Deleted Added
sdiff udiff text old ( 13569:47a2291177a7 ) new ( 13570:b6484720c6a9 )
full compact
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/socket.h>
83#include <sys/stat.h>
84#if (NO_STATFS == 0)
85#include <sys/statfs.h>
86#else
87#include <sys/mount.h>
88#endif
89#include <sys/time.h>
90#include <sys/uio.h>
91#include <unistd.h>
92
93#include <cerrno>
94#include <memory>
95#include <string>
96
97#include "arch/generic/tlb.hh"
98#include "arch/utility.hh"
99#include "base/intmath.hh"
100#include "base/loader/object_file.hh"
101#include "base/logging.hh"
102#include "base/trace.hh"
103#include "base/types.hh"
104#include "config/the_isa.hh"
105#include "cpu/base.hh"
106#include "cpu/thread_context.hh"
107#include "mem/page_table.hh"
108#include "params/Process.hh"
109#include "sim/emul_driver.hh"
110#include "sim/futex_map.hh"
111#include "sim/process.hh"
112#include "sim/syscall_debug_macros.hh"
113#include "sim/syscall_desc.hh"
114#include "sim/syscall_emul_buf.hh"
115#include "sim/syscall_return.hh"
116
117//////////////////////////////////////////////////////////////////////
118//
119// The following emulation functions are generic enough that they
120// don't need to be recompiled for different emulated OS's. They are
121// defined in sim/syscall_emul.cc.
122//
123//////////////////////////////////////////////////////////////////////
124
125
126/// Handler for unimplemented syscalls that we haven't thought about.
127SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
128 Process *p, ThreadContext *tc);
129
130/// Handler for unimplemented syscalls that we never intend to
131/// implement (signal handling, etc.) and should not affect the correct
132/// behavior of the program. Print a warning only if the appropriate
133/// trace flag is enabled. Return success to the target program.
134SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
135 Process *p, ThreadContext *tc);
136
137// Target fallocateFunc() handler.
138SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
139 Process *p, ThreadContext *tc);
140
141/// Target exit() handler: terminate current context.
142SyscallReturn exitFunc(SyscallDesc *desc, int num,
143 Process *p, ThreadContext *tc);
144
145/// Target exit_group() handler: terminate simulation. (exit all threads)
146SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
147 Process *p, ThreadContext *tc);
148
149/// Target set_tid_address() handler.
150SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
151 Process *p, ThreadContext *tc);
152
153/// Target getpagesize() handler.
154SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
155 Process *p, ThreadContext *tc);
156
157/// Target brk() handler: set brk address.
158SyscallReturn brkFunc(SyscallDesc *desc, int num,
159 Process *p, ThreadContext *tc);
160
161/// Target close() handler.
162SyscallReturn closeFunc(SyscallDesc *desc, int num,
163 Process *p, ThreadContext *tc);
164
165// Target read() handler.
166SyscallReturn readFunc(SyscallDesc *desc, int num,
167 Process *p, ThreadContext *tc);
168
169/// Target write() handler.
170SyscallReturn writeFunc(SyscallDesc *desc, int num,
171 Process *p, ThreadContext *tc);
172
173/// Target lseek() handler.
174SyscallReturn lseekFunc(SyscallDesc *desc, int num,
175 Process *p, ThreadContext *tc);
176
177/// Target _llseek() handler.
178SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
179 Process *p, ThreadContext *tc);
180
181/// Target munmap() handler.
182SyscallReturn munmapFunc(SyscallDesc *desc, int num,
183 Process *p, ThreadContext *tc);
184
185/// Target shutdown() handler.
186SyscallReturn shutdownFunc(SyscallDesc *desc, int num,
187 Process *p, ThreadContext *tc);
188
189/// Target gethostname() handler.
190SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
191 Process *p, ThreadContext *tc);
192
193/// Target getcwd() handler.
194SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
195 Process *p, ThreadContext *tc);
196
197/// Target readlink() handler.
198SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
199 Process *p, ThreadContext *tc,
200 int index = 0);
201SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
202 Process *p, ThreadContext *tc);
203
204/// Target unlink() handler.
205SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
206 Process *p, ThreadContext *tc,
207 int index);
208SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
209 Process *p, ThreadContext *tc);
210
211/// Target link() handler
212SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
213 ThreadContext *tc);
214
215/// Target symlink() handler.
216SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
217 ThreadContext *tc);
218
219/// Target mkdir() handler.
220SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
221 Process *p, ThreadContext *tc);
222
223/// Target mknod() handler.
224SyscallReturn mknodFunc(SyscallDesc *desc, int num,
225 Process *p, ThreadContext *tc);
226
227/// Target chdir() handler.
228SyscallReturn chdirFunc(SyscallDesc *desc, int num,
229 Process *p, ThreadContext *tc);
230
231// Target rmdir() handler.
232SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
233 Process *p, ThreadContext *tc);
234
235/// Target rename() handler.
236SyscallReturn renameFunc(SyscallDesc *desc, int num,
237 Process *p, ThreadContext *tc);
238
239
240/// Target truncate() handler.
241SyscallReturn truncateFunc(SyscallDesc *desc, int num,
242 Process *p, ThreadContext *tc);
243
244
245/// Target ftruncate() handler.
246SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
247 Process *p, ThreadContext *tc);
248
249
250/// Target truncate64() handler.
251SyscallReturn truncate64Func(SyscallDesc *desc, int num,
252 Process *p, ThreadContext *tc);
253
254/// Target ftruncate64() handler.
255SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
256 Process *p, ThreadContext *tc);
257
258
259/// Target umask() handler.
260SyscallReturn umaskFunc(SyscallDesc *desc, int num,
261 Process *p, ThreadContext *tc);
262
263/// Target gettid() handler.
264SyscallReturn gettidFunc(SyscallDesc *desc, int num,
265 Process *p, ThreadContext *tc);
266
267/// Target chown() handler.
268SyscallReturn chownFunc(SyscallDesc *desc, int num,
269 Process *p, ThreadContext *tc);
270
271/// Target setpgid() handler.
272SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
273 Process *p, ThreadContext *tc);
274
275/// Target fchown() handler.
276SyscallReturn fchownFunc(SyscallDesc *desc, int num,
277 Process *p, ThreadContext *tc);
278
279/// Target dup() handler.
280SyscallReturn dupFunc(SyscallDesc *desc, int num,
281 Process *process, ThreadContext *tc);
282
283/// Target dup2() handler.
284SyscallReturn dup2Func(SyscallDesc *desc, int num,
285 Process *process, ThreadContext *tc);
286
287/// Target fcntl() handler.
288SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
289 Process *process, ThreadContext *tc);
290
291/// Target fcntl64() handler.
292SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
293 Process *process, ThreadContext *tc);
294
295/// Target setuid() handler.
296SyscallReturn setuidFunc(SyscallDesc *desc, int num,
297 Process *p, ThreadContext *tc);
298
299/// Target pipe() handler.
300SyscallReturn pipeFunc(SyscallDesc *desc, int num,
301 Process *p, ThreadContext *tc);
302
303/// Internal pipe() handler.
304SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
305 ThreadContext *tc, bool pseudoPipe);
306
307/// Target getpid() handler.
308SyscallReturn getpidFunc(SyscallDesc *desc, int num,
309 Process *p, ThreadContext *tc);
310
311// Target bind() handler.
312SyscallReturn bindFunc(SyscallDesc *desc, int num,
313 Process *p, ThreadContext *tc);
314
315// Target listen() handler.
316SyscallReturn listenFunc(SyscallDesc *desc, int num,
317 Process *p, ThreadContext *tc);
318
319// Target connect() handler.
320SyscallReturn connectFunc(SyscallDesc *desc, int num,
321 Process *p, ThreadContext *tc);
322
323#if defined(SYS_getdents)
324// Target getdents() handler.
325SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
326 Process *p, ThreadContext *tc);
327#endif
328
329#if defined(SYS_getdents64)
330// Target getdents() handler.
331SyscallReturn getdents64Func(SyscallDesc *desc, int num,
332 Process *p, ThreadContext *tc);
333#endif
334
335// Target sendto() handler.
336SyscallReturn sendtoFunc(SyscallDesc *desc, int num,
337 Process *p, ThreadContext *tc);
338
339// Target recvfrom() handler.
340SyscallReturn recvfromFunc(SyscallDesc *desc, int num,
341 Process *p, ThreadContext *tc);
342
343// Target recvmsg() handler.
344SyscallReturn recvmsgFunc(SyscallDesc *desc, int num,
345 Process *p, ThreadContext *tc);
346
347// Target sendmsg() handler.
348SyscallReturn sendmsgFunc(SyscallDesc *desc, int num,
349 Process *p, ThreadContext *tc);
350
351// Target getuid() handler.
352SyscallReturn getuidFunc(SyscallDesc *desc, int num,
353 Process *p, ThreadContext *tc);
354
355/// Target getgid() handler.
356SyscallReturn getgidFunc(SyscallDesc *desc, int num,
357 Process *p, ThreadContext *tc);
358
359/// Target getppid() handler.
360SyscallReturn getppidFunc(SyscallDesc *desc, int num,
361 Process *p, ThreadContext *tc);
362
363/// Target geteuid() handler.
364SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
365 Process *p, ThreadContext *tc);
366
367/// Target getegid() handler.
368SyscallReturn getegidFunc(SyscallDesc *desc, int num,
369 Process *p, ThreadContext *tc);
370
371/// Target access() handler
372SyscallReturn accessFunc(SyscallDesc *desc, int num,
373 Process *p, ThreadContext *tc);
374SyscallReturn accessFunc(SyscallDesc *desc, int num,
375 Process *p, ThreadContext *tc,
376 int index);
377
378/// Futex system call
379/// Implemented by Daniel Sanchez
380/// Used by printf's in multi-threaded apps
381template <class OS>
382SyscallReturn
383futexFunc(SyscallDesc *desc, int callnum, Process *process,
384 ThreadContext *tc)
385{
386 using namespace std;
387
388 int index = 0;
389 Addr uaddr = process->getSyscallArg(tc, index);
390 int op = process->getSyscallArg(tc, index);
391 int val = process->getSyscallArg(tc, index);
392
393 /*
394 * Unsupported option that does not affect the correctness of the
395 * application. This is a performance optimization utilized by Linux.
396 */
397 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
398
399 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
400
401 if (OS::TGT_FUTEX_WAIT == op) {
402 // Ensure futex system call accessed atomically.
403 BufferArg buf(uaddr, sizeof(int));
404 buf.copyIn(tc->getMemProxy());
405 int mem_val = *(int*)buf.bufferPtr();
406
407 /*
408 * The value in memory at uaddr is not equal with the expected val
409 * (a different thread must have changed it before the system call was
410 * invoked). In this case, we need to throw an error.
411 */
412 if (val != mem_val)
413 return -OS::TGT_EWOULDBLOCK;
414
415 futex_map.suspend(uaddr, process->tgid(), tc);
416
417 return 0;
418 } else if (OS::TGT_FUTEX_WAKE == op) {
419 return futex_map.wakeup(uaddr, process->tgid(), val);
420 }
421
422 warn("futex: op %d not implemented; ignoring.", op);
423 return -ENOSYS;
424}
425
426
427/// Pseudo Funcs - These functions use a different return convension,
428/// returning a second value in a register other than the normal return register
429SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
430 Process *process, ThreadContext *tc);
431
432/// Target getpidPseudo() handler.
433SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
434 Process *p, ThreadContext *tc);
435
436/// Target getuidPseudo() handler.
437SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
438 Process *p, ThreadContext *tc);
439
440/// Target getgidPseudo() handler.
441SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
442 Process *p, ThreadContext *tc);
443
444
445/// A readable name for 1,000,000, for converting microseconds to seconds.
446const int one_million = 1000000;
447/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
448const int one_billion = 1000000000;
449
450/// Approximate seconds since the epoch (1/1/1970). About a billion,
451/// by my reckoning. We want to keep this a constant (not use the
452/// real-world time) to keep simulations repeatable.
453const unsigned seconds_since_epoch = 1000000000;
454
455/// Helper function to convert current elapsed time to seconds and
456/// microseconds.
457template <class T1, class T2>
458void
459getElapsedTimeMicro(T1 &sec, T2 &usec)
460{
461 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
462 sec = elapsed_usecs / one_million;
463 usec = elapsed_usecs % one_million;
464}
465
466/// Helper function to convert current elapsed time to seconds and
467/// nanoseconds.
468template <class T1, class T2>
469void
470getElapsedTimeNano(T1 &sec, T2 &nsec)
471{
472 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
473 sec = elapsed_nsecs / one_billion;
474 nsec = elapsed_nsecs % one_billion;
475}
476
477//////////////////////////////////////////////////////////////////////
478//
479// The following emulation functions are generic, but need to be
480// templated to account for differences in types, constants, etc.
481//
482//////////////////////////////////////////////////////////////////////
483
484 typedef struct statfs hst_statfs;
485#if NO_STAT64
486 typedef struct stat hst_stat;
487 typedef struct stat hst_stat64;
488#else
489 typedef struct stat hst_stat;
490 typedef struct stat64 hst_stat64;
491#endif
492
493//// Helper function to convert a host stat buffer to a target stat
494//// buffer. Also copies the target buffer out to the simulated
495//// memory space. Used by stat(), fstat(), and lstat().
496
497template <typename target_stat, typename host_stat>
498void
499convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
500{
501 using namespace TheISA;
502
503 if (fakeTTY)
504 tgt->st_dev = 0xA;
505 else
506 tgt->st_dev = host->st_dev;
507 tgt->st_dev = TheISA::htog(tgt->st_dev);
508 tgt->st_ino = host->st_ino;
509 tgt->st_ino = TheISA::htog(tgt->st_ino);
510 tgt->st_mode = host->st_mode;
511 if (fakeTTY) {
512 // Claim to be a character device
513 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
514 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
515 }
516 tgt->st_mode = TheISA::htog(tgt->st_mode);
517 tgt->st_nlink = host->st_nlink;
518 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
519 tgt->st_uid = host->st_uid;
520 tgt->st_uid = TheISA::htog(tgt->st_uid);
521 tgt->st_gid = host->st_gid;
522 tgt->st_gid = TheISA::htog(tgt->st_gid);
523 if (fakeTTY)
524 tgt->st_rdev = 0x880d;
525 else
526 tgt->st_rdev = host->st_rdev;
527 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
528 tgt->st_size = host->st_size;
529 tgt->st_size = TheISA::htog(tgt->st_size);
530 tgt->st_atimeX = host->st_atime;
531 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
532 tgt->st_mtimeX = host->st_mtime;
533 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
534 tgt->st_ctimeX = host->st_ctime;
535 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
536 // Force the block size to be 8KB. This helps to ensure buffered io works
537 // consistently across different hosts.
538 tgt->st_blksize = 0x2000;
539 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
540 tgt->st_blocks = host->st_blocks;
541 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
542}
543
544// Same for stat64
545
546template <typename target_stat, typename host_stat64>
547void
548convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
549{
550 using namespace TheISA;
551
552 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
553#if defined(STAT_HAVE_NSEC)
554 tgt->st_atime_nsec = host->st_atime_nsec;
555 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
556 tgt->st_mtime_nsec = host->st_mtime_nsec;
557 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
558 tgt->st_ctime_nsec = host->st_ctime_nsec;
559 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
560#else
561 tgt->st_atime_nsec = 0;
562 tgt->st_mtime_nsec = 0;
563 tgt->st_ctime_nsec = 0;
564#endif
565}
566
567// Here are a couple of convenience functions
568template<class OS>
569void
570copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
571 hst_stat *host, bool fakeTTY = false)
572{
573 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
574 tgt_stat_buf tgt(addr);
575 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
576 tgt.copyOut(mem);
577}
578
579template<class OS>
580void
581copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
582 hst_stat64 *host, bool fakeTTY = false)
583{
584 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
585 tgt_stat_buf tgt(addr);
586 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
587 tgt.copyOut(mem);
588}
589
590template <class OS>
591void
592copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
593 hst_statfs *host)
594{
595 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
596
597 tgt->f_type = TheISA::htog(host->f_type);
598#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
599 tgt->f_bsize = TheISA::htog(host->f_iosize);
600#else
601 tgt->f_bsize = TheISA::htog(host->f_bsize);
602#endif
603 tgt->f_blocks = TheISA::htog(host->f_blocks);
604 tgt->f_bfree = TheISA::htog(host->f_bfree);
605 tgt->f_bavail = TheISA::htog(host->f_bavail);
606 tgt->f_files = TheISA::htog(host->f_files);
607 tgt->f_ffree = TheISA::htog(host->f_ffree);
608 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
609#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
610 tgt->f_namelen = TheISA::htog(host->f_namemax);
611 tgt->f_frsize = TheISA::htog(host->f_bsize);
612#elif defined(__APPLE__)
613 tgt->f_namelen = 0;
614 tgt->f_frsize = 0;
615#else
616 tgt->f_namelen = TheISA::htog(host->f_namelen);
617 tgt->f_frsize = TheISA::htog(host->f_frsize);
618#endif
619#if defined(__linux__)
620 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
621#else
622 /*
623 * The fields are different sizes per OS. Don't bother with
624 * f_spare or f_reserved on non-Linux for now.
625 */
626 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
627#endif
628
629 tgt.copyOut(mem);
630}
631
632/// Target ioctl() handler. For the most part, programs call ioctl()
633/// only to find out if their stdout is a tty, to determine whether to
634/// do line or block buffering. We always claim that output fds are
635/// not TTYs to provide repeatable results.
636template <class OS>
637SyscallReturn
638ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
639{
640 int index = 0;
641 int tgt_fd = p->getSyscallArg(tc, index);
642 unsigned req = p->getSyscallArg(tc, index);
643
644 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
645
646 if (OS::isTtyReq(req))
647 return -ENOTTY;
648
649 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
650 if (!dfdp)
651 return -EBADF;
652
653 /**
654 * If the driver is valid, issue the ioctl through it. Otherwise,
655 * there's an implicit assumption that the device is a TTY type and we
656 * return that we do not have a valid TTY.
657 */
658 EmulatedDriver *emul_driver = dfdp->getDriver();
659 if (emul_driver)
660 return emul_driver->ioctl(p, tc, req);
661
662 /**
663 * For lack of a better return code, return ENOTTY. Ideally, we should
664 * return something better here, but at least we issue the warning.
665 */
666 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
667 tgt_fd, req, tc->pcState());
668 return -ENOTTY;
669}
670
671template <class OS>
672SyscallReturn
673openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
674 bool isopenat)
675{
676 int index = 0;
677 int tgt_dirfd = -1;
678
679 /**
680 * If using the openat variant, read in the target directory file
681 * descriptor from the simulated process.
682 */
683 if (isopenat)
684 tgt_dirfd = p->getSyscallArg(tc, index);
685
686 /**
687 * Retrieve the simulated process' memory proxy and then read in the path
688 * string from that memory space into the host's working memory space.
689 */
690 std::string path;
691 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
692 return -EFAULT;
693
694#ifdef __CYGWIN32__
695 int host_flags = O_BINARY;
696#else
697 int host_flags = 0;
698#endif
699 /**
700 * Translate target flags into host flags. Flags exist which are not
701 * ported between architectures which can cause check failures.
702 */
703 int tgt_flags = p->getSyscallArg(tc, index);
704 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
705 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
706 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
707 host_flags |= OS::openFlagTable[i].hostFlag;
708 }
709 }
710 if (tgt_flags) {
711 warn("open%s: cannot decode flags 0x%x",
712 isopenat ? "at" : "", tgt_flags);
713 }
714#ifdef __CYGWIN32__
715 host_flags |= O_BINARY;
716#endif
717
718 int mode = p->getSyscallArg(tc, index);
719
720 /**
721 * If the simulated process called open or openat with AT_FDCWD specified,
722 * take the current working directory value which was passed into the
723 * process class as a Python parameter and append the current path to
724 * create a full path.
725 * Otherwise, openat with a valid target directory file descriptor has
726 * been called. If the path option, which was passed in as a parameter,
727 * is not absolute, retrieve the directory file descriptor's path and
728 * prepend it to the path passed in as a parameter.
729 * In every case, we should have a full path (which is relevant to the
730 * host) to work with after this block has been passed.
731 */
732 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
733 path = p->fullPath(path);
734 } else if (!startswith(path, "/")) {
735 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
736 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
737 if (!ffdp)
738 return -EBADF;
739 path.insert(0, ffdp->getFileName() + "/");
740 }
741
742 /**
743 * Since this is an emulated environment, we create pseudo file
744 * descriptors for device requests that have been registered with
745 * the process class through Python; this allows us to create a file
746 * descriptor for subsequent ioctl or mmap calls.
747 */
748 if (startswith(path, "/dev/")) {
749 std::string filename = path.substr(strlen("/dev/"));
750 EmulatedDriver *drv = p->findDriver(filename);
751 if (drv) {
752 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
753 "driver open with path[%s]\n",
754 isopenat ? "at" : "", path.c_str());
755 return drv->open(p, tc, mode, host_flags);
756 }
757 /**
758 * Fall through here for pass through to host devices, such
759 * as /dev/zero
760 */
761 }
762
763 /**
764 * Some special paths and files cannot be called on the host and need
765 * to be handled as special cases inside the simulator.
766 * If the full path that was created above does not match any of the
767 * special cases, pass it through to the open call on the host to let
768 * the host open the file on our behalf.
769 * If the host cannot open the file, return the host's error code back
770 * through the system call to the simulated process.
771 */
772 int sim_fd = -1;
773 std::vector<std::string> special_paths =
774 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
775 for (auto entry : special_paths) {
776 if (startswith(path, entry))
777 sim_fd = OS::openSpecialFile(path, p, tc);
778 }
779 if (sim_fd == -1) {
780 sim_fd = open(path.c_str(), host_flags, mode);
781 }
782 if (sim_fd == -1) {
783 int local = -errno;
784 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
785 isopenat ? "at" : "", path.c_str());
786 return local;
787 }
788
789 /**
790 * The file was opened successfully and needs to be recorded in the
791 * process' file descriptor array so that it can be retrieved later.
792 * The target file descriptor that is chosen will be the lowest unused
793 * file descriptor.
794 * Return the indirect target file descriptor back to the simulated
795 * process to act as a handle for the opened file.
796 */
797 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
798 int tgt_fd = p->fds->allocFD(ffdp);
799 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
800 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
801 return tgt_fd;
802}
803
804/// Target open() handler.
805template <class OS>
806SyscallReturn
807openFunc(SyscallDesc *desc, int callnum, Process *process,
808 ThreadContext *tc)
809{
810 return openImpl<OS>(desc, callnum, process, tc, false);
811}
812
813/// Target openat() handler.
814template <class OS>
815SyscallReturn
816openatFunc(SyscallDesc *desc, int callnum, Process *process,
817 ThreadContext *tc)
818{
819 return openImpl<OS>(desc, callnum, process, tc, true);
820}
821
822/// Target unlinkat() handler.
823template <class OS>
824SyscallReturn
825unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
826 ThreadContext *tc)
827{
828 int index = 0;
829 int dirfd = process->getSyscallArg(tc, index);
830 if (dirfd != OS::TGT_AT_FDCWD)
831 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
832
833 return unlinkHelper(desc, callnum, process, tc, 1);
834}
835
836/// Target facessat() handler
837template <class OS>
838SyscallReturn
839faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
840 ThreadContext *tc)
841{
842 int index = 0;
843 int dirfd = process->getSyscallArg(tc, index);
844 if (dirfd != OS::TGT_AT_FDCWD)
845 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
846 return accessFunc(desc, callnum, process, tc, 1);
847}
848
849/// Target readlinkat() handler
850template <class OS>
851SyscallReturn
852readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
853 ThreadContext *tc)
854{
855 int index = 0;
856 int dirfd = process->getSyscallArg(tc, index);
857 if (dirfd != OS::TGT_AT_FDCWD)
858 warn("openat: first argument not AT_FDCWD; unlikely to work");
859 return readlinkFunc(desc, callnum, process, tc, 1);
860}
861
862/// Target renameat() handler.
863template <class OS>
864SyscallReturn
865renameatFunc(SyscallDesc *desc, int callnum, Process *process,
866 ThreadContext *tc)
867{
868 int index = 0;
869
870 int olddirfd = process->getSyscallArg(tc, index);
871 if (olddirfd != OS::TGT_AT_FDCWD)
872 warn("renameat: first argument not AT_FDCWD; unlikely to work");
873
874 std::string old_name;
875
876 if (!tc->getMemProxy().tryReadString(old_name,
877 process->getSyscallArg(tc, index)))
878 return -EFAULT;
879
880 int newdirfd = process->getSyscallArg(tc, index);
881 if (newdirfd != OS::TGT_AT_FDCWD)
882 warn("renameat: third argument not AT_FDCWD; unlikely to work");
883
884 std::string new_name;
885
886 if (!tc->getMemProxy().tryReadString(new_name,
887 process->getSyscallArg(tc, index)))
888 return -EFAULT;
889
890 // Adjust path for current working directory
891 old_name = process->fullPath(old_name);
892 new_name = process->fullPath(new_name);
893
894 int result = rename(old_name.c_str(), new_name.c_str());
895 return (result == -1) ? -errno : result;
896}
897
898/// Target sysinfo() handler.
899template <class OS>
900SyscallReturn
901sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
902 ThreadContext *tc)
903{
904
905 int index = 0;
906 TypedBufferArg<typename OS::tgt_sysinfo>
907 sysinfo(process->getSyscallArg(tc, index));
908
909 sysinfo->uptime = seconds_since_epoch;
910 sysinfo->totalram = process->system->memSize();
911 sysinfo->mem_unit = 1;
912
913 sysinfo.copyOut(tc->getMemProxy());
914
915 return 0;
916}
917
918/// Target chmod() handler.
919template <class OS>
920SyscallReturn
921chmodFunc(SyscallDesc *desc, int callnum, Process *process,
922 ThreadContext *tc)
923{
924 std::string path;
925
926 int index = 0;
927 if (!tc->getMemProxy().tryReadString(path,
928 process->getSyscallArg(tc, index))) {
929 return -EFAULT;
930 }
931
932 uint32_t mode = process->getSyscallArg(tc, index);
933 mode_t hostMode = 0;
934
935 // XXX translate mode flags via OS::something???
936 hostMode = mode;
937
938 // Adjust path for current working directory
939 path = process->fullPath(path);
940
941 // do the chmod
942 int result = chmod(path.c_str(), hostMode);
943 if (result < 0)
944 return -errno;
945
946 return 0;
947}
948
949
950/// Target fchmod() handler.
951template <class OS>
952SyscallReturn
953fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
954{
955 int index = 0;
956 int tgt_fd = p->getSyscallArg(tc, index);
957 uint32_t mode = p->getSyscallArg(tc, index);
958
959 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
960 if (!ffdp)
961 return -EBADF;
962 int sim_fd = ffdp->getSimFD();
963
964 mode_t hostMode = mode;
965
966 int result = fchmod(sim_fd, hostMode);
967
968 return (result < 0) ? -errno : 0;
969}
970
971/// Target mremap() handler.
972template <class OS>
973SyscallReturn
974mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
975{
976 int index = 0;
977 Addr start = process->getSyscallArg(tc, index);
978 uint64_t old_length = process->getSyscallArg(tc, index);
979 uint64_t new_length = process->getSyscallArg(tc, index);
980 uint64_t flags = process->getSyscallArg(tc, index);
981 uint64_t provided_address = 0;
982 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
983
984 if (use_provided_address)
985 provided_address = process->getSyscallArg(tc, index);
986
987 if ((start % TheISA::PageBytes != 0) ||
988 (provided_address % TheISA::PageBytes != 0)) {
989 warn("mremap failing: arguments not page aligned");
990 return -EINVAL;
991 }
992
993 new_length = roundUp(new_length, TheISA::PageBytes);
994
995 if (new_length > old_length) {
996 std::shared_ptr<MemState> mem_state = process->memState;
997 Addr mmap_end = mem_state->getMmapEnd();
998
999 if ((start + old_length) == mmap_end &&
1000 (!use_provided_address || provided_address == start)) {
1001 // This case cannot occur when growing downward, as
1002 // start is greater than or equal to mmap_end.
1003 uint64_t diff = new_length - old_length;
1004 process->allocateMem(mmap_end, diff);
1005 mem_state->setMmapEnd(mmap_end + diff);
1006 return start;
1007 } else {
1008 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
1009 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
1010 return -ENOMEM;
1011 } else {
1012 uint64_t new_start = provided_address;
1013 if (!use_provided_address) {
1014 new_start = process->mmapGrowsDown() ?
1015 mmap_end - new_length : mmap_end;
1016 mmap_end = process->mmapGrowsDown() ?
1017 new_start : mmap_end + new_length;
1018 mem_state->setMmapEnd(mmap_end);
1019 }
1020
1021 process->pTable->remap(start, old_length, new_start);
1022 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
1023 new_start, new_start + new_length,
1024 new_length - old_length);
1025 // add on the remaining unallocated pages
1026 process->allocateMem(new_start + old_length,
1027 new_length - old_length,
1028 use_provided_address /* clobber */);
1029 if (use_provided_address &&
1030 ((new_start + new_length > mem_state->getMmapEnd() &&
1031 !process->mmapGrowsDown()) ||
1032 (new_start < mem_state->getMmapEnd() &&
1033 process->mmapGrowsDown()))) {
1034 // something fishy going on here, at least notify the user
1035 // @todo: increase mmap_end?
1036 warn("mmap region limit exceeded with MREMAP_FIXED\n");
1037 }
1038 warn("returning %08p as start\n", new_start);
1039 return new_start;
1040 }
1041 }
1042 } else {
1043 if (use_provided_address && provided_address != start)
1044 process->pTable->remap(start, new_length, provided_address);
1045 process->pTable->unmap(start + new_length, old_length - new_length);
1046 return use_provided_address ? provided_address : start;
1047 }
1048}
1049
1050/// Target stat() handler.
1051template <class OS>
1052SyscallReturn
1053statFunc(SyscallDesc *desc, int callnum, Process *process,
1054 ThreadContext *tc)
1055{
1056 std::string path;
1057
1058 int index = 0;
1059 if (!tc->getMemProxy().tryReadString(path,
1060 process->getSyscallArg(tc, index))) {
1061 return -EFAULT;
1062 }
1063 Addr bufPtr = process->getSyscallArg(tc, index);
1064
1065 // Adjust path for current working directory
1066 path = process->fullPath(path);
1067
1068 struct stat hostBuf;
1069 int result = stat(path.c_str(), &hostBuf);
1070
1071 if (result < 0)
1072 return -errno;
1073
1074 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1075
1076 return 0;
1077}
1078
1079
1080/// Target stat64() handler.
1081template <class OS>
1082SyscallReturn
1083stat64Func(SyscallDesc *desc, int callnum, Process *process,
1084 ThreadContext *tc)
1085{
1086 std::string path;
1087
1088 int index = 0;
1089 if (!tc->getMemProxy().tryReadString(path,
1090 process->getSyscallArg(tc, index)))
1091 return -EFAULT;
1092 Addr bufPtr = process->getSyscallArg(tc, index);
1093
1094 // Adjust path for current working directory
1095 path = process->fullPath(path);
1096
1097#if NO_STAT64
1098 struct stat hostBuf;
1099 int result = stat(path.c_str(), &hostBuf);
1100#else
1101 struct stat64 hostBuf;
1102 int result = stat64(path.c_str(), &hostBuf);
1103#endif
1104
1105 if (result < 0)
1106 return -errno;
1107
1108 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1109
1110 return 0;
1111}
1112
1113
1114/// Target fstatat64() handler.
1115template <class OS>
1116SyscallReturn
1117fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1118 ThreadContext *tc)
1119{
1120 int index = 0;
1121 int dirfd = process->getSyscallArg(tc, index);
1122 if (dirfd != OS::TGT_AT_FDCWD)
1123 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1124
1125 std::string path;
1126 if (!tc->getMemProxy().tryReadString(path,
1127 process->getSyscallArg(tc, index)))
1128 return -EFAULT;
1129 Addr bufPtr = process->getSyscallArg(tc, index);
1130
1131 // Adjust path for current working directory
1132 path = process->fullPath(path);
1133
1134#if NO_STAT64
1135 struct stat hostBuf;
1136 int result = stat(path.c_str(), &hostBuf);
1137#else
1138 struct stat64 hostBuf;
1139 int result = stat64(path.c_str(), &hostBuf);
1140#endif
1141
1142 if (result < 0)
1143 return -errno;
1144
1145 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1146
1147 return 0;
1148}
1149
1150
1151/// Target fstat64() handler.
1152template <class OS>
1153SyscallReturn
1154fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1155{
1156 int index = 0;
1157 int tgt_fd = p->getSyscallArg(tc, index);
1158 Addr bufPtr = p->getSyscallArg(tc, index);
1159
1160 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1161 if (!ffdp)
1162 return -EBADF;
1163 int sim_fd = ffdp->getSimFD();
1164
1165#if NO_STAT64
1166 struct stat hostBuf;
1167 int result = fstat(sim_fd, &hostBuf);
1168#else
1169 struct stat64 hostBuf;
1170 int result = fstat64(sim_fd, &hostBuf);
1171#endif
1172
1173 if (result < 0)
1174 return -errno;
1175
1176 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1177
1178 return 0;
1179}
1180
1181
1182/// Target lstat() handler.
1183template <class OS>
1184SyscallReturn
1185lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1186 ThreadContext *tc)
1187{
1188 std::string path;
1189
1190 int index = 0;
1191 if (!tc->getMemProxy().tryReadString(path,
1192 process->getSyscallArg(tc, index))) {
1193 return -EFAULT;
1194 }
1195 Addr bufPtr = process->getSyscallArg(tc, index);
1196
1197 // Adjust path for current working directory
1198 path = process->fullPath(path);
1199
1200 struct stat hostBuf;
1201 int result = lstat(path.c_str(), &hostBuf);
1202
1203 if (result < 0)
1204 return -errno;
1205
1206 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1207
1208 return 0;
1209}
1210
1211/// Target lstat64() handler.
1212template <class OS>
1213SyscallReturn
1214lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1215 ThreadContext *tc)
1216{
1217 std::string path;
1218
1219 int index = 0;
1220 if (!tc->getMemProxy().tryReadString(path,
1221 process->getSyscallArg(tc, index))) {
1222 return -EFAULT;
1223 }
1224 Addr bufPtr = process->getSyscallArg(tc, index);
1225
1226 // Adjust path for current working directory
1227 path = process->fullPath(path);
1228
1229#if NO_STAT64
1230 struct stat hostBuf;
1231 int result = lstat(path.c_str(), &hostBuf);
1232#else
1233 struct stat64 hostBuf;
1234 int result = lstat64(path.c_str(), &hostBuf);
1235#endif
1236
1237 if (result < 0)
1238 return -errno;
1239
1240 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1241
1242 return 0;
1243}
1244
1245/// Target fstat() handler.
1246template <class OS>
1247SyscallReturn
1248fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1249{
1250 int index = 0;
1251 int tgt_fd = p->getSyscallArg(tc, index);
1252 Addr bufPtr = p->getSyscallArg(tc, index);
1253
1254 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1255
1256 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1257 if (!ffdp)
1258 return -EBADF;
1259 int sim_fd = ffdp->getSimFD();
1260
1261 struct stat hostBuf;
1262 int result = fstat(sim_fd, &hostBuf);
1263
1264 if (result < 0)
1265 return -errno;
1266
1267 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1268
1269 return 0;
1270}
1271
1272
1273/// Target statfs() handler.
1274template <class OS>
1275SyscallReturn
1276statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1277 ThreadContext *tc)
1278{
1279#if NO_STATFS
1280 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1281#else
1282 std::string path;
1283
1284 int index = 0;
1285 if (!tc->getMemProxy().tryReadString(path,
1286 process->getSyscallArg(tc, index))) {
1287 return -EFAULT;
1288 }
1289 Addr bufPtr = process->getSyscallArg(tc, index);
1290
1291 // Adjust path for current working directory
1292 path = process->fullPath(path);
1293
1294 struct statfs hostBuf;
1295 int result = statfs(path.c_str(), &hostBuf);
1296
1297 if (result < 0)
1298 return -errno;
1299
1300 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1301#endif
1302 return 0;
1303}
1304
1305template <class OS>
1306SyscallReturn
1307cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1308{
1309 int index = 0;
1310
1311 RegVal flags = p->getSyscallArg(tc, index);
1312 RegVal newStack = p->getSyscallArg(tc, index);
1313 Addr ptidPtr = p->getSyscallArg(tc, index);
1314
1315#if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA
1316 /**
1317 * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm.
1318 * The flag defines the list of clone() arguments in the following
1319 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1320 */
1321 Addr tlsPtr = p->getSyscallArg(tc, index);
1322 Addr ctidPtr = p->getSyscallArg(tc, index);
1323#else
1324 Addr ctidPtr = p->getSyscallArg(tc, index);
1325 Addr tlsPtr = p->getSyscallArg(tc, index);
1326#endif
1327
1328 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1329 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1330 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1331 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1332 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1333 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1334 return -EINVAL;
1335
1336 ThreadContext *ctc;
1337 if (!(ctc = p->findFreeContext()))
1338 fatal("clone: no spare thread context in system");
1339
1340 /**
1341 * Note that ProcessParams is generated by swig and there are no other
1342 * examples of how to create anything but this default constructor. The
1343 * fields are manually initialized instead of passing parameters to the
1344 * constructor.
1345 */
1346 ProcessParams *pp = new ProcessParams();
1347 pp->executable.assign(*(new std::string(p->progName())));
1348 pp->cmd.push_back(*(new std::string(p->progName())));
1349 pp->system = p->system;
1350 pp->cwd.assign(p->getcwd());
1351 pp->input.assign("stdin");
1352 pp->output.assign("stdout");
1353 pp->errout.assign("stderr");
1354 pp->uid = p->uid();
1355 pp->euid = p->euid();
1356 pp->gid = p->gid();
1357 pp->egid = p->egid();
1358
1359 /* Find the first free PID that's less than the maximum */
1360 std::set<int> const& pids = p->system->PIDs;
1361 int temp_pid = *pids.begin();
1362 do {
1363 temp_pid++;
1364 } while (pids.find(temp_pid) != pids.end());
1365 if (temp_pid >= System::maxPID)
1366 fatal("temp_pid is too large: %d", temp_pid);
1367
1368 pp->pid = temp_pid;
1369 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1370 Process *cp = pp->create();
1371 delete pp;
1372
1373 Process *owner = ctc->getProcessPtr();
1374 ctc->setProcessPtr(cp);
1375 cp->assignThreadContext(ctc->contextId());
1376 owner->revokeThreadContext(ctc->contextId());
1377
1378 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1379 BufferArg ptidBuf(ptidPtr, sizeof(long));
1380 long *ptid = (long *)ptidBuf.bufferPtr();
1381 *ptid = cp->pid();
1382 ptidBuf.copyOut(tc->getMemProxy());
1383 }
1384
1385 cp->initState();
1386 p->clone(tc, ctc, cp, flags);
1387
1388 if (flags & OS::TGT_CLONE_THREAD) {
1389 delete cp->sigchld;
1390 cp->sigchld = p->sigchld;
1391 } else if (flags & OS::TGT_SIGCHLD) {
1392 *cp->sigchld = true;
1393 }
1394
1395 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1396 BufferArg ctidBuf(ctidPtr, sizeof(long));
1397 long *ctid = (long *)ctidBuf.bufferPtr();
1398 *ctid = cp->pid();
1399 ctidBuf.copyOut(ctc->getMemProxy());
1400 }
1401
1402 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1403 cp->childClearTID = (uint64_t)ctidPtr;
1404
1405 ctc->clearArchRegs();
1406
1407 OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr);
1408
1409 cp->setSyscallReturn(ctc, 0);
1410
1411#if THE_ISA == ALPHA_ISA
1412 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1413#elif THE_ISA == SPARC_ISA
1414 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1415 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1416#endif
1417
1418 TheISA::PCState cpc = tc->pcState();
1419 cpc.advance();
1420 ctc->pcState(cpc);
1421 ctc->activate();
1422
1423 return cp->pid();
1424}
1425
1426/// Target fstatfs() handler.
1427template <class OS>
1428SyscallReturn
1429fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1430{
1431 int index = 0;
1432 int tgt_fd = p->getSyscallArg(tc, index);
1433 Addr bufPtr = p->getSyscallArg(tc, index);
1434
1435 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1436 if (!ffdp)
1437 return -EBADF;
1438 int sim_fd = ffdp->getSimFD();
1439
1440 struct statfs hostBuf;
1441 int result = fstatfs(sim_fd, &hostBuf);
1442
1443 if (result < 0)
1444 return -errno;
1445
1446 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1447
1448 return 0;
1449}
1450
1451
1452/// Target writev() handler.
1453template <class OS>
1454SyscallReturn
1455writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1456{
1457 int index = 0;
1458 int tgt_fd = p->getSyscallArg(tc, index);
1459
1460 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1461 if (!hbfdp)
1462 return -EBADF;
1463 int sim_fd = hbfdp->getSimFD();
1464
1465 SETranslatingPortProxy &prox = tc->getMemProxy();
1466 uint64_t tiov_base = p->getSyscallArg(tc, index);
1467 size_t count = p->getSyscallArg(tc, index);
1468 struct iovec hiov[count];
1469 for (size_t i = 0; i < count; ++i) {
1470 typename OS::tgt_iovec tiov;
1471
1472 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1473 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1474 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1475 hiov[i].iov_base = new char [hiov[i].iov_len];
1476 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1477 hiov[i].iov_len);
1478 }
1479
1480 int result = writev(sim_fd, hiov, count);
1481
1482 for (size_t i = 0; i < count; ++i)
1483 delete [] (char *)hiov[i].iov_base;
1484
1485 if (result < 0)
1486 return -errno;
1487
1488 return result;
1489}
1490
1491/// Real mmap handler.
1492template <class OS>
1493SyscallReturn
1494mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1495 bool is_mmap2)
1496{
1497 int index = 0;
1498 Addr start = p->getSyscallArg(tc, index);
1499 uint64_t length = p->getSyscallArg(tc, index);
1500 int prot = p->getSyscallArg(tc, index);
1501 int tgt_flags = p->getSyscallArg(tc, index);
1502 int tgt_fd = p->getSyscallArg(tc, index);
1503 int offset = p->getSyscallArg(tc, index);
1504
1505 if (is_mmap2)
1506 offset *= TheISA::PageBytes;
1507
1508 if (start & (TheISA::PageBytes - 1) ||
1509 offset & (TheISA::PageBytes - 1) ||
1510 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1511 tgt_flags & OS::TGT_MAP_SHARED) ||
1512 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1513 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1514 !length) {
1515 return -EINVAL;
1516 }
1517
1518 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1519 // With shared mmaps, there are two cases to consider:
1520 // 1) anonymous: writes should modify the mapping and this should be
1521 // visible to observers who share the mapping. Currently, it's
1522 // difficult to update the shared mapping because there's no
1523 // structure which maintains information about the which virtual
1524 // memory areas are shared. If that structure existed, it would be
1525 // possible to make the translations point to the same frames.
1526 // 2) file-backed: writes should modify the mapping and the file
1527 // which is backed by the mapping. The shared mapping problem is the
1528 // same as what was mentioned about the anonymous mappings. For
1529 // file-backed mappings, the writes to the file are difficult
1530 // because it requires syncing what the mapping holds with the file
1531 // that resides on the host system. So, any write on a real system
1532 // would cause the change to be propagated to the file mapping at
1533 // some point in the future (the inode is tracked along with the
1534 // mapping). This isn't guaranteed to always happen, but it usually
1535 // works well enough. The guarantee is provided by the msync system
1536 // call. We could force the change through with shared mappings with
1537 // a call to msync, but that again would require more information
1538 // than we currently maintain.
1539 warn("mmap: writing to shared mmap region is currently "
1540 "unsupported. The write succeeds on the target, but it "
1541 "will not be propagated to the host or shared mappings");
1542 }
1543
1544 length = roundUp(length, TheISA::PageBytes);
1545
1546 int sim_fd = -1;
1547 uint8_t *pmap = nullptr;
1548 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1549 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1550
1551 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1552 if (dfdp) {
1553 EmulatedDriver *emul_driver = dfdp->getDriver();
1554 return emul_driver->mmap(p, tc, start, length, prot,
1555 tgt_flags, tgt_fd, offset);
1556 }
1557
1558 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1559 if (!ffdp)
1560 return -EBADF;
1561 sim_fd = ffdp->getSimFD();
1562
1563 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1564 sim_fd, offset);
1565
1566 if (pmap == (decltype(pmap))-1) {
1567 warn("mmap: failed to map file into host address space");
1568 return -errno;
1569 }
1570 }
1571
1572 // Extend global mmap region if necessary. Note that we ignore the
1573 // start address unless MAP_FIXED is specified.
1574 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1575 std::shared_ptr<MemState> mem_state = p->memState;
1576 Addr mmap_end = mem_state->getMmapEnd();
1577
1578 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1579 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1580
1581 mem_state->setMmapEnd(mmap_end);
1582 }
1583
1584 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1585 start, start + length - 1);
1586
1587 // We only allow mappings to overwrite existing mappings if
1588 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1589 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1590 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1591 if (clobber) {
1592 for (auto tc : p->system->threadContexts) {
1593 // If we might be overwriting old mappings, we need to
1594 // invalidate potentially stale mappings out of the TLBs.
1595 tc->getDTBPtr()->flushAll();
1596 tc->getITBPtr()->flushAll();
1597 }
1598 }
1599
1600 // Allocate physical memory and map it in. If the page table is already
1601 // mapped and clobber is not set, the simulator will issue throw a
1602 // fatal and bail out of the simulation.
1603 p->allocateMem(start, length, clobber);
1604
1605 // Transfer content into target address space.
1606 SETranslatingPortProxy &tp = tc->getMemProxy();
1607 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1608 // In general, we should zero the mapped area for anonymous mappings,
1609 // with something like:
1610 // tp.memsetBlob(start, 0, length);
1611 // However, given that we don't support sparse mappings, and
1612 // some applications can map a couple of gigabytes of space
1613 // (intending sparse usage), that can get painfully expensive.
1614 // Fortunately, since we don't properly implement munmap either,
1615 // there's no danger of remapping used memory, so for now all
1616 // newly mapped memory should already be zeroed so we can skip it.
1617 } else {
1618 // It is possible to mmap an area larger than a file, however
1619 // accessing unmapped portions the system triggers a "Bus error"
1620 // on the host. We must know when to stop copying the file from
1621 // the host into the target address space.
1622 struct stat file_stat;
1623 if (fstat(sim_fd, &file_stat) > 0)
1624 fatal("mmap: cannot stat file");
1625
1626 // Copy the portion of the file that is resident. This requires
1627 // checking both the mmap size and the filesize that we are
1628 // trying to mmap into this space; the mmap size also depends
1629 // on the specified offset into the file.
1630 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1631 length);
1632 tp.writeBlob(start, pmap, size);
1633
1634 // Cleanup the mmap region before exiting this function.
1635 munmap(pmap, length);
1636
1637 // Maintain the symbol table for dynamic executables.
1638 // The loader will call mmap to map the images into its address
1639 // space and we intercept that here. We can verify that we are
1640 // executing inside the loader by checking the program counter value.
1641 // XXX: with multiprogrammed workloads or multi-node configurations,
1642 // this will not work since there is a single global symbol table.
1643 ObjectFile *interpreter = p->getInterpreter();
1644 if (interpreter) {
1645 Addr text_start = interpreter->textBase();
1646 Addr text_end = text_start + interpreter->textSize();
1647
1648 Addr pc = tc->pcState().pc();
1649
1650 if (pc >= text_start && pc < text_end) {
1651 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1652 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1653 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1654
1655 if (lib) {
1656 lib->loadAllSymbols(debugSymbolTable,
1657 lib->textBase(), start);
1658 }
1659 }
1660 }
1661
1662 // Note that we do not zero out the remainder of the mapping. This
1663 // is done by a real system, but it probably will not affect
1664 // execution (hopefully).
1665 }
1666
1667 return start;
1668}
1669
1670template <class OS>
1671SyscallReturn
1672pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1673{
1674 int index = 0;
1675 int tgt_fd = p->getSyscallArg(tc, index);
1676 Addr bufPtr = p->getSyscallArg(tc, index);
1677 int nbytes = p->getSyscallArg(tc, index);
1678 int offset = p->getSyscallArg(tc, index);
1679
1680 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1681 if (!ffdp)
1682 return -EBADF;
1683 int sim_fd = ffdp->getSimFD();
1684
1685 BufferArg bufArg(bufPtr, nbytes);
1686 bufArg.copyIn(tc->getMemProxy());
1687
1688 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1689
1690 return (bytes_written == -1) ? -errno : bytes_written;
1691}
1692
1693/// Target mmap() handler.
1694template <class OS>
1695SyscallReturn
1696mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1697{
1698 return mmapImpl<OS>(desc, num, p, tc, false);
1699}
1700
1701/// Target mmap2() handler.
1702template <class OS>
1703SyscallReturn
1704mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1705{
1706 return mmapImpl<OS>(desc, num, p, tc, true);
1707}
1708
1709/// Target getrlimit() handler.
1710template <class OS>
1711SyscallReturn
1712getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1713 ThreadContext *tc)
1714{
1715 int index = 0;
1716 unsigned resource = process->getSyscallArg(tc, index);
1717 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1718
1719 switch (resource) {
1720 case OS::TGT_RLIMIT_STACK:
1721 // max stack size in bytes: make up a number (8MB for now)
1722 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1723 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1724 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1725 break;
1726
1727 case OS::TGT_RLIMIT_DATA:
1728 // max data segment size in bytes: make up a number
1729 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1730 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1731 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1732 break;
1733
1734 default:
1735 warn("getrlimit: unimplemented resource %d", resource);
1736 return -EINVAL;
1737 break;
1738 }
1739
1740 rlp.copyOut(tc->getMemProxy());
1741 return 0;
1742}
1743
1744template <class OS>
1745SyscallReturn
1746prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1747 ThreadContext *tc)
1748{
1749 int index = 0;
1750 if (process->getSyscallArg(tc, index) != 0)
1751 {
1752 warn("prlimit: ignoring rlimits for nonzero pid");
1753 return -EPERM;
1754 }
1755 int resource = process->getSyscallArg(tc, index);
1756 Addr n = process->getSyscallArg(tc, index);
1757 if (n != 0)
1758 warn("prlimit: ignoring new rlimit");
1759 Addr o = process->getSyscallArg(tc, index);
1760 if (o != 0)
1761 {
1762 TypedBufferArg<typename OS::rlimit> rlp(o);
1763 switch (resource) {
1764 case OS::TGT_RLIMIT_STACK:
1765 // max stack size in bytes: make up a number (8MB for now)
1766 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1767 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1768 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1769 break;
1770 case OS::TGT_RLIMIT_DATA:
1771 // max data segment size in bytes: make up a number
1772 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1773 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1774 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1775 break;
1776 default:
1777 warn("prlimit: unimplemented resource %d", resource);
1778 return -EINVAL;
1779 break;
1780 }
1781 rlp.copyOut(tc->getMemProxy());
1782 }
1783 return 0;
1784}
1785
1786/// Target clock_gettime() function.
1787template <class OS>
1788SyscallReturn
1789clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1790{
1791 int index = 1;
1792 //int clk_id = p->getSyscallArg(tc, index);
1793 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1794
1795 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1796 tp->tv_sec += seconds_since_epoch;
1797 tp->tv_sec = TheISA::htog(tp->tv_sec);
1798 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1799
1800 tp.copyOut(tc->getMemProxy());
1801
1802 return 0;
1803}
1804
1805/// Target clock_getres() function.
1806template <class OS>
1807SyscallReturn
1808clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1809{
1810 int index = 1;
1811 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1812
1813 // Set resolution at ns, which is what clock_gettime() returns
1814 tp->tv_sec = 0;
1815 tp->tv_nsec = 1;
1816
1817 tp.copyOut(tc->getMemProxy());
1818
1819 return 0;
1820}
1821
1822/// Target gettimeofday() handler.
1823template <class OS>
1824SyscallReturn
1825gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1826 ThreadContext *tc)
1827{
1828 int index = 0;
1829 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1830
1831 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1832 tp->tv_sec += seconds_since_epoch;
1833 tp->tv_sec = TheISA::htog(tp->tv_sec);
1834 tp->tv_usec = TheISA::htog(tp->tv_usec);
1835
1836 tp.copyOut(tc->getMemProxy());
1837
1838 return 0;
1839}
1840
1841
1842/// Target utimes() handler.
1843template <class OS>
1844SyscallReturn
1845utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1846 ThreadContext *tc)
1847{
1848 std::string path;
1849
1850 int index = 0;
1851 if (!tc->getMemProxy().tryReadString(path,
1852 process->getSyscallArg(tc, index))) {
1853 return -EFAULT;
1854 }
1855
1856 TypedBufferArg<typename OS::timeval [2]>
1857 tp(process->getSyscallArg(tc, index));
1858 tp.copyIn(tc->getMemProxy());
1859
1860 struct timeval hostTimeval[2];
1861 for (int i = 0; i < 2; ++i) {
1862 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1863 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1864 }
1865
1866 // Adjust path for current working directory
1867 path = process->fullPath(path);
1868
1869 int result = utimes(path.c_str(), hostTimeval);
1870
1871 if (result < 0)
1872 return -errno;
1873
1874 return 0;
1875}
1876
1877template <class OS>
1878SyscallReturn
1879execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1880{
1881 desc->setFlags(0);
1882
1883 int index = 0;
1884 std::string path;
1885 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1886 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1887 return -EFAULT;
1888
1889 if (access(path.c_str(), F_OK) == -1)
1890 return -EACCES;
1891
1892 auto read_in = [](std::vector<std::string> & vect,
1893 SETranslatingPortProxy & mem_proxy,
1894 Addr mem_loc)
1895 {
1896 for (int inc = 0; ; inc++) {
1897 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1898 b.copyIn(mem_proxy);
1899
1900 if (!*(Addr*)b.bufferPtr())
1901 break;
1902
1903 vect.push_back(std::string());
1904 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1905 }
1906 };
1907
1908 /**
1909 * Note that ProcessParams is generated by swig and there are no other
1910 * examples of how to create anything but this default constructor. The
1911 * fields are manually initialized instead of passing parameters to the
1912 * constructor.
1913 */
1914 ProcessParams *pp = new ProcessParams();
1915 pp->executable = path;
1916 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1917 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1918 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1919 read_in(pp->env, mem_proxy, envp_mem_loc);
1920 pp->uid = p->uid();
1921 pp->egid = p->egid();
1922 pp->euid = p->euid();
1923 pp->gid = p->gid();
1924 pp->ppid = p->ppid();
1925 pp->pid = p->pid();
1926 pp->input.assign("cin");
1927 pp->output.assign("cout");
1928 pp->errout.assign("cerr");
1929 pp->cwd.assign(p->getcwd());
1930 pp->system = p->system;
1931 /**
1932 * Prevent process object creation with identical PIDs (which will trip
1933 * a fatal check in Process constructor). The execve call is supposed to
1934 * take over the currently executing process' identity but replace
1935 * whatever it is doing with a new process image. Instead of hijacking
1936 * the process object in the simulator, we create a new process object
1937 * and bind to the previous process' thread below (hijacking the thread).
1938 */
1939 p->system->PIDs.erase(p->pid());
1940 Process *new_p = pp->create();
1941 delete pp;
1942
1943 /**
1944 * Work through the file descriptor array and close any files marked
1945 * close-on-exec.
1946 */
1947 new_p->fds = p->fds;
1948 for (int i = 0; i < new_p->fds->getSize(); i++) {
1949 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1950 if (fdep && fdep->getCOE())
1951 new_p->fds->closeFDEntry(i);
1952 }
1953
1954 *new_p->sigchld = true;
1955
1956 delete p;
1957 tc->clearArchRegs();
1958 tc->setProcessPtr(new_p);
1959 new_p->assignThreadContext(tc->contextId());
1960 new_p->initState();
1961 tc->activate();
1962 TheISA::PCState pcState = tc->pcState();
1963 tc->setNPC(pcState.instAddr());
1964
1965 desc->setFlags(SyscallDesc::SuppressReturnValue);
1966 return 0;
1967}
1968
1969/// Target getrusage() function.
1970template <class OS>
1971SyscallReturn
1972getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1973 ThreadContext *tc)
1974{
1975 int index = 0;
1976 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1977 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1978
1979 rup->ru_utime.tv_sec = 0;
1980 rup->ru_utime.tv_usec = 0;
1981 rup->ru_stime.tv_sec = 0;
1982 rup->ru_stime.tv_usec = 0;
1983 rup->ru_maxrss = 0;
1984 rup->ru_ixrss = 0;
1985 rup->ru_idrss = 0;
1986 rup->ru_isrss = 0;
1987 rup->ru_minflt = 0;
1988 rup->ru_majflt = 0;
1989 rup->ru_nswap = 0;
1990 rup->ru_inblock = 0;
1991 rup->ru_oublock = 0;
1992 rup->ru_msgsnd = 0;
1993 rup->ru_msgrcv = 0;
1994 rup->ru_nsignals = 0;
1995 rup->ru_nvcsw = 0;
1996 rup->ru_nivcsw = 0;
1997
1998 switch (who) {
1999 case OS::TGT_RUSAGE_SELF:
2000 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
2001 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
2002 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
2003 break;
2004
2005 case OS::TGT_RUSAGE_CHILDREN:
2006 // do nothing. We have no child processes, so they take no time.
2007 break;
2008
2009 default:
2010 // don't really handle THREAD or CHILDREN, but just warn and
2011 // plow ahead
2012 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
2013 who);
2014 }
2015
2016 rup.copyOut(tc->getMemProxy());
2017
2018 return 0;
2019}
2020
2021/// Target times() function.
2022template <class OS>
2023SyscallReturn
2024timesFunc(SyscallDesc *desc, int callnum, Process *process,
2025 ThreadContext *tc)
2026{
2027 int index = 0;
2028 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2029
2030 // Fill in the time structure (in clocks)
2031 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2032 bufp->tms_utime = clocks;
2033 bufp->tms_stime = 0;
2034 bufp->tms_cutime = 0;
2035 bufp->tms_cstime = 0;
2036
2037 // Convert to host endianness
2038 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2039
2040 // Write back
2041 bufp.copyOut(tc->getMemProxy());
2042
2043 // Return clock ticks since system boot
2044 return clocks;
2045}
2046
2047/// Target time() function.
2048template <class OS>
2049SyscallReturn
2050timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2051{
2052 typename OS::time_t sec, usec;
2053 getElapsedTimeMicro(sec, usec);
2054 sec += seconds_since_epoch;
2055
2056 int index = 0;
2057 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2058 if (taddr != 0) {
2059 typename OS::time_t t = sec;
2060 t = TheISA::htog(t);
2061 SETranslatingPortProxy &p = tc->getMemProxy();
2062 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2063 }
2064 return sec;
2065}
2066
2067template <class OS>
2068SyscallReturn
2069tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2070{
2071 int index = 0;
2072 int tgid = process->getSyscallArg(tc, index);
2073 int tid = process->getSyscallArg(tc, index);
2074 int sig = process->getSyscallArg(tc, index);
2075
2076 /**
2077 * This system call is intended to allow killing a specific thread
2078 * within an arbitrary thread group if sanctioned with permission checks.
2079 * It's usually true that threads share the termination signal as pointed
2080 * out by the pthread_kill man page and this seems to be the intended
2081 * usage. Due to this being an emulated environment, assume the following:
2082 * Threads are allowed to call tgkill because the EUID for all threads
2083 * should be the same. There is no signal handling mechanism for kernel
2084 * registration of signal handlers since signals are poorly supported in
2085 * emulation mode. Since signal handlers cannot be registered, all
2086 * threads within in a thread group must share the termination signal.
2087 * We never exhaust PIDs so there's no chance of finding the wrong one
2088 * due to PID rollover.
2089 */
2090
2091 System *sys = tc->getSystemPtr();
2092 Process *tgt_proc = nullptr;
2093 for (int i = 0; i < sys->numContexts(); i++) {
2094 Process *temp = sys->threadContexts[i]->getProcessPtr();
2095 if (temp->pid() == tid) {
2096 tgt_proc = temp;
2097 break;
2098 }
2099 }
2100
2101 if (sig != 0 || sig != OS::TGT_SIGABRT)
2102 return -EINVAL;
2103
2104 if (tgt_proc == nullptr)
2105 return -ESRCH;
2106
2107 if (tgid != -1 && tgt_proc->tgid() != tgid)
2108 return -ESRCH;
2109
2110 if (sig == OS::TGT_SIGABRT)
2111 exitGroupFunc(desc, 252, process, tc);
2112
2113 return 0;
2114}
2115
2116template <class OS>
2117SyscallReturn
2118socketFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2119{
2120 int index = 0;
2121 int domain = p->getSyscallArg(tc, index);
2122 int type = p->getSyscallArg(tc, index);
2123 int prot = p->getSyscallArg(tc, index);
2124
2125 int sim_fd = socket(domain, type, prot);
2126 if (sim_fd == -1)
2127 return -errno;
2128
2129 auto sfdp = std::make_shared<SocketFDEntry>(sim_fd, domain, type, prot);
2130 int tgt_fd = p->fds->allocFD(sfdp);
2131
2132 return tgt_fd;
2133}
2134
2135template <class OS>
2136SyscallReturn
2137socketpairFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
2138{
2139 int index = 0;
2140 int domain = p->getSyscallArg(tc, index);
2141 int type = p->getSyscallArg(tc, index);
2142 int prot = p->getSyscallArg(tc, index);
2143 Addr svPtr = p->getSyscallArg(tc, index);
2144
2145 BufferArg svBuf((Addr)svPtr, 2 * sizeof(int));
2146 int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr());
2147 if (status == -1)
2148 return -errno;
2149
2150 int *fds = (int *)svBuf.bufferPtr();
2151
2152 auto sfdp1 = std::make_shared<SocketFDEntry>(fds[0], domain, type, prot);
2153 fds[0] = p->fds->allocFD(sfdp1);
2154 auto sfdp2 = std::make_shared<SocketFDEntry>(fds[1], domain, type, prot);
2155 fds[1] = p->fds->allocFD(sfdp2);
2156 svBuf.copyOut(tc->getMemProxy());
2157
2158 return status;
2159}
2160
2161#endif // __SIM_SYSCALL_EMUL_HH__