_ctime_nsec = 0;
498#endif
499}
500
501// Here are a couple of convenience functions
502template<class OS>
503void
504copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
505 hst_stat *host, bool fakeTTY = false)
506{
507 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
508 tgt_stat_buf tgt(addr);
509 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
510 tgt.copyOut(mem);
511}
512
513template<class OS>
514void
515copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
516 hst_stat64 *host, bool fakeTTY = false)
517{
518 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
519 tgt_stat_buf tgt(addr);
520 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
521 tgt.copyOut(mem);
522}
523
524template <class OS>
525void
526copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
527 hst_statfs *host)
528{
529 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
530
531 tgt->f_type = TheISA::htog(host->f_type);
532#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
533 tgt->f_bsize = TheISA::htog(host->f_iosize);
534#else
535 tgt->f_bsize = TheISA::htog(host->f_bsize);
536#endif
537 tgt->f_blocks = TheISA::htog(host->f_blocks);
538 tgt->f_bfree = TheISA::htog(host->f_bfree);
539 tgt->f_bavail = TheISA::htog(host->f_bavail);
540 tgt->f_files = TheISA::htog(host->f_files);
541 tgt->f_ffree = TheISA::htog(host->f_ffree);
542 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
543#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
544 tgt->f_namelen = TheISA::htog(host->f_namemax);
545 tgt->f_frsize = TheISA::htog(host->f_bsize);
546#elif defined(__APPLE__)
547 tgt->f_namelen = 0;
548 tgt->f_frsize = 0;
549#else
550 tgt->f_namelen = TheISA::htog(host->f_namelen);
551 tgt->f_frsize = TheISA::htog(host->f_frsize);
552#endif
553#if defined(__linux__)
554 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
555#else
556 /*
557 * The fields are different sizes per OS. Don't bother with
558 * f_spare or f_reserved on non-Linux for now.
559 */
560 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
561#endif
562
563 tgt.copyOut(mem);
564}
565
566/// Target ioctl() handler. For the most part, programs call ioctl()
567/// only to find out if their stdout is a tty, to determine whether to
568/// do line or block buffering. We always claim that output fds are
569/// not TTYs to provide repeatable results.
570template <class OS>
571SyscallReturn
572ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
573{
574 int index = 0;
575 int tgt_fd = p->getSyscallArg(tc, index);
576 unsigned req = p->getSyscallArg(tc, index);
577
578 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
579
580 if (OS::isTtyReq(req))
581 return -ENOTTY;
582
583 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
584 if (!dfdp)
585 return -EBADF;
586
587 /**
588 * If the driver is valid, issue the ioctl through it. Otherwise,
589 * there's an implicit assumption that the device is a TTY type and we
590 * return that we do not have a valid TTY.
591 */
592 EmulatedDriver *emul_driver = dfdp->getDriver();
593 if (emul_driver)
594 return emul_driver->ioctl(p, tc, req);
595
596 /**
597 * For lack of a better return code, return ENOTTY. Ideally, we should
598 * return something better here, but at least we issue the warning.
599 */
600 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
601 tgt_fd, req, tc->pcState());
602 return -ENOTTY;
603}
604
605template <class OS>
606SyscallReturn
607openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
608 bool isopenat)
609{
610 int index = 0;
611 int tgt_dirfd = -1;
612
613 /**
614 * If using the openat variant, read in the target directory file
615 * descriptor from the simulated process.
616 */
617 if (isopenat)
618 tgt_dirfd = p->getSyscallArg(tc, index);
619
620 /**
621 * Retrieve the simulated process' memory proxy and then read in the path
622 * string from that memory space into the host's working memory space.
623 */
624 std::string path;
625 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
626 return -EFAULT;
627
628#ifdef __CYGWIN32__
629 int host_flags = O_BINARY;
630#else
631 int host_flags = 0;
632#endif
633 /**
634 * Translate target flags into host flags. Flags exist which are not
635 * ported between architectures which can cause check failures.
636 */
637 int tgt_flags = p->getSyscallArg(tc, index);
638 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
639 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
640 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
641 host_flags |= OS::openFlagTable[i].hostFlag;
642 }
643 }
644 if (tgt_flags) {
645 warn("open%s: cannot decode flags 0x%x",
646 isopenat ? "at" : "", tgt_flags);
647 }
648#ifdef __CYGWIN32__
649 host_flags |= O_BINARY;
650#endif
651
652 int mode = p->getSyscallArg(tc, index);
653
654 /**
655 * If the simulated process called open or openat with AT_FDCWD specified,
656 * take the current working directory value which was passed into the
657 * process class as a Python parameter and append the current path to
658 * create a full path.
659 * Otherwise, openat with a valid target directory file descriptor has
660 * been called. If the path option, which was passed in as a parameter,
661 * is not absolute, retrieve the directory file descriptor's path and
662 * prepend it to the path passed in as a parameter.
663 * In every case, we should have a full path (which is relevant to the
664 * host) to work with after this block has been passed.
665 */
666 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
667 path = p->fullPath(path);
668 } else if (!startswith(path, "/")) {
669 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
670 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
671 if (!ffdp)
672 return -EBADF;
673 path.insert(0, ffdp->getFileName());
674 }
675
676 /**
677 * Since this is an emulated environment, we create pseudo file
678 * descriptors for device requests that have been registered with
679 * the process class through Python; this allows us to create a file
680 * descriptor for subsequent ioctl or mmap calls.
681 */
682 if (startswith(path, "/dev/")) {
683 std::string filename = path.substr(strlen("/dev/"));
684 EmulatedDriver *drv = p->findDriver(filename);
685 if (drv) {
686 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
687 "driver open with path[%s]\n",
688 isopenat ? "at" : "", path.c_str());
689 return drv->open(p, tc, mode, host_flags);
690 }
691 /**
692 * Fall through here for pass through to host devices, such
693 * as /dev/zero
694 */
695 }
696
697 /**
698 * Some special paths and files cannot be called on the host and need
699 * to be handled as special cases inside the simulator.
700 * If the full path that was created above does not match any of the
701 * special cases, pass it through to the open call on the host to let
702 * the host open the file on our behalf.
703 * If the host cannot open the file, return the host's error code back
704 * through the system call to the simulated process.
705 */
706 int sim_fd = -1;
707 std::vector<std::string> special_paths =
708 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
709 for (auto entry : special_paths) {
710 if (startswith(path, entry))
711 sim_fd = OS::openSpecialFile(path, p, tc);
712 }
713 if (sim_fd == -1) {
714 sim_fd = open(path.c_str(), host_flags, mode);
715 }
716 if (sim_fd == -1) {
717 int local = -errno;
718 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
719 isopenat ? "at" : "", path.c_str());
720 return local;
721 }
722
723 /**
724 * The file was opened successfully and needs to be recorded in the
725 * process' file descriptor array so that it can be retrieved later.
726 * The target file descriptor that is chosen will be the lowest unused
727 * file descriptor.
728 * Return the indirect target file descriptor back to the simulated
729 * process to act as a handle for the opened file.
730 */
731 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
732 int tgt_fd = p->fds->allocFD(ffdp);
733 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
734 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
735 return tgt_fd;
736}
737
738/// Target open() handler.
739template <class OS>
740SyscallReturn
741openFunc(SyscallDesc *desc, int callnum, Process *process,
742 ThreadContext *tc)
743{
744 return openImpl<OS>(desc, callnum, process, tc, false);
745}
746
747/// Target openat() handler.
748template <class OS>
749SyscallReturn
750openatFunc(SyscallDesc *desc, int callnum, Process *process,
751 ThreadContext *tc)
752{
753 return openImpl<OS>(desc, callnum, process, tc, true);
754}
755
756/// Target unlinkat() handler.
757template <class OS>
758SyscallReturn
759unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
760 ThreadContext *tc)
761{
762 int index = 0;
763 int dirfd = process->getSyscallArg(tc, index);
764 if (dirfd != OS::TGT_AT_FDCWD)
765 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
766
767 return unlinkHelper(desc, callnum, process, tc, 1);
768}
769
770/// Target facessat() handler
771template <class OS>
772SyscallReturn
773faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
774 ThreadContext *tc)
775{
776 int index = 0;
777 int dirfd = process->getSyscallArg(tc, index);
778 if (dirfd != OS::TGT_AT_FDCWD)
779 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
780 return accessFunc(desc, callnum, process, tc, 1);
781}
782
783/// Target readlinkat() handler
784template <class OS>
785SyscallReturn
786readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
787 ThreadContext *tc)
788{
789 int index = 0;
790 int dirfd = process->getSyscallArg(tc, index);
791 if (dirfd != OS::TGT_AT_FDCWD)
792 warn("openat: first argument not AT_FDCWD; unlikely to work");
793 return readlinkFunc(desc, callnum, process, tc, 1);
794}
795
796/// Target renameat() handler.
797template <class OS>
798SyscallReturn
799renameatFunc(SyscallDesc *desc, int callnum, Process *process,
800 ThreadContext *tc)
801{
802 int index = 0;
803
804 int olddirfd = process->getSyscallArg(tc, index);
805 if (olddirfd != OS::TGT_AT_FDCWD)
806 warn("renameat: first argument not AT_FDCWD; unlikely to work");
807
808 std::string old_name;
809
810 if (!tc->getMemProxy().tryReadString(old_name,
811 process->getSyscallArg(tc, index)))
812 return -EFAULT;
813
814 int newdirfd = process->getSyscallArg(tc, index);
815 if (newdirfd != OS::TGT_AT_FDCWD)
816 warn("renameat: third argument not AT_FDCWD; unlikely to work");
817
818 std::string new_name;
819
820 if (!tc->getMemProxy().tryReadString(new_name,
821 process->getSyscallArg(tc, index)))
822 return -EFAULT;
823
824 // Adjust path for current working directory
825 old_name = process->fullPath(old_name);
826 new_name = process->fullPath(new_name);
827
828 int result = rename(old_name.c_str(), new_name.c_str());
829 return (result == -1) ? -errno : result;
830}
831
832/// Target sysinfo() handler.
833template <class OS>
834SyscallReturn
835sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
836 ThreadContext *tc)
837{
838
839 int index = 0;
840 TypedBufferArg<typename OS::tgt_sysinfo>
841 sysinfo(process->getSyscallArg(tc, index));
842
843 sysinfo->uptime = seconds_since_epoch;
844 sysinfo->totalram = process->system->memSize();
845 sysinfo->mem_unit = 1;
846
847 sysinfo.copyOut(tc->getMemProxy());
848
849 return 0;
850}
851
852/// Target chmod() handler.
853template <class OS>
854SyscallReturn
855chmodFunc(SyscallDesc *desc, int callnum, Process *process,
856 ThreadContext *tc)
857{
858 std::string path;
859
860 int index = 0;
861 if (!tc->getMemProxy().tryReadString(path,
862 process->getSyscallArg(tc, index))) {
863 return -EFAULT;
864 }
865
866 uint32_t mode = process->getSyscallArg(tc, index);
867 mode_t hostMode = 0;
868
869 // XXX translate mode flags via OS::something???
870 hostMode = mode;
871
872 // Adjust path for current working directory
873 path = process->fullPath(path);
874
875 // do the chmod
876 int result = chmod(path.c_str(), hostMode);
877 if (result < 0)
878 return -errno;
879
880 return 0;
881}
882
883
884/// Target fchmod() handler.
885template <class OS>
886SyscallReturn
887fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
888{
889 int index = 0;
890 int tgt_fd = p->getSyscallArg(tc, index);
891 uint32_t mode = p->getSyscallArg(tc, index);
892
893 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
894 if (!ffdp)
895 return -EBADF;
896 int sim_fd = ffdp->getSimFD();
897
898 mode_t hostMode = mode;
899
900 int result = fchmod(sim_fd, hostMode);
901
902 return (result < 0) ? -errno : 0;
903}
904
905/// Target mremap() handler.
906template <class OS>
907SyscallReturn
908mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
909{
910 int index = 0;
911 Addr start = process->getSyscallArg(tc, index);
912 uint64_t old_length = process->getSyscallArg(tc, index);
913 uint64_t new_length = process->getSyscallArg(tc, index);
914 uint64_t flags = process->getSyscallArg(tc, index);
915 uint64_t provided_address = 0;
916 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
917
918 if (use_provided_address)
919 provided_address = process->getSyscallArg(tc, index);
920
921 if ((start % TheISA::PageBytes != 0) ||
922 (provided_address % TheISA::PageBytes != 0)) {
923 warn("mremap failing: arguments not page aligned");
924 return -EINVAL;
925 }
926
927 new_length = roundUp(new_length, TheISA::PageBytes);
928
929 if (new_length > old_length) {
930 std::shared_ptr<MemState> mem_state = process->memState;
931 Addr mmap_end = mem_state->getMmapEnd();
932
933 if ((start + old_length) == mmap_end &&
934 (!use_provided_address || provided_address == start)) {
935 // This case cannot occur when growing downward, as
936 // start is greater than or equal to mmap_end.
937 uint64_t diff = new_length - old_length;
938 process->allocateMem(mmap_end, diff);
939 mem_state->setMmapEnd(mmap_end + diff);
940 return start;
941 } else {
942 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
943 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
944 return -ENOMEM;
945 } else {
946 uint64_t new_start = provided_address;
947 if (!use_provided_address) {
948 new_start = process->mmapGrowsDown() ?
949 mmap_end - new_length : mmap_end;
950 mmap_end = process->mmapGrowsDown() ?
951 new_start : mmap_end + new_length;
952 mem_state->setMmapEnd(mmap_end);
953 }
954
955 process->pTable->remap(start, old_length, new_start);
956 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
957 new_start, new_start + new_length,
958 new_length - old_length);
959 // add on the remaining unallocated pages
960 process->allocateMem(new_start + old_length,
961 new_length - old_length,
962 use_provided_address /* clobber */);
963 if (use_provided_address &&
964 ((new_start + new_length > mem_state->getMmapEnd() &&
965 !process->mmapGrowsDown()) ||
966 (new_start < mem_state->getMmapEnd() &&
967 process->mmapGrowsDown()))) {
968 // something fishy going on here, at least notify the user
969 // @todo: increase mmap_end?
970 warn("mmap region limit exceeded with MREMAP_FIXED\n");
971 }
972 warn("returning %08p as start\n", new_start);
973 return new_start;
974 }
975 }
976 } else {
977 if (use_provided_address && provided_address != start)
978 process->pTable->remap(start, new_length, provided_address);
979 process->pTable->unmap(start + new_length, old_length - new_length);
980 return use_provided_address ? provided_address : start;
981 }
982}
983
984/// Target stat() handler.
985template <class OS>
986SyscallReturn
987statFunc(SyscallDesc *desc, int callnum, Process *process,
988 ThreadContext *tc)
989{
990 std::string path;
991
992 int index = 0;
993 if (!tc->getMemProxy().tryReadString(path,
994 process->getSyscallArg(tc, index))) {
995 return -EFAULT;
996 }
997 Addr bufPtr = process->getSyscallArg(tc, index);
998
999 // Adjust path for current working directory
1000 path = process->fullPath(path);
1001
1002 struct stat hostBuf;
1003 int result = stat(path.c_str(), &hostBuf);
1004
1005 if (result < 0)
1006 return -errno;
1007
1008 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1009
1010 return 0;
1011}
1012
1013
1014/// Target stat64() handler.
1015template <class OS>
1016SyscallReturn
1017stat64Func(SyscallDesc *desc, int callnum, Process *process,
1018 ThreadContext *tc)
1019{
1020 std::string path;
1021
1022 int index = 0;
1023 if (!tc->getMemProxy().tryReadString(path,
1024 process->getSyscallArg(tc, index)))
1025 return -EFAULT;
1026 Addr bufPtr = process->getSyscallArg(tc, index);
1027
1028 // Adjust path for current working directory
1029 path = process->fullPath(path);
1030
1031#if NO_STAT64
1032 struct stat hostBuf;
1033 int result = stat(path.c_str(), &hostBuf);
1034#else
1035 struct stat64 hostBuf;
1036 int result = stat64(path.c_str(), &hostBuf);
1037#endif
1038
1039 if (result < 0)
1040 return -errno;
1041
1042 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1043
1044 return 0;
1045}
1046
1047
1048/// Target fstatat64() handler.
1049template <class OS>
1050SyscallReturn
1051fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1052 ThreadContext *tc)
1053{
1054 int index = 0;
1055 int dirfd = process->getSyscallArg(tc, index);
1056 if (dirfd != OS::TGT_AT_FDCWD)
1057 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1058
1059 std::string path;
1060 if (!tc->getMemProxy().tryReadString(path,
1061 process->getSyscallArg(tc, index)))
1062 return -EFAULT;
1063 Addr bufPtr = process->getSyscallArg(tc, index);
1064
1065 // Adjust path for current working directory
1066 path = process->fullPath(path);
1067
1068#if NO_STAT64
1069 struct stat hostBuf;
1070 int result = stat(path.c_str(), &hostBuf);
1071#else
1072 struct stat64 hostBuf;
1073 int result = stat64(path.c_str(), &hostBuf);
1074#endif
1075
1076 if (result < 0)
1077 return -errno;
1078
1079 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1080
1081 return 0;
1082}
1083
1084
1085/// Target fstat64() handler.
1086template <class OS>
1087SyscallReturn
1088fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1089{
1090 int index = 0;
1091 int tgt_fd = p->getSyscallArg(tc, index);
1092 Addr bufPtr = p->getSyscallArg(tc, index);
1093
1094 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1095 if (!ffdp)
1096 return -EBADF;
1097 int sim_fd = ffdp->getSimFD();
1098
1099#if NO_STAT64
1100 struct stat hostBuf;
1101 int result = fstat(sim_fd, &hostBuf);
1102#else
1103 struct stat64 hostBuf;
1104 int result = fstat64(sim_fd, &hostBuf);
1105#endif
1106
1107 if (result < 0)
1108 return -errno;
1109
1110 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1111
1112 return 0;
1113}
1114
1115
1116/// Target lstat() handler.
1117template <class OS>
1118SyscallReturn
1119lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1120 ThreadContext *tc)
1121{
1122 std::string path;
1123
1124 int index = 0;
1125 if (!tc->getMemProxy().tryReadString(path,
1126 process->getSyscallArg(tc, index))) {
1127 return -EFAULT;
1128 }
1129 Addr bufPtr = process->getSyscallArg(tc, index);
1130
1131 // Adjust path for current working directory
1132 path = process->fullPath(path);
1133
1134 struct stat hostBuf;
1135 int result = lstat(path.c_str(), &hostBuf);
1136
1137 if (result < 0)
1138 return -errno;
1139
1140 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1141
1142 return 0;
1143}
1144
1145/// Target lstat64() handler.
1146template <class OS>
1147SyscallReturn
1148lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1149 ThreadContext *tc)
1150{
1151 std::string path;
1152
1153 int index = 0;
1154 if (!tc->getMemProxy().tryReadString(path,
1155 process->getSyscallArg(tc, index))) {
1156 return -EFAULT;
1157 }
1158 Addr bufPtr = process->getSyscallArg(tc, index);
1159
1160 // Adjust path for current working directory
1161 path = process->fullPath(path);
1162
1163#if NO_STAT64
1164 struct stat hostBuf;
1165 int result = lstat(path.c_str(), &hostBuf);
1166#else
1167 struct stat64 hostBuf;
1168 int result = lstat64(path.c_str(), &hostBuf);
1169#endif
1170
1171 if (result < 0)
1172 return -errno;
1173
1174 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1175
1176 return 0;
1177}
1178
1179/// Target fstat() handler.
1180template <class OS>
1181SyscallReturn
1182fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1183{
1184 int index = 0;
1185 int tgt_fd = p->getSyscallArg(tc, index);
1186 Addr bufPtr = p->getSyscallArg(tc, index);
1187
1188 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1189
1190 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1191 if (!ffdp)
1192 return -EBADF;
1193 int sim_fd = ffdp->getSimFD();
1194
1195 struct stat hostBuf;
1196 int result = fstat(sim_fd, &hostBuf);
1197
1198 if (result < 0)
1199 return -errno;
1200
1201 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1202
1203 return 0;
1204}
1205
1206
1207/// Target statfs() handler.
1208template <class OS>
1209SyscallReturn
1210statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1211 ThreadContext *tc)
1212{
1213#if NO_STATFS
1214 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1215#else
1216 std::string path;
1217
1218 int index = 0;
1219 if (!tc->getMemProxy().tryReadString(path,
1220 process->getSyscallArg(tc, index))) {
1221 return -EFAULT;
1222 }
1223 Addr bufPtr = process->getSyscallArg(tc, index);
1224
1225 // Adjust path for current working directory
1226 path = process->fullPath(path);
1227
1228 struct statfs hostBuf;
1229 int result = statfs(path.c_str(), &hostBuf);
1230
1231 if (result < 0)
1232 return -errno;
1233
1234 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1235#endif
1236 return 0;
1237}
1238
1239template <class OS>
1240SyscallReturn
1241cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1242{
1243 int index = 0;
1244 TheISA::IntReg flags = p->getSyscallArg(tc, index);
1245 TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1246 Addr ptidPtr = p->getSyscallArg(tc, index);
1247 Addr ctidPtr = p->getSyscallArg(tc, index);
1248 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1249
1250 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1251 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1252 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1253 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1254 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1255 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1256 return -EINVAL;
1257
1258 ThreadContext *ctc;
1259 if (!(ctc = p->findFreeContext()))
1260 fatal("clone: no spare thread context in system");
1261
1262 /**
1263 * Note that ProcessParams is generated by swig and there are no other
1264 * examples of how to create anything but this default constructor. The
1265 * fields are manually initialized instead of passing parameters to the
1266 * constructor.
1267 */
1268 ProcessParams *pp = new ProcessParams();
1269 pp->executable.assign(*(new std::string(p->progName())));
1270 pp->cmd.push_back(*(new std::string(p->progName())));
1271 pp->system = p->system;
1272 pp->cwd.assign(p->getcwd());
1273 pp->input.assign("stdin");
1274 pp->output.assign("stdout");
1275 pp->errout.assign("stderr");
1276 pp->uid = p->uid();
1277 pp->euid = p->euid();
1278 pp->gid = p->gid();
1279 pp->egid = p->egid();
1280
1281 /* Find the first free PID that's less than the maximum */
1282 std::set<int> const& pids = p->system->PIDs;
1283 int temp_pid = *pids.begin();
1284 do {
1285 temp_pid++;
1286 } while (pids.find(temp_pid) != pids.end());
1287 if (temp_pid >= System::maxPID)
1288 fatal("temp_pid is too large: %d", temp_pid);
1289
1290 pp->pid = temp_pid;
1291 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1292 Process *cp = pp->create();
1293 delete pp;
1294
1295 Process *owner = ctc->getProcessPtr();
1296 ctc->setProcessPtr(cp);
1297 cp->assignThreadContext(ctc->contextId());
1298 owner->revokeThreadContext(ctc->contextId());
1299
1300 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1301 BufferArg ptidBuf(ptidPtr, sizeof(long));
1302 long *ptid = (long *)ptidBuf.bufferPtr();
1303 *ptid = cp->pid();
1304 ptidBuf.copyOut(tc->getMemProxy());
1305 }
1306
1307 cp->initState();
1308 p->clone(tc, ctc, cp, flags);
1309
1310 if (flags & OS::TGT_CLONE_THREAD) {
1311 delete cp->sigchld;
1312 cp->sigchld = p->sigchld;
1313 } else if (flags & OS::TGT_SIGCHLD) {
1314 *cp->sigchld = true;
1315 }
1316
1317 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1318 BufferArg ctidBuf(ctidPtr, sizeof(long));
1319 long *ctid = (long *)ctidBuf.bufferPtr();
1320 *ctid = cp->pid();
1321 ctidBuf.copyOut(ctc->getMemProxy());
1322 }
1323
1324 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1325 cp->childClearTID = (uint64_t)ctidPtr;
1326
1327 ctc->clearArchRegs();
1328
1329#if THE_ISA == ALPHA_ISA
1330 TheISA::copyMiscRegs(tc, ctc);
1331#elif THE_ISA == SPARC_ISA
1332 TheISA::copyRegs(tc, ctc);
1333 ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1334 ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1335 ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1336 ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1337 ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1338 ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1339 ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1340 ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1341 for (int y = 8; y < 32; y++)
1342 ctc->setIntReg(y, tc->readIntReg(y));
1343#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA
1344 TheISA::copyRegs(tc, ctc);
1345#endif
1346
1347#if THE_ISA == X86_ISA
1348 if (flags & OS::TGT_CLONE_SETTLS) {
1349 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1350 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1351 }
1352#endif
1353
1354 if (newStack)
1355 ctc->setIntReg(TheISA::StackPointerReg, newStack);
1356
1357 cp->setSyscallReturn(ctc, 0);
1358
1359#if THE_ISA == ALPHA_ISA
1360 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1361#elif THE_ISA == SPARC_ISA
1362 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1363 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1364#endif
1365
1366 ctc->pcState(tc->nextInstAddr());
1367 ctc->activate();
1368
1369 return cp->pid();
1370}
1371
1372/// Target fstatfs() handler.
1373template <class OS>
1374SyscallReturn
1375fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1376{
1377 int index = 0;
1378 int tgt_fd = p->getSyscallArg(tc, index);
1379 Addr bufPtr = p->getSyscallArg(tc, index);
1380
1381 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1382 if (!ffdp)
1383 return -EBADF;
1384 int sim_fd = ffdp->getSimFD();
1385
1386 struct statfs hostBuf;
1387 int result = fstatfs(sim_fd, &hostBuf);
1388
1389 if (result < 0)
1390 return -errno;
1391
1392 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1393
1394 return 0;
1395}
1396
1397
1398/// Target writev() handler.
1399template <class OS>
1400SyscallReturn
1401writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1402{
1403 int index = 0;
1404 int tgt_fd = p->getSyscallArg(tc, index);
1405
1406 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1407 if (!hbfdp)
1408 return -EBADF;
1409 int sim_fd = hbfdp->getSimFD();
1410
1411 SETranslatingPortProxy &prox = tc->getMemProxy();
1412 uint64_t tiov_base = p->getSyscallArg(tc, index);
1413 size_t count = p->getSyscallArg(tc, index);
1414 struct iovec hiov[count];
1415 for (size_t i = 0; i < count; ++i) {
1416 typename OS::tgt_iovec tiov;
1417
1418 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1419 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1420 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1421 hiov[i].iov_base = new char [hiov[i].iov_len];
1422 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1423 hiov[i].iov_len);
1424 }
1425
1426 int result = writev(sim_fd, hiov, count);
1427
1428 for (size_t i = 0; i < count; ++i)
1429 delete [] (char *)hiov[i].iov_base;
1430
1431 if (result < 0)
1432 return -errno;
1433
1434 return result;
1435}
1436
1437/// Real mmap handler.
1438template <class OS>
1439SyscallReturn
1440mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1441 bool is_mmap2)
1442{
1443 int index = 0;
1444 Addr start = p->getSyscallArg(tc, index);
1445 uint64_t length = p->getSyscallArg(tc, index);
1446 int prot = p->getSyscallArg(tc, index);
1447 int tgt_flags = p->getSyscallArg(tc, index);
1448 int tgt_fd = p->getSyscallArg(tc, index);
1449 int offset = p->getSyscallArg(tc, index);
1450
1451 if (is_mmap2)
1452 offset *= TheISA::PageBytes;
1453
1454 if (start & (TheISA::PageBytes - 1) ||
1455 offset & (TheISA::PageBytes - 1) ||
1456 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1457 tgt_flags & OS::TGT_MAP_SHARED) ||
1458 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1459 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1460 !length) {
1461 return -EINVAL;
1462 }
1463
1464 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1465 // With shared mmaps, there are two cases to consider:
1466 // 1) anonymous: writes should modify the mapping and this should be
1467 // visible to observers who share the mapping. Currently, it's
1468 // difficult to update the shared mapping because there's no
1469 // structure which maintains information about the which virtual
1470 // memory areas are shared. If that structure existed, it would be
1471 // possible to make the translations point to the same frames.
1472 // 2) file-backed: writes should modify the mapping and the file
1473 // which is backed by the mapping. The shared mapping problem is the
1474 // same as what was mentioned about the anonymous mappings. For
1475 // file-backed mappings, the writes to the file are difficult
1476 // because it requires syncing what the mapping holds with the file
1477 // that resides on the host system. So, any write on a real system
1478 // would cause the change to be propagated to the file mapping at
1479 // some point in the future (the inode is tracked along with the
1480 // mapping). This isn't guaranteed to always happen, but it usually
1481 // works well enough. The guarantee is provided by the msync system
1482 // call. We could force the change through with shared mappings with
1483 // a call to msync, but that again would require more information
1484 // than we currently maintain.
1485 warn("mmap: writing to shared mmap region is currently "
1486 "unsupported. The write succeeds on the target, but it "
1487 "will not be propagated to the host or shared mappings");
1488 }
1489
1490 length = roundUp(length, TheISA::PageBytes);
1491
1492 int sim_fd = -1;
1493 uint8_t *pmap = nullptr;
1494 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1495 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1496
1497 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1498 if (dfdp) {
1499 EmulatedDriver *emul_driver = dfdp->getDriver();
1500 return emul_driver->mmap(p, tc, start, length, prot,
1501 tgt_flags, tgt_fd, offset);
1502 }
1503
1504 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1505 if (!ffdp)
1506 return -EBADF;
1507 sim_fd = ffdp->getSimFD();
1508
1509 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1510 sim_fd, offset);
1511
1512 if (pmap == (decltype(pmap))-1) {
1513 warn("mmap: failed to map file into host address space");
1514 return -errno;
1515 }
1516 }
1517
1518 // Extend global mmap region if necessary. Note that we ignore the
1519 // start address unless MAP_FIXED is specified.
1520 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1521 std::shared_ptr<MemState> mem_state = p->memState;
1522 Addr mmap_end = mem_state->getMmapEnd();
1523
1524 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1525 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1526
1527 mem_state->setMmapEnd(mmap_end);
1528 }
1529
1530 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1531 start, start + length - 1);
1532
1533 // We only allow mappings to overwrite existing mappings if
1534 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1535 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1536 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1537 if (clobber) {
1538 for (auto tc : p->system->threadContexts) {
1539 // If we might be overwriting old mappings, we need to
1540 // invalidate potentially stale mappings out of the TLBs.
1541 tc->getDTBPtr()->flushAll();
1542 tc->getITBPtr()->flushAll();
1543 }
1544 }
1545
1546 // Allocate physical memory and map it in. If the page table is already
1547 // mapped and clobber is not set, the simulator will issue throw a
1548 // fatal and bail out of the simulation.
1549 p->allocateMem(start, length, clobber);
1550
1551 // Transfer content into target address space.
1552 SETranslatingPortProxy &tp = tc->getMemProxy();
1553 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1554 // In general, we should zero the mapped area for anonymous mappings,
1555 // with something like:
1556 // tp.memsetBlob(start, 0, length);
1557 // However, given that we don't support sparse mappings, and
1558 // some applications can map a couple of gigabytes of space
1559 // (intending sparse usage), that can get painfully expensive.
1560 // Fortunately, since we don't properly implement munmap either,
1561 // there's no danger of remapping used memory, so for now all
1562 // newly mapped memory should already be zeroed so we can skip it.
1563 } else {
1564 // It is possible to mmap an area larger than a file, however
1565 // accessing unmapped portions the system triggers a "Bus error"
1566 // on the host. We must know when to stop copying the file from
1567 // the host into the target address space.
1568 struct stat file_stat;
1569 if (fstat(sim_fd, &file_stat) > 0)
1570 fatal("mmap: cannot stat file");
1571
1572 // Copy the portion of the file that is resident. This requires
1573 // checking both the mmap size and the filesize that we are
1574 // trying to mmap into this space; the mmap size also depends
1575 // on the specified offset into the file.
1576 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1577 length);
1578 tp.writeBlob(start, pmap, size);
1579
1580 // Cleanup the mmap region before exiting this function.
1581 munmap(pmap, length);
1582
1583 // Maintain the symbol table for dynamic executables.
1584 // The loader will call mmap to map the images into its address
1585 // space and we intercept that here. We can verify that we are
1586 // executing inside the loader by checking the program counter value.
1587 // XXX: with multiprogrammed workloads or multi-node configurations,
1588 // this will not work since there is a single global symbol table.
1589 ObjectFile *interpreter = p->getInterpreter();
1590 if (interpreter) {
1591 Addr text_start = interpreter->textBase();
1592 Addr text_end = text_start + interpreter->textSize();
1593
1594 Addr pc = tc->pcState().pc();
1595
1596 if (pc >= text_start && pc < text_end) {
1597 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1598 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1599 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1600
1601 if (lib) {
1602 lib->loadAllSymbols(debugSymbolTable,
1603 lib->textBase(), start);
1604 }
1605 }
1606 }
1607
1608 // Note that we do not zero out the remainder of the mapping. This
1609 // is done by a real system, but it probably will not affect
1610 // execution (hopefully).
1611 }
1612
1613 return start;
1614}
1615
1616template <class OS>
1617SyscallReturn
1618pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1619{
1620 int index = 0;
1621 int tgt_fd = p->getSyscallArg(tc, index);
1622 Addr bufPtr = p->getSyscallArg(tc, index);
1623 int nbytes = p->getSyscallArg(tc, index);
1624 int offset = p->getSyscallArg(tc, index);
1625
1626 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1627 if (!ffdp)
1628 return -EBADF;
1629 int sim_fd = ffdp->getSimFD();
1630
1631 BufferArg bufArg(bufPtr, nbytes);
1632 bufArg.copyIn(tc->getMemProxy());
1633
1634 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1635
1636 return (bytes_written == -1) ? -errno : bytes_written;
1637}
1638
1639/// Target mmap() handler.
1640template <class OS>
1641SyscallReturn
1642mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1643{
1644 return mmapImpl<OS>(desc, num, p, tc, false);
1645}
1646
1647/// Target mmap2() handler.
1648template <class OS>
1649SyscallReturn
1650mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1651{
1652 return mmapImpl<OS>(desc, num, p, tc, true);
1653}
1654
1655/// Target getrlimit() handler.
1656template <class OS>
1657SyscallReturn
1658getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1659 ThreadContext *tc)
1660{
1661 int index = 0;
1662 unsigned resource = process->getSyscallArg(tc, index);
1663 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1664
1665 switch (resource) {
1666 case OS::TGT_RLIMIT_STACK:
1667 // max stack size in bytes: make up a number (8MB for now)
1668 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1669 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1670 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1671 break;
1672
1673 case OS::TGT_RLIMIT_DATA:
1674 // max data segment size in bytes: make up a number
1675 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1676 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1677 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1678 break;
1679
1680 default:
1681 warn("getrlimit: unimplemented resource %d", resource);
1682 return -EINVAL;
1683 break;
1684 }
1685
1686 rlp.copyOut(tc->getMemProxy());
1687 return 0;
1688}
1689
1690template <class OS>
1691SyscallReturn
1692prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1693 ThreadContext *tc)
1694{
1695 int index = 0;
1696 if (process->getSyscallArg(tc, index) != 0)
1697 {
1698 warn("prlimit: ignoring rlimits for nonzero pid");
1699 return -EPERM;
1700 }
1701 int resource = process->getSyscallArg(tc, index);
1702 Addr n = process->getSyscallArg(tc, index);
1703 if (n != 0)
1704 warn("prlimit: ignoring new rlimit");
1705 Addr o = process->getSyscallArg(tc, index);
1706 if (o != 0)
1707 {
1708 TypedBufferArg<typename OS::rlimit> rlp(
1709 process->getSyscallArg(tc, index));
1710 switch (resource) {
1711 case OS::TGT_RLIMIT_STACK:
1712 // max stack size in bytes: make up a number (8MB for now)
1713 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1714 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1715 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1716 break;
1717 case OS::TGT_RLIMIT_DATA:
1718 // max data segment size in bytes: make up a number
1719 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1720 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1721 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1722 default:
1723 warn("prlimit: unimplemented resource %d", resource);
1724 return -EINVAL;
1725 break;
1726 }
1727 rlp.copyOut(tc->getMemProxy());
1728 }
1729 return 0;
1730}
1731
1732/// Target clock_gettime() function.
1733template <class OS>
1734SyscallReturn
1735clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1736{
1737 int index = 1;
1738 //int clk_id = p->getSyscallArg(tc, index);
1739 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1740
1741 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1742 tp->tv_sec += seconds_since_epoch;
1743 tp->tv_sec = TheISA::htog(tp->tv_sec);
1744 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1745
1746 tp.copyOut(tc->getMemProxy());
1747
1748 return 0;
1749}
1750
1751/// Target clock_getres() function.
1752template <class OS>
1753SyscallReturn
1754clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1755{
1756 int index = 1;
1757 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1758
1759 // Set resolution at ns, which is what clock_gettime() returns
1760 tp->tv_sec = 0;
1761 tp->tv_nsec = 1;
1762
1763 tp.copyOut(tc->getMemProxy());
1764
1765 return 0;
1766}
1767
1768/// Target gettimeofday() handler.
1769template <class OS>
1770SyscallReturn
1771gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1772 ThreadContext *tc)
1773{
1774 int index = 0;
1775 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1776
1777 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1778 tp->tv_sec += seconds_since_epoch;
1779 tp->tv_sec = TheISA::htog(tp->tv_sec);
1780 tp->tv_usec = TheISA::htog(tp->tv_usec);
1781
1782 tp.copyOut(tc->getMemProxy());
1783
1784 return 0;
1785}
1786
1787
1788/// Target utimes() handler.
1789template <class OS>
1790SyscallReturn
1791utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1792 ThreadContext *tc)
1793{
1794 std::string path;
1795
1796 int index = 0;
1797 if (!tc->getMemProxy().tryReadString(path,
1798 process->getSyscallArg(tc, index))) {
1799 return -EFAULT;
1800 }
1801
1802 TypedBufferArg<typename OS::timeval [2]>
1803 tp(process->getSyscallArg(tc, index));
1804 tp.copyIn(tc->getMemProxy());
1805
1806 struct timeval hostTimeval[2];
1807 for (int i = 0; i < 2; ++i) {
1808 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1809 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1810 }
1811
1812 // Adjust path for current working directory
1813 path = process->fullPath(path);
1814
1815 int result = utimes(path.c_str(), hostTimeval);
1816
1817 if (result < 0)
1818 return -errno;
1819
1820 return 0;
1821}
1822
1823template <class OS>
1824SyscallReturn
1825execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1826{
1827 desc->setFlags(0);
1828
1829 int index = 0;
1830 std::string path;
1831 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1832 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1833 return -EFAULT;
1834
1835 if (access(path.c_str(), F_OK) == -1)
1836 return -EACCES;
1837
1838 auto read_in = [](std::vector<std::string> & vect,
1839 SETranslatingPortProxy & mem_proxy,
1840 Addr mem_loc)
1841 {
1842 for (int inc = 0; ; inc++) {
1843 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1844 b.copyIn(mem_proxy);
1845
1846 if (!*(Addr*)b.bufferPtr())
1847 break;
1848
1849 vect.push_back(std::string());
1850 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1851 }
1852 };
1853
1854 /**
1855 * Note that ProcessParams is generated by swig and there are no other
1856 * examples of how to create anything but this default constructor. The
1857 * fields are manually initialized instead of passing parameters to the
1858 * constructor.
1859 */
1860 ProcessParams *pp = new ProcessParams();
1861 pp->executable = path;
1862 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1863 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1864 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1865 read_in(pp->env, mem_proxy, envp_mem_loc);
1866 pp->uid = p->uid();
1867 pp->egid = p->egid();
1868 pp->euid = p->euid();
1869 pp->gid = p->gid();
1870 pp->ppid = p->ppid();
1871 pp->pid = p->pid();
1872 pp->input.assign("cin");
1873 pp->output.assign("cout");
1874 pp->errout.assign("cerr");
1875 pp->cwd.assign(p->getcwd());
1876 pp->system = p->system;
1877 /**
1878 * Prevent process object creation with identical PIDs (which will trip
1879 * a fatal check in Process constructor). The execve call is supposed to
1880 * take over the currently executing process' identity but replace
1881 * whatever it is doing with a new process image. Instead of hijacking
1882 * the process object in the simulator, we create a new process object
1883 * and bind to the previous process' thread below (hijacking the thread).
1884 */
1885 p->system->PIDs.erase(p->pid());
1886 Process *new_p = pp->create();
1887 delete pp;
1888
1889 /**
1890 * Work through the file descriptor array and close any files marked
1891 * close-on-exec.
1892 */
1893 new_p->fds = p->fds;
1894 for (int i = 0; i < new_p->fds->getSize(); i++) {
1895 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1896 if (fdep && fdep->getCOE())
1897 new_p->fds->closeFDEntry(i);
1898 }
1899
1900 *new_p->sigchld = true;
1901
1902 delete p;
1903 tc->clearArchRegs();
1904 tc->setProcessPtr(new_p);
1905 new_p->assignThreadContext(tc->contextId());
1906 new_p->initState();
1907 tc->activate();
1908 TheISA::PCState pcState = tc->pcState();
1909 tc->setNPC(pcState.instAddr());
1910
1911 desc->setFlags(SyscallDesc::SuppressReturnValue);
1912 return 0;
1913}
1914
1915/// Target getrusage() function.
1916template <class OS>
1917SyscallReturn
1918getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1919 ThreadContext *tc)
1920{
1921 int index = 0;
1922 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1923 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1924
1925 rup->ru_utime.tv_sec = 0;
1926 rup->ru_utime.tv_usec = 0;
1927 rup->ru_stime.tv_sec = 0;
1928 rup->ru_stime.tv_usec = 0;
1929 rup->ru_maxrss = 0;
1930 rup->ru_ixrss = 0;
1931 rup->ru_idrss = 0;
1932 rup->ru_isrss = 0;
1933 rup->ru_minflt = 0;
1934 rup->ru_majflt = 0;
1935 rup->ru_nswap = 0;
1936 rup->ru_inblock = 0;
1937 rup->ru_oublock = 0;
1938 rup->ru_msgsnd = 0;
1939 rup->ru_msgrcv = 0;
1940 rup->ru_nsignals = 0;
1941 rup->ru_nvcsw = 0;
1942 rup->ru_nivcsw = 0;
1943
1944 switch (who) {
1945 case OS::TGT_RUSAGE_SELF:
1946 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1947 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1948 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1949 break;
1950
1951 case OS::TGT_RUSAGE_CHILDREN:
1952 // do nothing. We have no child processes, so they take no time.
1953 break;
1954
1955 default:
1956 // don't really handle THREAD or CHILDREN, but just warn and
1957 // plow ahead
1958 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
1959 who);
1960 }
1961
1962 rup.copyOut(tc->getMemProxy());
1963
1964 return 0;
1965}
1966
1967/// Target times() function.
1968template <class OS>
1969SyscallReturn
1970timesFunc(SyscallDesc *desc, int callnum, Process *process,
1971 ThreadContext *tc)
1972{
1973 int index = 0;
1974 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1975
1976 // Fill in the time structure (in clocks)
1977 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1978 bufp->tms_utime = clocks;
1979 bufp->tms_stime = 0;
1980 bufp->tms_cutime = 0;
1981 bufp->tms_cstime = 0;
1982
1983 // Convert to host endianness
1984 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
1985
1986 // Write back
1987 bufp.copyOut(tc->getMemProxy());
1988
1989 // Return clock ticks since system boot
1990 return clocks;
1991}
1992
1993/// Target time() function.
1994template <class OS>
1995SyscallReturn
1996timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1997{
1998 typename OS::time_t sec, usec;
1999 getElapsedTimeMicro(sec, usec);
2000 sec += seconds_since_epoch;
2001
2002 int index = 0;
2003 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2004 if (taddr != 0) {
2005 typename OS::time_t t = sec;
2006 t = TheISA::htog(t);
2007 SETranslatingPortProxy &p = tc->getMemProxy();
2008 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2009 }
2010 return sec;
2011}
2012
2013template <class OS>
2014SyscallReturn
2015tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2016{
2017 int index = 0;
2018 int tgid = process->getSyscallArg(tc, index);
2019 int tid = process->getSyscallArg(tc, index);
2020 int sig = process->getSyscallArg(tc, index);
2021
2022 /**
2023 * This system call is intended to allow killing a specific thread
2024 * within an arbitrary thread group if sanctioned with permission checks.
2025 * It's usually true that threads share the termination signal as pointed
2026 * out by the pthread_kill man page and this seems to be the intended
2027 * usage. Due to this being an emulated environment, assume the following:
2028 * Threads are allowed to call tgkill because the EUID for all threads
2029 * should be the same. There is no signal handling mechanism for kernel
2030 * registration of signal handlers since signals are poorly supported in
2031 * emulation mode. Since signal handlers cannot be registered, all
2032 * threads within in a thread group must share the termination signal.
2033 * We never exhaust PIDs so there's no chance of finding the wrong one
2034 * due to PID rollover.
2035 */
2036
2037 System *sys = tc->getSystemPtr();
2038 Process *tgt_proc = nullptr;
2039 for (int i = 0; i < sys->numContexts(); i++) {
2040 Process *temp = sys->threadContexts[i]->getProcessPtr();
2041 if (temp->pid() == tid) {
2042 tgt_proc = temp;
2043 break;
2044 }
2045 }
2046
2047 if (sig != 0 || sig != OS::TGT_SIGABRT)
2048 return -EINVAL;
2049
2050 if (tgt_proc == nullptr)
2051 return -ESRCH;
2052
2053 if (tgid != -1 && tgt_proc->tgid() != tgid)
2054 return -ESRCH;
2055
2056 if (sig == OS::TGT_SIGABRT)
2057 exitGroupFunc(desc, 252, process, tc);
2058
2059 return 0;
2060}
2061
2062
2063#endif // __SIM_SYSCALL_EMUL_HH__
100#include "base/trace.hh"
101#include "base/types.hh"
102#include "config/the_isa.hh"
103#include "cpu/base.hh"
104#include "cpu/thread_context.hh"
105#include "mem/page_table.hh"
106#include "params/Process.hh"
107#include "sim/emul_driver.hh"
108#include "sim/futex_map.hh"
109#include "sim/process.hh"
110#include "sim/syscall_debug_macros.hh"
111#include "sim/syscall_desc.hh"
112#include "sim/syscall_emul_buf.hh"
113#include "sim/syscall_return.hh"
114
115//////////////////////////////////////////////////////////////////////
116//
117// The following emulation functions are generic enough that they
118// don't need to be recompiled for different emulated OS's. They are
119// defined in sim/syscall_emul.cc.
120//
121//////////////////////////////////////////////////////////////////////
122
123
124/// Handler for unimplemented syscalls that we haven't thought about.
125SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
126 Process *p, ThreadContext *tc);
127
128/// Handler for unimplemented syscalls that we never intend to
129/// implement (signal handling, etc.) and should not affect the correct
130/// behavior of the program. Print a warning only if the appropriate
131/// trace flag is enabled. Return success to the target program.
132SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
133 Process *p, ThreadContext *tc);
134
135// Target fallocateFunc() handler.
136SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
137 Process *p, ThreadContext *tc);
138
139/// Target exit() handler: terminate current context.
140SyscallReturn exitFunc(SyscallDesc *desc, int num,
141 Process *p, ThreadContext *tc);
142
143/// Target exit_group() handler: terminate simulation. (exit all threads)
144SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
145 Process *p, ThreadContext *tc);
146
147/// Target set_tid_address() handler.
148SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
149 Process *p, ThreadContext *tc);
150
151/// Target getpagesize() handler.
152SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
153 Process *p, ThreadContext *tc);
154
155/// Target brk() handler: set brk address.
156SyscallReturn brkFunc(SyscallDesc *desc, int num,
157 Process *p, ThreadContext *tc);
158
159/// Target close() handler.
160SyscallReturn closeFunc(SyscallDesc *desc, int num,
161 Process *p, ThreadContext *tc);
162
163// Target read() handler.
164SyscallReturn readFunc(SyscallDesc *desc, int num,
165 Process *p, ThreadContext *tc);
166
167/// Target write() handler.
168SyscallReturn writeFunc(SyscallDesc *desc, int num,
169 Process *p, ThreadContext *tc);
170
171/// Target lseek() handler.
172SyscallReturn lseekFunc(SyscallDesc *desc, int num,
173 Process *p, ThreadContext *tc);
174
175/// Target _llseek() handler.
176SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
177 Process *p, ThreadContext *tc);
178
179/// Target munmap() handler.
180SyscallReturn munmapFunc(SyscallDesc *desc, int num,
181 Process *p, ThreadContext *tc);
182
183/// Target gethostname() handler.
184SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
185 Process *p, ThreadContext *tc);
186
187/// Target getcwd() handler.
188SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
189 Process *p, ThreadContext *tc);
190
191/// Target readlink() handler.
192SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
193 Process *p, ThreadContext *tc,
194 int index = 0);
195SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
196 Process *p, ThreadContext *tc);
197
198/// Target unlink() handler.
199SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
200 Process *p, ThreadContext *tc,
201 int index);
202SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
203 Process *p, ThreadContext *tc);
204
205/// Target mkdir() handler.
206SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
207 Process *p, ThreadContext *tc);
208
209/// Target rename() handler.
210SyscallReturn renameFunc(SyscallDesc *desc, int num,
211 Process *p, ThreadContext *tc);
212
213
214/// Target truncate() handler.
215SyscallReturn truncateFunc(SyscallDesc *desc, int num,
216 Process *p, ThreadContext *tc);
217
218
219/// Target ftruncate() handler.
220SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
221 Process *p, ThreadContext *tc);
222
223
224/// Target truncate64() handler.
225SyscallReturn truncate64Func(SyscallDesc *desc, int num,
226 Process *p, ThreadContext *tc);
227
228/// Target ftruncate64() handler.
229SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
230 Process *p, ThreadContext *tc);
231
232
233/// Target umask() handler.
234SyscallReturn umaskFunc(SyscallDesc *desc, int num,
235 Process *p, ThreadContext *tc);
236
237/// Target gettid() handler.
238SyscallReturn gettidFunc(SyscallDesc *desc, int num,
239 Process *p, ThreadContext *tc);
240
241/// Target chown() handler.
242SyscallReturn chownFunc(SyscallDesc *desc, int num,
243 Process *p, ThreadContext *tc);
244
245/// Target setpgid() handler.
246SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
247 Process *p, ThreadContext *tc);
248
249/// Target fchown() handler.
250SyscallReturn fchownFunc(SyscallDesc *desc, int num,
251 Process *p, ThreadContext *tc);
252
253/// Target dup() handler.
254SyscallReturn dupFunc(SyscallDesc *desc, int num,
255 Process *process, ThreadContext *tc);
256
257/// Target dup2() handler.
258SyscallReturn dup2Func(SyscallDesc *desc, int num,
259 Process *process, ThreadContext *tc);
260
261/// Target fcntl() handler.
262SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
263 Process *process, ThreadContext *tc);
264
265/// Target fcntl64() handler.
266SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
267 Process *process, ThreadContext *tc);
268
269/// Target setuid() handler.
270SyscallReturn setuidFunc(SyscallDesc *desc, int num,
271 Process *p, ThreadContext *tc);
272
273/// Target pipe() handler.
274SyscallReturn pipeFunc(SyscallDesc *desc, int num,
275 Process *p, ThreadContext *tc);
276
277/// Internal pipe() handler.
278SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
279 ThreadContext *tc, bool pseudoPipe);
280
281/// Target getpid() handler.
282SyscallReturn getpidFunc(SyscallDesc *desc, int num,
283 Process *p, ThreadContext *tc);
284
285/// Target getuid() handler.
286SyscallReturn getuidFunc(SyscallDesc *desc, int num,
287 Process *p, ThreadContext *tc);
288
289/// Target getgid() handler.
290SyscallReturn getgidFunc(SyscallDesc *desc, int num,
291 Process *p, ThreadContext *tc);
292
293/// Target getppid() handler.
294SyscallReturn getppidFunc(SyscallDesc *desc, int num,
295 Process *p, ThreadContext *tc);
296
297/// Target geteuid() handler.
298SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
299 Process *p, ThreadContext *tc);
300
301/// Target getegid() handler.
302SyscallReturn getegidFunc(SyscallDesc *desc, int num,
303 Process *p, ThreadContext *tc);
304
305/// Target access() handler
306SyscallReturn accessFunc(SyscallDesc *desc, int num,
307 Process *p, ThreadContext *tc);
308SyscallReturn accessFunc(SyscallDesc *desc, int num,
309 Process *p, ThreadContext *tc,
310 int index);
311
312/// Futex system call
313/// Implemented by Daniel Sanchez
314/// Used by printf's in multi-threaded apps
315template <class OS>
316SyscallReturn
317futexFunc(SyscallDesc *desc, int callnum, Process *process,
318 ThreadContext *tc)
319{
320 using namespace std;
321
322 int index = 0;
323 Addr uaddr = process->getSyscallArg(tc, index);
324 int op = process->getSyscallArg(tc, index);
325 int val = process->getSyscallArg(tc, index);
326
327 /*
328 * Unsupported option that does not affect the correctness of the
329 * application. This is a performance optimization utilized by Linux.
330 */
331 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
332
333 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
334
335 if (OS::TGT_FUTEX_WAIT == op) {
336 // Ensure futex system call accessed atomically.
337 BufferArg buf(uaddr, sizeof(int));
338 buf.copyIn(tc->getMemProxy());
339 int mem_val = *(int*)buf.bufferPtr();
340
341 /*
342 * The value in memory at uaddr is not equal with the expected val
343 * (a different thread must have changed it before the system call was
344 * invoked). In this case, we need to throw an error.
345 */
346 if (val != mem_val)
347 return -OS::TGT_EWOULDBLOCK;
348
349 futex_map.suspend(uaddr, process->tgid(), tc);
350
351 return 0;
352 } else if (OS::TGT_FUTEX_WAKE == op) {
353 return futex_map.wakeup(uaddr, process->tgid(), val);
354 }
355
356 warn("futex: op %d not implemented; ignoring.", op);
357 return -ENOSYS;
358}
359
360
361/// Pseudo Funcs - These functions use a different return convension,
362/// returning a second value in a register other than the normal return register
363SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
364 Process *process, ThreadContext *tc);
365
366/// Target getpidPseudo() handler.
367SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
368 Process *p, ThreadContext *tc);
369
370/// Target getuidPseudo() handler.
371SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
372 Process *p, ThreadContext *tc);
373
374/// Target getgidPseudo() handler.
375SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
376 Process *p, ThreadContext *tc);
377
378
379/// A readable name for 1,000,000, for converting microseconds to seconds.
380const int one_million = 1000000;
381/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
382const int one_billion = 1000000000;
383
384/// Approximate seconds since the epoch (1/1/1970). About a billion,
385/// by my reckoning. We want to keep this a constant (not use the
386/// real-world time) to keep simulations repeatable.
387const unsigned seconds_since_epoch = 1000000000;
388
389/// Helper function to convert current elapsed time to seconds and
390/// microseconds.
391template <class T1, class T2>
392void
393getElapsedTimeMicro(T1 &sec, T2 &usec)
394{
395 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
396 sec = elapsed_usecs / one_million;
397 usec = elapsed_usecs % one_million;
398}
399
400/// Helper function to convert current elapsed time to seconds and
401/// nanoseconds.
402template <class T1, class T2>
403void
404getElapsedTimeNano(T1 &sec, T2 &nsec)
405{
406 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
407 sec = elapsed_nsecs / one_billion;
408 nsec = elapsed_nsecs % one_billion;
409}
410
411//////////////////////////////////////////////////////////////////////
412//
413// The following emulation functions are generic, but need to be
414// templated to account for differences in types, constants, etc.
415//
416//////////////////////////////////////////////////////////////////////
417
418 typedef struct statfs hst_statfs;
419#if NO_STAT64
420 typedef struct stat hst_stat;
421 typedef struct stat hst_stat64;
422#else
423 typedef struct stat hst_stat;
424 typedef struct stat64 hst_stat64;
425#endif
426
427//// Helper function to convert a host stat buffer to a target stat
428//// buffer. Also copies the target buffer out to the simulated
429//// memory space. Used by stat(), fstat(), and lstat().
430
431template <typename target_stat, typename host_stat>
432void
433convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
434{
435 using namespace TheISA;
436
437 if (fakeTTY)
438 tgt->st_dev = 0xA;
439 else
440 tgt->st_dev = host->st_dev;
441 tgt->st_dev = TheISA::htog(tgt->st_dev);
442 tgt->st_ino = host->st_ino;
443 tgt->st_ino = TheISA::htog(tgt->st_ino);
444 tgt->st_mode = host->st_mode;
445 if (fakeTTY) {
446 // Claim to be a character device
447 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
448 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
449 }
450 tgt->st_mode = TheISA::htog(tgt->st_mode);
451 tgt->st_nlink = host->st_nlink;
452 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
453 tgt->st_uid = host->st_uid;
454 tgt->st_uid = TheISA::htog(tgt->st_uid);
455 tgt->st_gid = host->st_gid;
456 tgt->st_gid = TheISA::htog(tgt->st_gid);
457 if (fakeTTY)
458 tgt->st_rdev = 0x880d;
459 else
460 tgt->st_rdev = host->st_rdev;
461 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
462 tgt->st_size = host->st_size;
463 tgt->st_size = TheISA::htog(tgt->st_size);
464 tgt->st_atimeX = host->st_atime;
465 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
466 tgt->st_mtimeX = host->st_mtime;
467 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
468 tgt->st_ctimeX = host->st_ctime;
469 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
470 // Force the block size to be 8KB. This helps to ensure buffered io works
471 // consistently across different hosts.
472 tgt->st_blksize = 0x2000;
473 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
474 tgt->st_blocks = host->st_blocks;
475 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
476}
477
478// Same for stat64
479
480template <typename target_stat, typename host_stat64>
481void
482convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
483{
484 using namespace TheISA;
485
486 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
487#if defined(STAT_HAVE_NSEC)
488 tgt->st_atime_nsec = host->st_atime_nsec;
489 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
490 tgt->st_mtime_nsec = host->st_mtime_nsec;
491 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
492 tgt->st_ctime_nsec = host->st_ctime_nsec;
493 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
494#else
495 tgt->st_atime_nsec = 0;
496 tgt->st_mtime_nsec = 0;
497 tgt->st_ctime_nsec = 0;
498#endif
499}
500
501// Here are a couple of convenience functions
502template<class OS>
503void
504copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
505 hst_stat *host, bool fakeTTY = false)
506{
507 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
508 tgt_stat_buf tgt(addr);
509 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
510 tgt.copyOut(mem);
511}
512
513template<class OS>
514void
515copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
516 hst_stat64 *host, bool fakeTTY = false)
517{
518 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
519 tgt_stat_buf tgt(addr);
520 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
521 tgt.copyOut(mem);
522}
523
524template <class OS>
525void
526copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
527 hst_statfs *host)
528{
529 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
530
531 tgt->f_type = TheISA::htog(host->f_type);
532#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
533 tgt->f_bsize = TheISA::htog(host->f_iosize);
534#else
535 tgt->f_bsize = TheISA::htog(host->f_bsize);
536#endif
537 tgt->f_blocks = TheISA::htog(host->f_blocks);
538 tgt->f_bfree = TheISA::htog(host->f_bfree);
539 tgt->f_bavail = TheISA::htog(host->f_bavail);
540 tgt->f_files = TheISA::htog(host->f_files);
541 tgt->f_ffree = TheISA::htog(host->f_ffree);
542 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
543#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
544 tgt->f_namelen = TheISA::htog(host->f_namemax);
545 tgt->f_frsize = TheISA::htog(host->f_bsize);
546#elif defined(__APPLE__)
547 tgt->f_namelen = 0;
548 tgt->f_frsize = 0;
549#else
550 tgt->f_namelen = TheISA::htog(host->f_namelen);
551 tgt->f_frsize = TheISA::htog(host->f_frsize);
552#endif
553#if defined(__linux__)
554 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
555#else
556 /*
557 * The fields are different sizes per OS. Don't bother with
558 * f_spare or f_reserved on non-Linux for now.
559 */
560 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
561#endif
562
563 tgt.copyOut(mem);
564}
565
566/// Target ioctl() handler. For the most part, programs call ioctl()
567/// only to find out if their stdout is a tty, to determine whether to
568/// do line or block buffering. We always claim that output fds are
569/// not TTYs to provide repeatable results.
570template <class OS>
571SyscallReturn
572ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
573{
574 int index = 0;
575 int tgt_fd = p->getSyscallArg(tc, index);
576 unsigned req = p->getSyscallArg(tc, index);
577
578 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
579
580 if (OS::isTtyReq(req))
581 return -ENOTTY;
582
583 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
584 if (!dfdp)
585 return -EBADF;
586
587 /**
588 * If the driver is valid, issue the ioctl through it. Otherwise,
589 * there's an implicit assumption that the device is a TTY type and we
590 * return that we do not have a valid TTY.
591 */
592 EmulatedDriver *emul_driver = dfdp->getDriver();
593 if (emul_driver)
594 return emul_driver->ioctl(p, tc, req);
595
596 /**
597 * For lack of a better return code, return ENOTTY. Ideally, we should
598 * return something better here, but at least we issue the warning.
599 */
600 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
601 tgt_fd, req, tc->pcState());
602 return -ENOTTY;
603}
604
605template <class OS>
606SyscallReturn
607openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
608 bool isopenat)
609{
610 int index = 0;
611 int tgt_dirfd = -1;
612
613 /**
614 * If using the openat variant, read in the target directory file
615 * descriptor from the simulated process.
616 */
617 if (isopenat)
618 tgt_dirfd = p->getSyscallArg(tc, index);
619
620 /**
621 * Retrieve the simulated process' memory proxy and then read in the path
622 * string from that memory space into the host's working memory space.
623 */
624 std::string path;
625 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
626 return -EFAULT;
627
628#ifdef __CYGWIN32__
629 int host_flags = O_BINARY;
630#else
631 int host_flags = 0;
632#endif
633 /**
634 * Translate target flags into host flags. Flags exist which are not
635 * ported between architectures which can cause check failures.
636 */
637 int tgt_flags = p->getSyscallArg(tc, index);
638 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
639 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
640 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
641 host_flags |= OS::openFlagTable[i].hostFlag;
642 }
643 }
644 if (tgt_flags) {
645 warn("open%s: cannot decode flags 0x%x",
646 isopenat ? "at" : "", tgt_flags);
647 }
648#ifdef __CYGWIN32__
649 host_flags |= O_BINARY;
650#endif
651
652 int mode = p->getSyscallArg(tc, index);
653
654 /**
655 * If the simulated process called open or openat with AT_FDCWD specified,
656 * take the current working directory value which was passed into the
657 * process class as a Python parameter and append the current path to
658 * create a full path.
659 * Otherwise, openat with a valid target directory file descriptor has
660 * been called. If the path option, which was passed in as a parameter,
661 * is not absolute, retrieve the directory file descriptor's path and
662 * prepend it to the path passed in as a parameter.
663 * In every case, we should have a full path (which is relevant to the
664 * host) to work with after this block has been passed.
665 */
666 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
667 path = p->fullPath(path);
668 } else if (!startswith(path, "/")) {
669 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
670 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
671 if (!ffdp)
672 return -EBADF;
673 path.insert(0, ffdp->getFileName());
674 }
675
676 /**
677 * Since this is an emulated environment, we create pseudo file
678 * descriptors for device requests that have been registered with
679 * the process class through Python; this allows us to create a file
680 * descriptor for subsequent ioctl or mmap calls.
681 */
682 if (startswith(path, "/dev/")) {
683 std::string filename = path.substr(strlen("/dev/"));
684 EmulatedDriver *drv = p->findDriver(filename);
685 if (drv) {
686 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
687 "driver open with path[%s]\n",
688 isopenat ? "at" : "", path.c_str());
689 return drv->open(p, tc, mode, host_flags);
690 }
691 /**
692 * Fall through here for pass through to host devices, such
693 * as /dev/zero
694 */
695 }
696
697 /**
698 * Some special paths and files cannot be called on the host and need
699 * to be handled as special cases inside the simulator.
700 * If the full path that was created above does not match any of the
701 * special cases, pass it through to the open call on the host to let
702 * the host open the file on our behalf.
703 * If the host cannot open the file, return the host's error code back
704 * through the system call to the simulated process.
705 */
706 int sim_fd = -1;
707 std::vector<std::string> special_paths =
708 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
709 for (auto entry : special_paths) {
710 if (startswith(path, entry))
711 sim_fd = OS::openSpecialFile(path, p, tc);
712 }
713 if (sim_fd == -1) {
714 sim_fd = open(path.c_str(), host_flags, mode);
715 }
716 if (sim_fd == -1) {
717 int local = -errno;
718 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
719 isopenat ? "at" : "", path.c_str());
720 return local;
721 }
722
723 /**
724 * The file was opened successfully and needs to be recorded in the
725 * process' file descriptor array so that it can be retrieved later.
726 * The target file descriptor that is chosen will be the lowest unused
727 * file descriptor.
728 * Return the indirect target file descriptor back to the simulated
729 * process to act as a handle for the opened file.
730 */
731 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
732 int tgt_fd = p->fds->allocFD(ffdp);
733 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
734 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
735 return tgt_fd;
736}
737
738/// Target open() handler.
739template <class OS>
740SyscallReturn
741openFunc(SyscallDesc *desc, int callnum, Process *process,
742 ThreadContext *tc)
743{
744 return openImpl<OS>(desc, callnum, process, tc, false);
745}
746
747/// Target openat() handler.
748template <class OS>
749SyscallReturn
750openatFunc(SyscallDesc *desc, int callnum, Process *process,
751 ThreadContext *tc)
752{
753 return openImpl<OS>(desc, callnum, process, tc, true);
754}
755
756/// Target unlinkat() handler.
757template <class OS>
758SyscallReturn
759unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
760 ThreadContext *tc)
761{
762 int index = 0;
763 int dirfd = process->getSyscallArg(tc, index);
764 if (dirfd != OS::TGT_AT_FDCWD)
765 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
766
767 return unlinkHelper(desc, callnum, process, tc, 1);
768}
769
770/// Target facessat() handler
771template <class OS>
772SyscallReturn
773faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
774 ThreadContext *tc)
775{
776 int index = 0;
777 int dirfd = process->getSyscallArg(tc, index);
778 if (dirfd != OS::TGT_AT_FDCWD)
779 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
780 return accessFunc(desc, callnum, process, tc, 1);
781}
782
783/// Target readlinkat() handler
784template <class OS>
785SyscallReturn
786readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
787 ThreadContext *tc)
788{
789 int index = 0;
790 int dirfd = process->getSyscallArg(tc, index);
791 if (dirfd != OS::TGT_AT_FDCWD)
792 warn("openat: first argument not AT_FDCWD; unlikely to work");
793 return readlinkFunc(desc, callnum, process, tc, 1);
794}
795
796/// Target renameat() handler.
797template <class OS>
798SyscallReturn
799renameatFunc(SyscallDesc *desc, int callnum, Process *process,
800 ThreadContext *tc)
801{
802 int index = 0;
803
804 int olddirfd = process->getSyscallArg(tc, index);
805 if (olddirfd != OS::TGT_AT_FDCWD)
806 warn("renameat: first argument not AT_FDCWD; unlikely to work");
807
808 std::string old_name;
809
810 if (!tc->getMemProxy().tryReadString(old_name,
811 process->getSyscallArg(tc, index)))
812 return -EFAULT;
813
814 int newdirfd = process->getSyscallArg(tc, index);
815 if (newdirfd != OS::TGT_AT_FDCWD)
816 warn("renameat: third argument not AT_FDCWD; unlikely to work");
817
818 std::string new_name;
819
820 if (!tc->getMemProxy().tryReadString(new_name,
821 process->getSyscallArg(tc, index)))
822 return -EFAULT;
823
824 // Adjust path for current working directory
825 old_name = process->fullPath(old_name);
826 new_name = process->fullPath(new_name);
827
828 int result = rename(old_name.c_str(), new_name.c_str());
829 return (result == -1) ? -errno : result;
830}
831
832/// Target sysinfo() handler.
833template <class OS>
834SyscallReturn
835sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
836 ThreadContext *tc)
837{
838
839 int index = 0;
840 TypedBufferArg<typename OS::tgt_sysinfo>
841 sysinfo(process->getSyscallArg(tc, index));
842
843 sysinfo->uptime = seconds_since_epoch;
844 sysinfo->totalram = process->system->memSize();
845 sysinfo->mem_unit = 1;
846
847 sysinfo.copyOut(tc->getMemProxy());
848
849 return 0;
850}
851
852/// Target chmod() handler.
853template <class OS>
854SyscallReturn
855chmodFunc(SyscallDesc *desc, int callnum, Process *process,
856 ThreadContext *tc)
857{
858 std::string path;
859
860 int index = 0;
861 if (!tc->getMemProxy().tryReadString(path,
862 process->getSyscallArg(tc, index))) {
863 return -EFAULT;
864 }
865
866 uint32_t mode = process->getSyscallArg(tc, index);
867 mode_t hostMode = 0;
868
869 // XXX translate mode flags via OS::something???
870 hostMode = mode;
871
872 // Adjust path for current working directory
873 path = process->fullPath(path);
874
875 // do the chmod
876 int result = chmod(path.c_str(), hostMode);
877 if (result < 0)
878 return -errno;
879
880 return 0;
881}
882
883
884/// Target fchmod() handler.
885template <class OS>
886SyscallReturn
887fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
888{
889 int index = 0;
890 int tgt_fd = p->getSyscallArg(tc, index);
891 uint32_t mode = p->getSyscallArg(tc, index);
892
893 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
894 if (!ffdp)
895 return -EBADF;
896 int sim_fd = ffdp->getSimFD();
897
898 mode_t hostMode = mode;
899
900 int result = fchmod(sim_fd, hostMode);
901
902 return (result < 0) ? -errno : 0;
903}
904
905/// Target mremap() handler.
906template <class OS>
907SyscallReturn
908mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
909{
910 int index = 0;
911 Addr start = process->getSyscallArg(tc, index);
912 uint64_t old_length = process->getSyscallArg(tc, index);
913 uint64_t new_length = process->getSyscallArg(tc, index);
914 uint64_t flags = process->getSyscallArg(tc, index);
915 uint64_t provided_address = 0;
916 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
917
918 if (use_provided_address)
919 provided_address = process->getSyscallArg(tc, index);
920
921 if ((start % TheISA::PageBytes != 0) ||
922 (provided_address % TheISA::PageBytes != 0)) {
923 warn("mremap failing: arguments not page aligned");
924 return -EINVAL;
925 }
926
927 new_length = roundUp(new_length, TheISA::PageBytes);
928
929 if (new_length > old_length) {
930 std::shared_ptr<MemState> mem_state = process->memState;
931 Addr mmap_end = mem_state->getMmapEnd();
932
933 if ((start + old_length) == mmap_end &&
934 (!use_provided_address || provided_address == start)) {
935 // This case cannot occur when growing downward, as
936 // start is greater than or equal to mmap_end.
937 uint64_t diff = new_length - old_length;
938 process->allocateMem(mmap_end, diff);
939 mem_state->setMmapEnd(mmap_end + diff);
940 return start;
941 } else {
942 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
943 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
944 return -ENOMEM;
945 } else {
946 uint64_t new_start = provided_address;
947 if (!use_provided_address) {
948 new_start = process->mmapGrowsDown() ?
949 mmap_end - new_length : mmap_end;
950 mmap_end = process->mmapGrowsDown() ?
951 new_start : mmap_end + new_length;
952 mem_state->setMmapEnd(mmap_end);
953 }
954
955 process->pTable->remap(start, old_length, new_start);
956 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
957 new_start, new_start + new_length,
958 new_length - old_length);
959 // add on the remaining unallocated pages
960 process->allocateMem(new_start + old_length,
961 new_length - old_length,
962 use_provided_address /* clobber */);
963 if (use_provided_address &&
964 ((new_start + new_length > mem_state->getMmapEnd() &&
965 !process->mmapGrowsDown()) ||
966 (new_start < mem_state->getMmapEnd() &&
967 process->mmapGrowsDown()))) {
968 // something fishy going on here, at least notify the user
969 // @todo: increase mmap_end?
970 warn("mmap region limit exceeded with MREMAP_FIXED\n");
971 }
972 warn("returning %08p as start\n", new_start);
973 return new_start;
974 }
975 }
976 } else {
977 if (use_provided_address && provided_address != start)
978 process->pTable->remap(start, new_length, provided_address);
979 process->pTable->unmap(start + new_length, old_length - new_length);
980 return use_provided_address ? provided_address : start;
981 }
982}
983
984/// Target stat() handler.
985template <class OS>
986SyscallReturn
987statFunc(SyscallDesc *desc, int callnum, Process *process,
988 ThreadContext *tc)
989{
990 std::string path;
991
992 int index = 0;
993 if (!tc->getMemProxy().tryReadString(path,
994 process->getSyscallArg(tc, index))) {
995 return -EFAULT;
996 }
997 Addr bufPtr = process->getSyscallArg(tc, index);
998
999 // Adjust path for current working directory
1000 path = process->fullPath(path);
1001
1002 struct stat hostBuf;
1003 int result = stat(path.c_str(), &hostBuf);
1004
1005 if (result < 0)
1006 return -errno;
1007
1008 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1009
1010 return 0;
1011}
1012
1013
1014/// Target stat64() handler.
1015template <class OS>
1016SyscallReturn
1017stat64Func(SyscallDesc *desc, int callnum, Process *process,
1018 ThreadContext *tc)
1019{
1020 std::string path;
1021
1022 int index = 0;
1023 if (!tc->getMemProxy().tryReadString(path,
1024 process->getSyscallArg(tc, index)))
1025 return -EFAULT;
1026 Addr bufPtr = process->getSyscallArg(tc, index);
1027
1028 // Adjust path for current working directory
1029 path = process->fullPath(path);
1030
1031#if NO_STAT64
1032 struct stat hostBuf;
1033 int result = stat(path.c_str(), &hostBuf);
1034#else
1035 struct stat64 hostBuf;
1036 int result = stat64(path.c_str(), &hostBuf);
1037#endif
1038
1039 if (result < 0)
1040 return -errno;
1041
1042 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1043
1044 return 0;
1045}
1046
1047
1048/// Target fstatat64() handler.
1049template <class OS>
1050SyscallReturn
1051fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1052 ThreadContext *tc)
1053{
1054 int index = 0;
1055 int dirfd = process->getSyscallArg(tc, index);
1056 if (dirfd != OS::TGT_AT_FDCWD)
1057 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1058
1059 std::string path;
1060 if (!tc->getMemProxy().tryReadString(path,
1061 process->getSyscallArg(tc, index)))
1062 return -EFAULT;
1063 Addr bufPtr = process->getSyscallArg(tc, index);
1064
1065 // Adjust path for current working directory
1066 path = process->fullPath(path);
1067
1068#if NO_STAT64
1069 struct stat hostBuf;
1070 int result = stat(path.c_str(), &hostBuf);
1071#else
1072 struct stat64 hostBuf;
1073 int result = stat64(path.c_str(), &hostBuf);
1074#endif
1075
1076 if (result < 0)
1077 return -errno;
1078
1079 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1080
1081 return 0;
1082}
1083
1084
1085/// Target fstat64() handler.
1086template <class OS>
1087SyscallReturn
1088fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1089{
1090 int index = 0;
1091 int tgt_fd = p->getSyscallArg(tc, index);
1092 Addr bufPtr = p->getSyscallArg(tc, index);
1093
1094 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1095 if (!ffdp)
1096 return -EBADF;
1097 int sim_fd = ffdp->getSimFD();
1098
1099#if NO_STAT64
1100 struct stat hostBuf;
1101 int result = fstat(sim_fd, &hostBuf);
1102#else
1103 struct stat64 hostBuf;
1104 int result = fstat64(sim_fd, &hostBuf);
1105#endif
1106
1107 if (result < 0)
1108 return -errno;
1109
1110 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1111
1112 return 0;
1113}
1114
1115
1116/// Target lstat() handler.
1117template <class OS>
1118SyscallReturn
1119lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1120 ThreadContext *tc)
1121{
1122 std::string path;
1123
1124 int index = 0;
1125 if (!tc->getMemProxy().tryReadString(path,
1126 process->getSyscallArg(tc, index))) {
1127 return -EFAULT;
1128 }
1129 Addr bufPtr = process->getSyscallArg(tc, index);
1130
1131 // Adjust path for current working directory
1132 path = process->fullPath(path);
1133
1134 struct stat hostBuf;
1135 int result = lstat(path.c_str(), &hostBuf);
1136
1137 if (result < 0)
1138 return -errno;
1139
1140 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1141
1142 return 0;
1143}
1144
1145/// Target lstat64() handler.
1146template <class OS>
1147SyscallReturn
1148lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1149 ThreadContext *tc)
1150{
1151 std::string path;
1152
1153 int index = 0;
1154 if (!tc->getMemProxy().tryReadString(path,
1155 process->getSyscallArg(tc, index))) {
1156 return -EFAULT;
1157 }
1158 Addr bufPtr = process->getSyscallArg(tc, index);
1159
1160 // Adjust path for current working directory
1161 path = process->fullPath(path);
1162
1163#if NO_STAT64
1164 struct stat hostBuf;
1165 int result = lstat(path.c_str(), &hostBuf);
1166#else
1167 struct stat64 hostBuf;
1168 int result = lstat64(path.c_str(), &hostBuf);
1169#endif
1170
1171 if (result < 0)
1172 return -errno;
1173
1174 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1175
1176 return 0;
1177}
1178
1179/// Target fstat() handler.
1180template <class OS>
1181SyscallReturn
1182fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1183{
1184 int index = 0;
1185 int tgt_fd = p->getSyscallArg(tc, index);
1186 Addr bufPtr = p->getSyscallArg(tc, index);
1187
1188 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1189
1190 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1191 if (!ffdp)
1192 return -EBADF;
1193 int sim_fd = ffdp->getSimFD();
1194
1195 struct stat hostBuf;
1196 int result = fstat(sim_fd, &hostBuf);
1197
1198 if (result < 0)
1199 return -errno;
1200
1201 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1202
1203 return 0;
1204}
1205
1206
1207/// Target statfs() handler.
1208template <class OS>
1209SyscallReturn
1210statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1211 ThreadContext *tc)
1212{
1213#if NO_STATFS
1214 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1215#else
1216 std::string path;
1217
1218 int index = 0;
1219 if (!tc->getMemProxy().tryReadString(path,
1220 process->getSyscallArg(tc, index))) {
1221 return -EFAULT;
1222 }
1223 Addr bufPtr = process->getSyscallArg(tc, index);
1224
1225 // Adjust path for current working directory
1226 path = process->fullPath(path);
1227
1228 struct statfs hostBuf;
1229 int result = statfs(path.c_str(), &hostBuf);
1230
1231 if (result < 0)
1232 return -errno;
1233
1234 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1235#endif
1236 return 0;
1237}
1238
1239template <class OS>
1240SyscallReturn
1241cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1242{
1243 int index = 0;
1244 TheISA::IntReg flags = p->getSyscallArg(tc, index);
1245 TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1246 Addr ptidPtr = p->getSyscallArg(tc, index);
1247 Addr ctidPtr = p->getSyscallArg(tc, index);
1248 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1249
1250 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1251 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1252 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1253 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1254 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1255 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1256 return -EINVAL;
1257
1258 ThreadContext *ctc;
1259 if (!(ctc = p->findFreeContext()))
1260 fatal("clone: no spare thread context in system");
1261
1262 /**
1263 * Note that ProcessParams is generated by swig and there are no other
1264 * examples of how to create anything but this default constructor. The
1265 * fields are manually initialized instead of passing parameters to the
1266 * constructor.
1267 */
1268 ProcessParams *pp = new ProcessParams();
1269 pp->executable.assign(*(new std::string(p->progName())));
1270 pp->cmd.push_back(*(new std::string(p->progName())));
1271 pp->system = p->system;
1272 pp->cwd.assign(p->getcwd());
1273 pp->input.assign("stdin");
1274 pp->output.assign("stdout");
1275 pp->errout.assign("stderr");
1276 pp->uid = p->uid();
1277 pp->euid = p->euid();
1278 pp->gid = p->gid();
1279 pp->egid = p->egid();
1280
1281 /* Find the first free PID that's less than the maximum */
1282 std::set<int> const& pids = p->system->PIDs;
1283 int temp_pid = *pids.begin();
1284 do {
1285 temp_pid++;
1286 } while (pids.find(temp_pid) != pids.end());
1287 if (temp_pid >= System::maxPID)
1288 fatal("temp_pid is too large: %d", temp_pid);
1289
1290 pp->pid = temp_pid;
1291 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1292 Process *cp = pp->create();
1293 delete pp;
1294
1295 Process *owner = ctc->getProcessPtr();
1296 ctc->setProcessPtr(cp);
1297 cp->assignThreadContext(ctc->contextId());
1298 owner->revokeThreadContext(ctc->contextId());
1299
1300 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1301 BufferArg ptidBuf(ptidPtr, sizeof(long));
1302 long *ptid = (long *)ptidBuf.bufferPtr();
1303 *ptid = cp->pid();
1304 ptidBuf.copyOut(tc->getMemProxy());
1305 }
1306
1307 cp->initState();
1308 p->clone(tc, ctc, cp, flags);
1309
1310 if (flags & OS::TGT_CLONE_THREAD) {
1311 delete cp->sigchld;
1312 cp->sigchld = p->sigchld;
1313 } else if (flags & OS::TGT_SIGCHLD) {
1314 *cp->sigchld = true;
1315 }
1316
1317 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1318 BufferArg ctidBuf(ctidPtr, sizeof(long));
1319 long *ctid = (long *)ctidBuf.bufferPtr();
1320 *ctid = cp->pid();
1321 ctidBuf.copyOut(ctc->getMemProxy());
1322 }
1323
1324 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1325 cp->childClearTID = (uint64_t)ctidPtr;
1326
1327 ctc->clearArchRegs();
1328
1329#if THE_ISA == ALPHA_ISA
1330 TheISA::copyMiscRegs(tc, ctc);
1331#elif THE_ISA == SPARC_ISA
1332 TheISA::copyRegs(tc, ctc);
1333 ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1334 ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1335 ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1336 ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1337 ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1338 ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1339 ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1340 ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1341 for (int y = 8; y < 32; y++)
1342 ctc->setIntReg(y, tc->readIntReg(y));
1343#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA
1344 TheISA::copyRegs(tc, ctc);
1345#endif
1346
1347#if THE_ISA == X86_ISA
1348 if (flags & OS::TGT_CLONE_SETTLS) {
1349 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1350 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1351 }
1352#endif
1353
1354 if (newStack)
1355 ctc->setIntReg(TheISA::StackPointerReg, newStack);
1356
1357 cp->setSyscallReturn(ctc, 0);
1358
1359#if THE_ISA == ALPHA_ISA
1360 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1361#elif THE_ISA == SPARC_ISA
1362 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1363 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1364#endif
1365
1366 ctc->pcState(tc->nextInstAddr());
1367 ctc->activate();
1368
1369 return cp->pid();
1370}
1371
1372/// Target fstatfs() handler.
1373template <class OS>
1374SyscallReturn
1375fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1376{
1377 int index = 0;
1378 int tgt_fd = p->getSyscallArg(tc, index);
1379 Addr bufPtr = p->getSyscallArg(tc, index);
1380
1381 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1382 if (!ffdp)
1383 return -EBADF;
1384 int sim_fd = ffdp->getSimFD();
1385
1386 struct statfs hostBuf;
1387 int result = fstatfs(sim_fd, &hostBuf);
1388
1389 if (result < 0)
1390 return -errno;
1391
1392 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1393
1394 return 0;
1395}
1396
1397
1398/// Target writev() handler.
1399template <class OS>
1400SyscallReturn
1401writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1402{
1403 int index = 0;
1404 int tgt_fd = p->getSyscallArg(tc, index);
1405
1406 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1407 if (!hbfdp)
1408 return -EBADF;
1409 int sim_fd = hbfdp->getSimFD();
1410
1411 SETranslatingPortProxy &prox = tc->getMemProxy();
1412 uint64_t tiov_base = p->getSyscallArg(tc, index);
1413 size_t count = p->getSyscallArg(tc, index);
1414 struct iovec hiov[count];
1415 for (size_t i = 0; i < count; ++i) {
1416 typename OS::tgt_iovec tiov;
1417
1418 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1419 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1420 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1421 hiov[i].iov_base = new char [hiov[i].iov_len];
1422 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1423 hiov[i].iov_len);
1424 }
1425
1426 int result = writev(sim_fd, hiov, count);
1427
1428 for (size_t i = 0; i < count; ++i)
1429 delete [] (char *)hiov[i].iov_base;
1430
1431 if (result < 0)
1432 return -errno;
1433
1434 return result;
1435}
1436
1437/// Real mmap handler.
1438template <class OS>
1439SyscallReturn
1440mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1441 bool is_mmap2)
1442{
1443 int index = 0;
1444 Addr start = p->getSyscallArg(tc, index);
1445 uint64_t length = p->getSyscallArg(tc, index);
1446 int prot = p->getSyscallArg(tc, index);
1447 int tgt_flags = p->getSyscallArg(tc, index);
1448 int tgt_fd = p->getSyscallArg(tc, index);
1449 int offset = p->getSyscallArg(tc, index);
1450
1451 if (is_mmap2)
1452 offset *= TheISA::PageBytes;
1453
1454 if (start & (TheISA::PageBytes - 1) ||
1455 offset & (TheISA::PageBytes - 1) ||
1456 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1457 tgt_flags & OS::TGT_MAP_SHARED) ||
1458 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1459 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1460 !length) {
1461 return -EINVAL;
1462 }
1463
1464 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1465 // With shared mmaps, there are two cases to consider:
1466 // 1) anonymous: writes should modify the mapping and this should be
1467 // visible to observers who share the mapping. Currently, it's
1468 // difficult to update the shared mapping because there's no
1469 // structure which maintains information about the which virtual
1470 // memory areas are shared. If that structure existed, it would be
1471 // possible to make the translations point to the same frames.
1472 // 2) file-backed: writes should modify the mapping and the file
1473 // which is backed by the mapping. The shared mapping problem is the
1474 // same as what was mentioned about the anonymous mappings. For
1475 // file-backed mappings, the writes to the file are difficult
1476 // because it requires syncing what the mapping holds with the file
1477 // that resides on the host system. So, any write on a real system
1478 // would cause the change to be propagated to the file mapping at
1479 // some point in the future (the inode is tracked along with the
1480 // mapping). This isn't guaranteed to always happen, but it usually
1481 // works well enough. The guarantee is provided by the msync system
1482 // call. We could force the change through with shared mappings with
1483 // a call to msync, but that again would require more information
1484 // than we currently maintain.
1485 warn("mmap: writing to shared mmap region is currently "
1486 "unsupported. The write succeeds on the target, but it "
1487 "will not be propagated to the host or shared mappings");
1488 }
1489
1490 length = roundUp(length, TheISA::PageBytes);
1491
1492 int sim_fd = -1;
1493 uint8_t *pmap = nullptr;
1494 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1495 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1496
1497 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1498 if (dfdp) {
1499 EmulatedDriver *emul_driver = dfdp->getDriver();
1500 return emul_driver->mmap(p, tc, start, length, prot,
1501 tgt_flags, tgt_fd, offset);
1502 }
1503
1504 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1505 if (!ffdp)
1506 return -EBADF;
1507 sim_fd = ffdp->getSimFD();
1508
1509 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1510 sim_fd, offset);
1511
1512 if (pmap == (decltype(pmap))-1) {
1513 warn("mmap: failed to map file into host address space");
1514 return -errno;
1515 }
1516 }
1517
1518 // Extend global mmap region if necessary. Note that we ignore the
1519 // start address unless MAP_FIXED is specified.
1520 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1521 std::shared_ptr<MemState> mem_state = p->memState;
1522 Addr mmap_end = mem_state->getMmapEnd();
1523
1524 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1525 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1526
1527 mem_state->setMmapEnd(mmap_end);
1528 }
1529
1530 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1531 start, start + length - 1);
1532
1533 // We only allow mappings to overwrite existing mappings if
1534 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1535 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1536 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1537 if (clobber) {
1538 for (auto tc : p->system->threadContexts) {
1539 // If we might be overwriting old mappings, we need to
1540 // invalidate potentially stale mappings out of the TLBs.
1541 tc->getDTBPtr()->flushAll();
1542 tc->getITBPtr()->flushAll();
1543 }
1544 }
1545
1546 // Allocate physical memory and map it in. If the page table is already
1547 // mapped and clobber is not set, the simulator will issue throw a
1548 // fatal and bail out of the simulation.
1549 p->allocateMem(start, length, clobber);
1550
1551 // Transfer content into target address space.
1552 SETranslatingPortProxy &tp = tc->getMemProxy();
1553 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1554 // In general, we should zero the mapped area for anonymous mappings,
1555 // with something like:
1556 // tp.memsetBlob(start, 0, length);
1557 // However, given that we don't support sparse mappings, and
1558 // some applications can map a couple of gigabytes of space
1559 // (intending sparse usage), that can get painfully expensive.
1560 // Fortunately, since we don't properly implement munmap either,
1561 // there's no danger of remapping used memory, so for now all
1562 // newly mapped memory should already be zeroed so we can skip it.
1563 } else {
1564 // It is possible to mmap an area larger than a file, however
1565 // accessing unmapped portions the system triggers a "Bus error"
1566 // on the host. We must know when to stop copying the file from
1567 // the host into the target address space.
1568 struct stat file_stat;
1569 if (fstat(sim_fd, &file_stat) > 0)
1570 fatal("mmap: cannot stat file");
1571
1572 // Copy the portion of the file that is resident. This requires
1573 // checking both the mmap size and the filesize that we are
1574 // trying to mmap into this space; the mmap size also depends
1575 // on the specified offset into the file.
1576 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1577 length);
1578 tp.writeBlob(start, pmap, size);
1579
1580 // Cleanup the mmap region before exiting this function.
1581 munmap(pmap, length);
1582
1583 // Maintain the symbol table for dynamic executables.
1584 // The loader will call mmap to map the images into its address
1585 // space and we intercept that here. We can verify that we are
1586 // executing inside the loader by checking the program counter value.
1587 // XXX: with multiprogrammed workloads or multi-node configurations,
1588 // this will not work since there is a single global symbol table.
1589 ObjectFile *interpreter = p->getInterpreter();
1590 if (interpreter) {
1591 Addr text_start = interpreter->textBase();
1592 Addr text_end = text_start + interpreter->textSize();
1593
1594 Addr pc = tc->pcState().pc();
1595
1596 if (pc >= text_start && pc < text_end) {
1597 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1598 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1599 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1600
1601 if (lib) {
1602 lib->loadAllSymbols(debugSymbolTable,
1603 lib->textBase(), start);
1604 }
1605 }
1606 }
1607
1608 // Note that we do not zero out the remainder of the mapping. This
1609 // is done by a real system, but it probably will not affect
1610 // execution (hopefully).
1611 }
1612
1613 return start;
1614}
1615
1616template <class OS>
1617SyscallReturn
1618pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1619{
1620 int index = 0;
1621 int tgt_fd = p->getSyscallArg(tc, index);
1622 Addr bufPtr = p->getSyscallArg(tc, index);
1623 int nbytes = p->getSyscallArg(tc, index);
1624 int offset = p->getSyscallArg(tc, index);
1625
1626 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1627 if (!ffdp)
1628 return -EBADF;
1629 int sim_fd = ffdp->getSimFD();
1630
1631 BufferArg bufArg(bufPtr, nbytes);
1632 bufArg.copyIn(tc->getMemProxy());
1633
1634 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1635
1636 return (bytes_written == -1) ? -errno : bytes_written;
1637}
1638
1639/// Target mmap() handler.
1640template <class OS>
1641SyscallReturn
1642mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1643{
1644 return mmapImpl<OS>(desc, num, p, tc, false);
1645}
1646
1647/// Target mmap2() handler.
1648template <class OS>
1649SyscallReturn
1650mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1651{
1652 return mmapImpl<OS>(desc, num, p, tc, true);
1653}
1654
1655/// Target getrlimit() handler.
1656template <class OS>
1657SyscallReturn
1658getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1659 ThreadContext *tc)
1660{
1661 int index = 0;
1662 unsigned resource = process->getSyscallArg(tc, index);
1663 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1664
1665 switch (resource) {
1666 case OS::TGT_RLIMIT_STACK:
1667 // max stack size in bytes: make up a number (8MB for now)
1668 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1669 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1670 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1671 break;
1672
1673 case OS::TGT_RLIMIT_DATA:
1674 // max data segment size in bytes: make up a number
1675 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1676 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1677 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1678 break;
1679
1680 default:
1681 warn("getrlimit: unimplemented resource %d", resource);
1682 return -EINVAL;
1683 break;
1684 }
1685
1686 rlp.copyOut(tc->getMemProxy());
1687 return 0;
1688}
1689
1690template <class OS>
1691SyscallReturn
1692prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1693 ThreadContext *tc)
1694{
1695 int index = 0;
1696 if (process->getSyscallArg(tc, index) != 0)
1697 {
1698 warn("prlimit: ignoring rlimits for nonzero pid");
1699 return -EPERM;
1700 }
1701 int resource = process->getSyscallArg(tc, index);
1702 Addr n = process->getSyscallArg(tc, index);
1703 if (n != 0)
1704 warn("prlimit: ignoring new rlimit");
1705 Addr o = process->getSyscallArg(tc, index);
1706 if (o != 0)
1707 {
1708 TypedBufferArg<typename OS::rlimit> rlp(
1709 process->getSyscallArg(tc, index));
1710 switch (resource) {
1711 case OS::TGT_RLIMIT_STACK:
1712 // max stack size in bytes: make up a number (8MB for now)
1713 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1714 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1715 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1716 break;
1717 case OS::TGT_RLIMIT_DATA:
1718 // max data segment size in bytes: make up a number
1719 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1720 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1721 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1722 default:
1723 warn("prlimit: unimplemented resource %d", resource);
1724 return -EINVAL;
1725 break;
1726 }
1727 rlp.copyOut(tc->getMemProxy());
1728 }
1729 return 0;
1730}
1731
1732/// Target clock_gettime() function.
1733template <class OS>
1734SyscallReturn
1735clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1736{
1737 int index = 1;
1738 //int clk_id = p->getSyscallArg(tc, index);
1739 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1740
1741 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1742 tp->tv_sec += seconds_since_epoch;
1743 tp->tv_sec = TheISA::htog(tp->tv_sec);
1744 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1745
1746 tp.copyOut(tc->getMemProxy());
1747
1748 return 0;
1749}
1750
1751/// Target clock_getres() function.
1752template <class OS>
1753SyscallReturn
1754clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1755{
1756 int index = 1;
1757 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1758
1759 // Set resolution at ns, which is what clock_gettime() returns
1760 tp->tv_sec = 0;
1761 tp->tv_nsec = 1;
1762
1763 tp.copyOut(tc->getMemProxy());
1764
1765 return 0;
1766}
1767
1768/// Target gettimeofday() handler.
1769template <class OS>
1770SyscallReturn
1771gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1772 ThreadContext *tc)
1773{
1774 int index = 0;
1775 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1776
1777 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1778 tp->tv_sec += seconds_since_epoch;
1779 tp->tv_sec = TheISA::htog(tp->tv_sec);
1780 tp->tv_usec = TheISA::htog(tp->tv_usec);
1781
1782 tp.copyOut(tc->getMemProxy());
1783
1784 return 0;
1785}
1786
1787
1788/// Target utimes() handler.
1789template <class OS>
1790SyscallReturn
1791utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1792 ThreadContext *tc)
1793{
1794 std::string path;
1795
1796 int index = 0;
1797 if (!tc->getMemProxy().tryReadString(path,
1798 process->getSyscallArg(tc, index))) {
1799 return -EFAULT;
1800 }
1801
1802 TypedBufferArg<typename OS::timeval [2]>
1803 tp(process->getSyscallArg(tc, index));
1804 tp.copyIn(tc->getMemProxy());
1805
1806 struct timeval hostTimeval[2];
1807 for (int i = 0; i < 2; ++i) {
1808 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1809 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1810 }
1811
1812 // Adjust path for current working directory
1813 path = process->fullPath(path);
1814
1815 int result = utimes(path.c_str(), hostTimeval);
1816
1817 if (result < 0)
1818 return -errno;
1819
1820 return 0;
1821}
1822
1823template <class OS>
1824SyscallReturn
1825execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1826{
1827 desc->setFlags(0);
1828
1829 int index = 0;
1830 std::string path;
1831 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1832 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1833 return -EFAULT;
1834
1835 if (access(path.c_str(), F_OK) == -1)
1836 return -EACCES;
1837
1838 auto read_in = [](std::vector<std::string> & vect,
1839 SETranslatingPortProxy & mem_proxy,
1840 Addr mem_loc)
1841 {
1842 for (int inc = 0; ; inc++) {
1843 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1844 b.copyIn(mem_proxy);
1845
1846 if (!*(Addr*)b.bufferPtr())
1847 break;
1848
1849 vect.push_back(std::string());
1850 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1851 }
1852 };
1853
1854 /**
1855 * Note that ProcessParams is generated by swig and there are no other
1856 * examples of how to create anything but this default constructor. The
1857 * fields are manually initialized instead of passing parameters to the
1858 * constructor.
1859 */
1860 ProcessParams *pp = new ProcessParams();
1861 pp->executable = path;
1862 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1863 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1864 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1865 read_in(pp->env, mem_proxy, envp_mem_loc);
1866 pp->uid = p->uid();
1867 pp->egid = p->egid();
1868 pp->euid = p->euid();
1869 pp->gid = p->gid();
1870 pp->ppid = p->ppid();
1871 pp->pid = p->pid();
1872 pp->input.assign("cin");
1873 pp->output.assign("cout");
1874 pp->errout.assign("cerr");
1875 pp->cwd.assign(p->getcwd());
1876 pp->system = p->system;
1877 /**
1878 * Prevent process object creation with identical PIDs (which will trip
1879 * a fatal check in Process constructor). The execve call is supposed to
1880 * take over the currently executing process' identity but replace
1881 * whatever it is doing with a new process image. Instead of hijacking
1882 * the process object in the simulator, we create a new process object
1883 * and bind to the previous process' thread below (hijacking the thread).
1884 */
1885 p->system->PIDs.erase(p->pid());
1886 Process *new_p = pp->create();
1887 delete pp;
1888
1889 /**
1890 * Work through the file descriptor array and close any files marked
1891 * close-on-exec.
1892 */
1893 new_p->fds = p->fds;
1894 for (int i = 0; i < new_p->fds->getSize(); i++) {
1895 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1896 if (fdep && fdep->getCOE())
1897 new_p->fds->closeFDEntry(i);
1898 }
1899
1900 *new_p->sigchld = true;
1901
1902 delete p;
1903 tc->clearArchRegs();
1904 tc->setProcessPtr(new_p);
1905 new_p->assignThreadContext(tc->contextId());
1906 new_p->initState();
1907 tc->activate();
1908 TheISA::PCState pcState = tc->pcState();
1909 tc->setNPC(pcState.instAddr());
1910
1911 desc->setFlags(SyscallDesc::SuppressReturnValue);
1912 return 0;
1913}
1914
1915/// Target getrusage() function.
1916template <class OS>
1917SyscallReturn
1918getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1919 ThreadContext *tc)
1920{
1921 int index = 0;
1922 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1923 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1924
1925 rup->ru_utime.tv_sec = 0;
1926 rup->ru_utime.tv_usec = 0;
1927 rup->ru_stime.tv_sec = 0;
1928 rup->ru_stime.tv_usec = 0;
1929 rup->ru_maxrss = 0;
1930 rup->ru_ixrss = 0;
1931 rup->ru_idrss = 0;
1932 rup->ru_isrss = 0;
1933 rup->ru_minflt = 0;
1934 rup->ru_majflt = 0;
1935 rup->ru_nswap = 0;
1936 rup->ru_inblock = 0;
1937 rup->ru_oublock = 0;
1938 rup->ru_msgsnd = 0;
1939 rup->ru_msgrcv = 0;
1940 rup->ru_nsignals = 0;
1941 rup->ru_nvcsw = 0;
1942 rup->ru_nivcsw = 0;
1943
1944 switch (who) {
1945 case OS::TGT_RUSAGE_SELF:
1946 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1947 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1948 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1949 break;
1950
1951 case OS::TGT_RUSAGE_CHILDREN:
1952 // do nothing. We have no child processes, so they take no time.
1953 break;
1954
1955 default:
1956 // don't really handle THREAD or CHILDREN, but just warn and
1957 // plow ahead
1958 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
1959 who);
1960 }
1961
1962 rup.copyOut(tc->getMemProxy());
1963
1964 return 0;
1965}
1966
1967/// Target times() function.
1968template <class OS>
1969SyscallReturn
1970timesFunc(SyscallDesc *desc, int callnum, Process *process,
1971 ThreadContext *tc)
1972{
1973 int index = 0;
1974 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1975
1976 // Fill in the time structure (in clocks)
1977 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1978 bufp->tms_utime = clocks;
1979 bufp->tms_stime = 0;
1980 bufp->tms_cutime = 0;
1981 bufp->tms_cstime = 0;
1982
1983 // Convert to host endianness
1984 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
1985
1986 // Write back
1987 bufp.copyOut(tc->getMemProxy());
1988
1989 // Return clock ticks since system boot
1990 return clocks;
1991}
1992
1993/// Target time() function.
1994template <class OS>
1995SyscallReturn
1996timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1997{
1998 typename OS::time_t sec, usec;
1999 getElapsedTimeMicro(sec, usec);
2000 sec += seconds_since_epoch;
2001
2002 int index = 0;
2003 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2004 if (taddr != 0) {
2005 typename OS::time_t t = sec;
2006 t = TheISA::htog(t);
2007 SETranslatingPortProxy &p = tc->getMemProxy();
2008 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2009 }
2010 return sec;
2011}
2012
2013template <class OS>
2014SyscallReturn
2015tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2016{
2017 int index = 0;
2018 int tgid = process->getSyscallArg(tc, index);
2019 int tid = process->getSyscallArg(tc, index);
2020 int sig = process->getSyscallArg(tc, index);
2021
2022 /**
2023 * This system call is intended to allow killing a specific thread
2024 * within an arbitrary thread group if sanctioned with permission checks.
2025 * It's usually true that threads share the termination signal as pointed
2026 * out by the pthread_kill man page and this seems to be the intended
2027 * usage. Due to this being an emulated environment, assume the following:
2028 * Threads are allowed to call tgkill because the EUID for all threads
2029 * should be the same. There is no signal handling mechanism for kernel
2030 * registration of signal handlers since signals are poorly supported in
2031 * emulation mode. Since signal handlers cannot be registered, all
2032 * threads within in a thread group must share the termination signal.
2033 * We never exhaust PIDs so there's no chance of finding the wrong one
2034 * due to PID rollover.
2035 */
2036
2037 System *sys = tc->getSystemPtr();
2038 Process *tgt_proc = nullptr;
2039 for (int i = 0; i < sys->numContexts(); i++) {
2040 Process *temp = sys->threadContexts[i]->getProcessPtr();
2041 if (temp->pid() == tid) {
2042 tgt_proc = temp;
2043 break;
2044 }
2045 }
2046
2047 if (sig != 0 || sig != OS::TGT_SIGABRT)
2048 return -EINVAL;
2049
2050 if (tgt_proc == nullptr)
2051 return -ESRCH;
2052
2053 if (tgid != -1 && tgt_proc->tgid() != tgid)
2054 return -ESRCH;
2055
2056 if (sig == OS::TGT_SIGABRT)
2057 exitGroupFunc(desc, 252, process, tc);
2058
2059 return 0;
2060}
2061
2062
2063#endif // __SIM_SYSCALL_EMUL_HH__