Deleted Added
sdiff udiff text old ( 12795:6e69f6a3c0c0 ) new ( 12796:16dffc0e6c7f )
full compact
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/generic/tlb.hh"
97#include "arch/utility.hh"
98#include "base/intmath.hh"
99#include "base/loader/object_file.hh"
100#include "base/logging.hh"
101#include "base/trace.hh"
102#include "base/types.hh"
103#include "config/the_isa.hh"
104#include "cpu/base.hh"
105#include "cpu/thread_context.hh"
106#include "mem/page_table.hh"
107#include "params/Process.hh"
108#include "sim/emul_driver.hh"
109#include "sim/futex_map.hh"
110#include "sim/process.hh"
111#include "sim/syscall_debug_macros.hh"
112#include "sim/syscall_desc.hh"
113#include "sim/syscall_emul_buf.hh"
114#include "sim/syscall_return.hh"
115
116//////////////////////////////////////////////////////////////////////
117//
118// The following emulation functions are generic enough that they
119// don't need to be recompiled for different emulated OS's. They are
120// defined in sim/syscall_emul.cc.
121//
122//////////////////////////////////////////////////////////////////////
123
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
127 Process *p, ThreadContext *tc);
128
129/// Handler for unimplemented syscalls that we never intend to
130/// implement (signal handling, etc.) and should not affect the correct
131/// behavior of the program. Print a warning only if the appropriate
132/// trace flag is enabled. Return success to the target program.
133SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
134 Process *p, ThreadContext *tc);
135
136// Target fallocateFunc() handler.
137SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
138 Process *p, ThreadContext *tc);
139
140/// Target exit() handler: terminate current context.
141SyscallReturn exitFunc(SyscallDesc *desc, int num,
142 Process *p, ThreadContext *tc);
143
144/// Target exit_group() handler: terminate simulation. (exit all threads)
145SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
146 Process *p, ThreadContext *tc);
147
148/// Target set_tid_address() handler.
149SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
150 Process *p, ThreadContext *tc);
151
152/// Target getpagesize() handler.
153SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
154 Process *p, ThreadContext *tc);
155
156/// Target brk() handler: set brk address.
157SyscallReturn brkFunc(SyscallDesc *desc, int num,
158 Process *p, ThreadContext *tc);
159
160/// Target close() handler.
161SyscallReturn closeFunc(SyscallDesc *desc, int num,
162 Process *p, ThreadContext *tc);
163
164// Target read() handler.
165SyscallReturn readFunc(SyscallDesc *desc, int num,
166 Process *p, ThreadContext *tc);
167
168/// Target write() handler.
169SyscallReturn writeFunc(SyscallDesc *desc, int num,
170 Process *p, ThreadContext *tc);
171
172/// Target lseek() handler.
173SyscallReturn lseekFunc(SyscallDesc *desc, int num,
174 Process *p, ThreadContext *tc);
175
176/// Target _llseek() handler.
177SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
178 Process *p, ThreadContext *tc);
179
180/// Target munmap() handler.
181SyscallReturn munmapFunc(SyscallDesc *desc, int num,
182 Process *p, ThreadContext *tc);
183
184/// Target gethostname() handler.
185SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
186 Process *p, ThreadContext *tc);
187
188/// Target getcwd() handler.
189SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
190 Process *p, ThreadContext *tc);
191
192/// Target readlink() handler.
193SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
194 Process *p, ThreadContext *tc,
195 int index = 0);
196SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
197 Process *p, ThreadContext *tc);
198
199/// Target unlink() handler.
200SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
201 Process *p, ThreadContext *tc,
202 int index);
203SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
204 Process *p, ThreadContext *tc);
205
206/// Target link() handler
207SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
208 ThreadContext *tc);
209
210/// Target mkdir() handler.
211SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
212 Process *p, ThreadContext *tc);
213
214/// Target rename() handler.
215SyscallReturn renameFunc(SyscallDesc *desc, int num,
216 Process *p, ThreadContext *tc);
217
218
219/// Target truncate() handler.
220SyscallReturn truncateFunc(SyscallDesc *desc, int num,
221 Process *p, ThreadContext *tc);
222
223
224/// Target ftruncate() handler.
225SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
226 Process *p, ThreadContext *tc);
227
228
229/// Target truncate64() handler.
230SyscallReturn truncate64Func(SyscallDesc *desc, int num,
231 Process *p, ThreadContext *tc);
232
233/// Target ftruncate64() handler.
234SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
235 Process *p, ThreadContext *tc);
236
237
238/// Target umask() handler.
239SyscallReturn umaskFunc(SyscallDesc *desc, int num,
240 Process *p, ThreadContext *tc);
241
242/// Target gettid() handler.
243SyscallReturn gettidFunc(SyscallDesc *desc, int num,
244 Process *p, ThreadContext *tc);
245
246/// Target chown() handler.
247SyscallReturn chownFunc(SyscallDesc *desc, int num,
248 Process *p, ThreadContext *tc);
249
250/// Target setpgid() handler.
251SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
252 Process *p, ThreadContext *tc);
253
254/// Target fchown() handler.
255SyscallReturn fchownFunc(SyscallDesc *desc, int num,
256 Process *p, ThreadContext *tc);
257
258/// Target dup() handler.
259SyscallReturn dupFunc(SyscallDesc *desc, int num,
260 Process *process, ThreadContext *tc);
261
262/// Target dup2() handler.
263SyscallReturn dup2Func(SyscallDesc *desc, int num,
264 Process *process, ThreadContext *tc);
265
266/// Target fcntl() handler.
267SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
268 Process *process, ThreadContext *tc);
269
270/// Target fcntl64() handler.
271SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
272 Process *process, ThreadContext *tc);
273
274/// Target setuid() handler.
275SyscallReturn setuidFunc(SyscallDesc *desc, int num,
276 Process *p, ThreadContext *tc);
277
278/// Target pipe() handler.
279SyscallReturn pipeFunc(SyscallDesc *desc, int num,
280 Process *p, ThreadContext *tc);
281
282/// Internal pipe() handler.
283SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
284 ThreadContext *tc, bool pseudoPipe);
285
286/// Target getpid() handler.
287SyscallReturn getpidFunc(SyscallDesc *desc, int num,
288 Process *p, ThreadContext *tc);
289
290/// Target getuid() handler.
291SyscallReturn getuidFunc(SyscallDesc *desc, int num,
292 Process *p, ThreadContext *tc);
293
294/// Target getgid() handler.
295SyscallReturn getgidFunc(SyscallDesc *desc, int num,
296 Process *p, ThreadContext *tc);
297
298/// Target getppid() handler.
299SyscallReturn getppidFunc(SyscallDesc *desc, int num,
300 Process *p, ThreadContext *tc);
301
302/// Target geteuid() handler.
303SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
304 Process *p, ThreadContext *tc);
305
306/// Target getegid() handler.
307SyscallReturn getegidFunc(SyscallDesc *desc, int num,
308 Process *p, ThreadContext *tc);
309
310/// Target access() handler
311SyscallReturn accessFunc(SyscallDesc *desc, int num,
312 Process *p, ThreadContext *tc);
313SyscallReturn accessFunc(SyscallDesc *desc, int num,
314 Process *p, ThreadContext *tc,
315 int index);
316
317/// Futex system call
318/// Implemented by Daniel Sanchez
319/// Used by printf's in multi-threaded apps
320template <class OS>
321SyscallReturn
322futexFunc(SyscallDesc *desc, int callnum, Process *process,
323 ThreadContext *tc)
324{
325 using namespace std;
326
327 int index = 0;
328 Addr uaddr = process->getSyscallArg(tc, index);
329 int op = process->getSyscallArg(tc, index);
330 int val = process->getSyscallArg(tc, index);
331
332 /*
333 * Unsupported option that does not affect the correctness of the
334 * application. This is a performance optimization utilized by Linux.
335 */
336 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
337
338 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
339
340 if (OS::TGT_FUTEX_WAIT == op) {
341 // Ensure futex system call accessed atomically.
342 BufferArg buf(uaddr, sizeof(int));
343 buf.copyIn(tc->getMemProxy());
344 int mem_val = *(int*)buf.bufferPtr();
345
346 /*
347 * The value in memory at uaddr is not equal with the expected val
348 * (a different thread must have changed it before the system call was
349 * invoked). In this case, we need to throw an error.
350 */
351 if (val != mem_val)
352 return -OS::TGT_EWOULDBLOCK;
353
354 futex_map.suspend(uaddr, process->tgid(), tc);
355
356 return 0;
357 } else if (OS::TGT_FUTEX_WAKE == op) {
358 return futex_map.wakeup(uaddr, process->tgid(), val);
359 }
360
361 warn("futex: op %d not implemented; ignoring.", op);
362 return -ENOSYS;
363}
364
365
366/// Pseudo Funcs - These functions use a different return convension,
367/// returning a second value in a register other than the normal return register
368SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
369 Process *process, ThreadContext *tc);
370
371/// Target getpidPseudo() handler.
372SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
373 Process *p, ThreadContext *tc);
374
375/// Target getuidPseudo() handler.
376SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
377 Process *p, ThreadContext *tc);
378
379/// Target getgidPseudo() handler.
380SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
381 Process *p, ThreadContext *tc);
382
383
384/// A readable name for 1,000,000, for converting microseconds to seconds.
385const int one_million = 1000000;
386/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
387const int one_billion = 1000000000;
388
389/// Approximate seconds since the epoch (1/1/1970). About a billion,
390/// by my reckoning. We want to keep this a constant (not use the
391/// real-world time) to keep simulations repeatable.
392const unsigned seconds_since_epoch = 1000000000;
393
394/// Helper function to convert current elapsed time to seconds and
395/// microseconds.
396template <class T1, class T2>
397void
398getElapsedTimeMicro(T1 &sec, T2 &usec)
399{
400 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
401 sec = elapsed_usecs / one_million;
402 usec = elapsed_usecs % one_million;
403}
404
405/// Helper function to convert current elapsed time to seconds and
406/// nanoseconds.
407template <class T1, class T2>
408void
409getElapsedTimeNano(T1 &sec, T2 &nsec)
410{
411 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
412 sec = elapsed_nsecs / one_billion;
413 nsec = elapsed_nsecs % one_billion;
414}
415
416//////////////////////////////////////////////////////////////////////
417//
418// The following emulation functions are generic, but need to be
419// templated to account for differences in types, constants, etc.
420//
421//////////////////////////////////////////////////////////////////////
422
423 typedef struct statfs hst_statfs;
424#if NO_STAT64
425 typedef struct stat hst_stat;
426 typedef struct stat hst_stat64;
427#else
428 typedef struct stat hst_stat;
429 typedef struct stat64 hst_stat64;
430#endif
431
432//// Helper function to convert a host stat buffer to a target stat
433//// buffer. Also copies the target buffer out to the simulated
434//// memory space. Used by stat(), fstat(), and lstat().
435
436template <typename target_stat, typename host_stat>
437void
438convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
439{
440 using namespace TheISA;
441
442 if (fakeTTY)
443 tgt->st_dev = 0xA;
444 else
445 tgt->st_dev = host->st_dev;
446 tgt->st_dev = TheISA::htog(tgt->st_dev);
447 tgt->st_ino = host->st_ino;
448 tgt->st_ino = TheISA::htog(tgt->st_ino);
449 tgt->st_mode = host->st_mode;
450 if (fakeTTY) {
451 // Claim to be a character device
452 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
453 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
454 }
455 tgt->st_mode = TheISA::htog(tgt->st_mode);
456 tgt->st_nlink = host->st_nlink;
457 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
458 tgt->st_uid = host->st_uid;
459 tgt->st_uid = TheISA::htog(tgt->st_uid);
460 tgt->st_gid = host->st_gid;
461 tgt->st_gid = TheISA::htog(tgt->st_gid);
462 if (fakeTTY)
463 tgt->st_rdev = 0x880d;
464 else
465 tgt->st_rdev = host->st_rdev;
466 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
467 tgt->st_size = host->st_size;
468 tgt->st_size = TheISA::htog(tgt->st_size);
469 tgt->st_atimeX = host->st_atime;
470 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
471 tgt->st_mtimeX = host->st_mtime;
472 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
473 tgt->st_ctimeX = host->st_ctime;
474 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
475 // Force the block size to be 8KB. This helps to ensure buffered io works
476 // consistently across different hosts.
477 tgt->st_blksize = 0x2000;
478 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
479 tgt->st_blocks = host->st_blocks;
480 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
481}
482
483// Same for stat64
484
485template <typename target_stat, typename host_stat64>
486void
487convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
488{
489 using namespace TheISA;
490
491 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
492#if defined(STAT_HAVE_NSEC)
493 tgt->st_atime_nsec = host->st_atime_nsec;
494 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
495 tgt->st_mtime_nsec = host->st_mtime_nsec;
496 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
497 tgt->st_ctime_nsec = host->st_ctime_nsec;
498 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
499#else
500 tgt->st_atime_nsec = 0;
501 tgt->st_mtime_nsec = 0;
502 tgt->st_ctime_nsec = 0;
503#endif
504}
505
506// Here are a couple of convenience functions
507template<class OS>
508void
509copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
510 hst_stat *host, bool fakeTTY = false)
511{
512 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
513 tgt_stat_buf tgt(addr);
514 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
515 tgt.copyOut(mem);
516}
517
518template<class OS>
519void
520copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
521 hst_stat64 *host, bool fakeTTY = false)
522{
523 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
524 tgt_stat_buf tgt(addr);
525 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
526 tgt.copyOut(mem);
527}
528
529template <class OS>
530void
531copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
532 hst_statfs *host)
533{
534 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
535
536 tgt->f_type = TheISA::htog(host->f_type);
537#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
538 tgt->f_bsize = TheISA::htog(host->f_iosize);
539#else
540 tgt->f_bsize = TheISA::htog(host->f_bsize);
541#endif
542 tgt->f_blocks = TheISA::htog(host->f_blocks);
543 tgt->f_bfree = TheISA::htog(host->f_bfree);
544 tgt->f_bavail = TheISA::htog(host->f_bavail);
545 tgt->f_files = TheISA::htog(host->f_files);
546 tgt->f_ffree = TheISA::htog(host->f_ffree);
547 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
548#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
549 tgt->f_namelen = TheISA::htog(host->f_namemax);
550 tgt->f_frsize = TheISA::htog(host->f_bsize);
551#elif defined(__APPLE__)
552 tgt->f_namelen = 0;
553 tgt->f_frsize = 0;
554#else
555 tgt->f_namelen = TheISA::htog(host->f_namelen);
556 tgt->f_frsize = TheISA::htog(host->f_frsize);
557#endif
558#if defined(__linux__)
559 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
560#else
561 /*
562 * The fields are different sizes per OS. Don't bother with
563 * f_spare or f_reserved on non-Linux for now.
564 */
565 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
566#endif
567
568 tgt.copyOut(mem);
569}
570
571/// Target ioctl() handler. For the most part, programs call ioctl()
572/// only to find out if their stdout is a tty, to determine whether to
573/// do line or block buffering. We always claim that output fds are
574/// not TTYs to provide repeatable results.
575template <class OS>
576SyscallReturn
577ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
578{
579 int index = 0;
580 int tgt_fd = p->getSyscallArg(tc, index);
581 unsigned req = p->getSyscallArg(tc, index);
582
583 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
584
585 if (OS::isTtyReq(req))
586 return -ENOTTY;
587
588 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
589 if (!dfdp)
590 return -EBADF;
591
592 /**
593 * If the driver is valid, issue the ioctl through it. Otherwise,
594 * there's an implicit assumption that the device is a TTY type and we
595 * return that we do not have a valid TTY.
596 */
597 EmulatedDriver *emul_driver = dfdp->getDriver();
598 if (emul_driver)
599 return emul_driver->ioctl(p, tc, req);
600
601 /**
602 * For lack of a better return code, return ENOTTY. Ideally, we should
603 * return something better here, but at least we issue the warning.
604 */
605 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
606 tgt_fd, req, tc->pcState());
607 return -ENOTTY;
608}
609
610template <class OS>
611SyscallReturn
612openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
613 bool isopenat)
614{
615 int index = 0;
616 int tgt_dirfd = -1;
617
618 /**
619 * If using the openat variant, read in the target directory file
620 * descriptor from the simulated process.
621 */
622 if (isopenat)
623 tgt_dirfd = p->getSyscallArg(tc, index);
624
625 /**
626 * Retrieve the simulated process' memory proxy and then read in the path
627 * string from that memory space into the host's working memory space.
628 */
629 std::string path;
630 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
631 return -EFAULT;
632
633#ifdef __CYGWIN32__
634 int host_flags = O_BINARY;
635#else
636 int host_flags = 0;
637#endif
638 /**
639 * Translate target flags into host flags. Flags exist which are not
640 * ported between architectures which can cause check failures.
641 */
642 int tgt_flags = p->getSyscallArg(tc, index);
643 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
644 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
645 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
646 host_flags |= OS::openFlagTable[i].hostFlag;
647 }
648 }
649 if (tgt_flags) {
650 warn("open%s: cannot decode flags 0x%x",
651 isopenat ? "at" : "", tgt_flags);
652 }
653#ifdef __CYGWIN32__
654 host_flags |= O_BINARY;
655#endif
656
657 int mode = p->getSyscallArg(tc, index);
658
659 /**
660 * If the simulated process called open or openat with AT_FDCWD specified,
661 * take the current working directory value which was passed into the
662 * process class as a Python parameter and append the current path to
663 * create a full path.
664 * Otherwise, openat with a valid target directory file descriptor has
665 * been called. If the path option, which was passed in as a parameter,
666 * is not absolute, retrieve the directory file descriptor's path and
667 * prepend it to the path passed in as a parameter.
668 * In every case, we should have a full path (which is relevant to the
669 * host) to work with after this block has been passed.
670 */
671 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
672 path = p->fullPath(path);
673 } else if (!startswith(path, "/")) {
674 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
675 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
676 if (!ffdp)
677 return -EBADF;
678 path.insert(0, ffdp->getFileName());
679 }
680
681 /**
682 * Since this is an emulated environment, we create pseudo file
683 * descriptors for device requests that have been registered with
684 * the process class through Python; this allows us to create a file
685 * descriptor for subsequent ioctl or mmap calls.
686 */
687 if (startswith(path, "/dev/")) {
688 std::string filename = path.substr(strlen("/dev/"));
689 EmulatedDriver *drv = p->findDriver(filename);
690 if (drv) {
691 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
692 "driver open with path[%s]\n",
693 isopenat ? "at" : "", path.c_str());
694 return drv->open(p, tc, mode, host_flags);
695 }
696 /**
697 * Fall through here for pass through to host devices, such
698 * as /dev/zero
699 */
700 }
701
702 /**
703 * Some special paths and files cannot be called on the host and need
704 * to be handled as special cases inside the simulator.
705 * If the full path that was created above does not match any of the
706 * special cases, pass it through to the open call on the host to let
707 * the host open the file on our behalf.
708 * If the host cannot open the file, return the host's error code back
709 * through the system call to the simulated process.
710 */
711 int sim_fd = -1;
712 std::vector<std::string> special_paths =
713 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
714 for (auto entry : special_paths) {
715 if (startswith(path, entry))
716 sim_fd = OS::openSpecialFile(path, p, tc);
717 }
718 if (sim_fd == -1) {
719 sim_fd = open(path.c_str(), host_flags, mode);
720 }
721 if (sim_fd == -1) {
722 int local = -errno;
723 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
724 isopenat ? "at" : "", path.c_str());
725 return local;
726 }
727
728 /**
729 * The file was opened successfully and needs to be recorded in the
730 * process' file descriptor array so that it can be retrieved later.
731 * The target file descriptor that is chosen will be the lowest unused
732 * file descriptor.
733 * Return the indirect target file descriptor back to the simulated
734 * process to act as a handle for the opened file.
735 */
736 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
737 int tgt_fd = p->fds->allocFD(ffdp);
738 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
739 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
740 return tgt_fd;
741}
742
743/// Target open() handler.
744template <class OS>
745SyscallReturn
746openFunc(SyscallDesc *desc, int callnum, Process *process,
747 ThreadContext *tc)
748{
749 return openImpl<OS>(desc, callnum, process, tc, false);
750}
751
752/// Target openat() handler.
753template <class OS>
754SyscallReturn
755openatFunc(SyscallDesc *desc, int callnum, Process *process,
756 ThreadContext *tc)
757{
758 return openImpl<OS>(desc, callnum, process, tc, true);
759}
760
761/// Target unlinkat() handler.
762template <class OS>
763SyscallReturn
764unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
765 ThreadContext *tc)
766{
767 int index = 0;
768 int dirfd = process->getSyscallArg(tc, index);
769 if (dirfd != OS::TGT_AT_FDCWD)
770 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
771
772 return unlinkHelper(desc, callnum, process, tc, 1);
773}
774
775/// Target facessat() handler
776template <class OS>
777SyscallReturn
778faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
779 ThreadContext *tc)
780{
781 int index = 0;
782 int dirfd = process->getSyscallArg(tc, index);
783 if (dirfd != OS::TGT_AT_FDCWD)
784 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
785 return accessFunc(desc, callnum, process, tc, 1);
786}
787
788/// Target readlinkat() handler
789template <class OS>
790SyscallReturn
791readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
792 ThreadContext *tc)
793{
794 int index = 0;
795 int dirfd = process->getSyscallArg(tc, index);
796 if (dirfd != OS::TGT_AT_FDCWD)
797 warn("openat: first argument not AT_FDCWD; unlikely to work");
798 return readlinkFunc(desc, callnum, process, tc, 1);
799}
800
801/// Target renameat() handler.
802template <class OS>
803SyscallReturn
804renameatFunc(SyscallDesc *desc, int callnum, Process *process,
805 ThreadContext *tc)
806{
807 int index = 0;
808
809 int olddirfd = process->getSyscallArg(tc, index);
810 if (olddirfd != OS::TGT_AT_FDCWD)
811 warn("renameat: first argument not AT_FDCWD; unlikely to work");
812
813 std::string old_name;
814
815 if (!tc->getMemProxy().tryReadString(old_name,
816 process->getSyscallArg(tc, index)))
817 return -EFAULT;
818
819 int newdirfd = process->getSyscallArg(tc, index);
820 if (newdirfd != OS::TGT_AT_FDCWD)
821 warn("renameat: third argument not AT_FDCWD; unlikely to work");
822
823 std::string new_name;
824
825 if (!tc->getMemProxy().tryReadString(new_name,
826 process->getSyscallArg(tc, index)))
827 return -EFAULT;
828
829 // Adjust path for current working directory
830 old_name = process->fullPath(old_name);
831 new_name = process->fullPath(new_name);
832
833 int result = rename(old_name.c_str(), new_name.c_str());
834 return (result == -1) ? -errno : result;
835}
836
837/// Target sysinfo() handler.
838template <class OS>
839SyscallReturn
840sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
841 ThreadContext *tc)
842{
843
844 int index = 0;
845 TypedBufferArg<typename OS::tgt_sysinfo>
846 sysinfo(process->getSyscallArg(tc, index));
847
848 sysinfo->uptime = seconds_since_epoch;
849 sysinfo->totalram = process->system->memSize();
850 sysinfo->mem_unit = 1;
851
852 sysinfo.copyOut(tc->getMemProxy());
853
854 return 0;
855}
856
857/// Target chmod() handler.
858template <class OS>
859SyscallReturn
860chmodFunc(SyscallDesc *desc, int callnum, Process *process,
861 ThreadContext *tc)
862{
863 std::string path;
864
865 int index = 0;
866 if (!tc->getMemProxy().tryReadString(path,
867 process->getSyscallArg(tc, index))) {
868 return -EFAULT;
869 }
870
871 uint32_t mode = process->getSyscallArg(tc, index);
872 mode_t hostMode = 0;
873
874 // XXX translate mode flags via OS::something???
875 hostMode = mode;
876
877 // Adjust path for current working directory
878 path = process->fullPath(path);
879
880 // do the chmod
881 int result = chmod(path.c_str(), hostMode);
882 if (result < 0)
883 return -errno;
884
885 return 0;
886}
887
888
889/// Target fchmod() handler.
890template <class OS>
891SyscallReturn
892fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
893{
894 int index = 0;
895 int tgt_fd = p->getSyscallArg(tc, index);
896 uint32_t mode = p->getSyscallArg(tc, index);
897
898 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
899 if (!ffdp)
900 return -EBADF;
901 int sim_fd = ffdp->getSimFD();
902
903 mode_t hostMode = mode;
904
905 int result = fchmod(sim_fd, hostMode);
906
907 return (result < 0) ? -errno : 0;
908}
909
910/// Target mremap() handler.
911template <class OS>
912SyscallReturn
913mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
914{
915 int index = 0;
916 Addr start = process->getSyscallArg(tc, index);
917 uint64_t old_length = process->getSyscallArg(tc, index);
918 uint64_t new_length = process->getSyscallArg(tc, index);
919 uint64_t flags = process->getSyscallArg(tc, index);
920 uint64_t provided_address = 0;
921 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
922
923 if (use_provided_address)
924 provided_address = process->getSyscallArg(tc, index);
925
926 if ((start % TheISA::PageBytes != 0) ||
927 (provided_address % TheISA::PageBytes != 0)) {
928 warn("mremap failing: arguments not page aligned");
929 return -EINVAL;
930 }
931
932 new_length = roundUp(new_length, TheISA::PageBytes);
933
934 if (new_length > old_length) {
935 std::shared_ptr<MemState> mem_state = process->memState;
936 Addr mmap_end = mem_state->getMmapEnd();
937
938 if ((start + old_length) == mmap_end &&
939 (!use_provided_address || provided_address == start)) {
940 // This case cannot occur when growing downward, as
941 // start is greater than or equal to mmap_end.
942 uint64_t diff = new_length - old_length;
943 process->allocateMem(mmap_end, diff);
944 mem_state->setMmapEnd(mmap_end + diff);
945 return start;
946 } else {
947 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
948 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
949 return -ENOMEM;
950 } else {
951 uint64_t new_start = provided_address;
952 if (!use_provided_address) {
953 new_start = process->mmapGrowsDown() ?
954 mmap_end - new_length : mmap_end;
955 mmap_end = process->mmapGrowsDown() ?
956 new_start : mmap_end + new_length;
957 mem_state->setMmapEnd(mmap_end);
958 }
959
960 process->pTable->remap(start, old_length, new_start);
961 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
962 new_start, new_start + new_length,
963 new_length - old_length);
964 // add on the remaining unallocated pages
965 process->allocateMem(new_start + old_length,
966 new_length - old_length,
967 use_provided_address /* clobber */);
968 if (use_provided_address &&
969 ((new_start + new_length > mem_state->getMmapEnd() &&
970 !process->mmapGrowsDown()) ||
971 (new_start < mem_state->getMmapEnd() &&
972 process->mmapGrowsDown()))) {
973 // something fishy going on here, at least notify the user
974 // @todo: increase mmap_end?
975 warn("mmap region limit exceeded with MREMAP_FIXED\n");
976 }
977 warn("returning %08p as start\n", new_start);
978 return new_start;
979 }
980 }
981 } else {
982 if (use_provided_address && provided_address != start)
983 process->pTable->remap(start, new_length, provided_address);
984 process->pTable->unmap(start + new_length, old_length - new_length);
985 return use_provided_address ? provided_address : start;
986 }
987}
988
989/// Target stat() handler.
990template <class OS>
991SyscallReturn
992statFunc(SyscallDesc *desc, int callnum, Process *process,
993 ThreadContext *tc)
994{
995 std::string path;
996
997 int index = 0;
998 if (!tc->getMemProxy().tryReadString(path,
999 process->getSyscallArg(tc, index))) {
1000 return -EFAULT;
1001 }
1002 Addr bufPtr = process->getSyscallArg(tc, index);
1003
1004 // Adjust path for current working directory
1005 path = process->fullPath(path);
1006
1007 struct stat hostBuf;
1008 int result = stat(path.c_str(), &hostBuf);
1009
1010 if (result < 0)
1011 return -errno;
1012
1013 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1014
1015 return 0;
1016}
1017
1018
1019/// Target stat64() handler.
1020template <class OS>
1021SyscallReturn
1022stat64Func(SyscallDesc *desc, int callnum, Process *process,
1023 ThreadContext *tc)
1024{
1025 std::string path;
1026
1027 int index = 0;
1028 if (!tc->getMemProxy().tryReadString(path,
1029 process->getSyscallArg(tc, index)))
1030 return -EFAULT;
1031 Addr bufPtr = process->getSyscallArg(tc, index);
1032
1033 // Adjust path for current working directory
1034 path = process->fullPath(path);
1035
1036#if NO_STAT64
1037 struct stat hostBuf;
1038 int result = stat(path.c_str(), &hostBuf);
1039#else
1040 struct stat64 hostBuf;
1041 int result = stat64(path.c_str(), &hostBuf);
1042#endif
1043
1044 if (result < 0)
1045 return -errno;
1046
1047 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1048
1049 return 0;
1050}
1051
1052
1053/// Target fstatat64() handler.
1054template <class OS>
1055SyscallReturn
1056fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1057 ThreadContext *tc)
1058{
1059 int index = 0;
1060 int dirfd = process->getSyscallArg(tc, index);
1061 if (dirfd != OS::TGT_AT_FDCWD)
1062 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1063
1064 std::string path;
1065 if (!tc->getMemProxy().tryReadString(path,
1066 process->getSyscallArg(tc, index)))
1067 return -EFAULT;
1068 Addr bufPtr = process->getSyscallArg(tc, index);
1069
1070 // Adjust path for current working directory
1071 path = process->fullPath(path);
1072
1073#if NO_STAT64
1074 struct stat hostBuf;
1075 int result = stat(path.c_str(), &hostBuf);
1076#else
1077 struct stat64 hostBuf;
1078 int result = stat64(path.c_str(), &hostBuf);
1079#endif
1080
1081 if (result < 0)
1082 return -errno;
1083
1084 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1085
1086 return 0;
1087}
1088
1089
1090/// Target fstat64() handler.
1091template <class OS>
1092SyscallReturn
1093fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1094{
1095 int index = 0;
1096 int tgt_fd = p->getSyscallArg(tc, index);
1097 Addr bufPtr = p->getSyscallArg(tc, index);
1098
1099 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1100 if (!ffdp)
1101 return -EBADF;
1102 int sim_fd = ffdp->getSimFD();
1103
1104#if NO_STAT64
1105 struct stat hostBuf;
1106 int result = fstat(sim_fd, &hostBuf);
1107#else
1108 struct stat64 hostBuf;
1109 int result = fstat64(sim_fd, &hostBuf);
1110#endif
1111
1112 if (result < 0)
1113 return -errno;
1114
1115 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1116
1117 return 0;
1118}
1119
1120
1121/// Target lstat() handler.
1122template <class OS>
1123SyscallReturn
1124lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1125 ThreadContext *tc)
1126{
1127 std::string path;
1128
1129 int index = 0;
1130 if (!tc->getMemProxy().tryReadString(path,
1131 process->getSyscallArg(tc, index))) {
1132 return -EFAULT;
1133 }
1134 Addr bufPtr = process->getSyscallArg(tc, index);
1135
1136 // Adjust path for current working directory
1137 path = process->fullPath(path);
1138
1139 struct stat hostBuf;
1140 int result = lstat(path.c_str(), &hostBuf);
1141
1142 if (result < 0)
1143 return -errno;
1144
1145 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1146
1147 return 0;
1148}
1149
1150/// Target lstat64() handler.
1151template <class OS>
1152SyscallReturn
1153lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1154 ThreadContext *tc)
1155{
1156 std::string path;
1157
1158 int index = 0;
1159 if (!tc->getMemProxy().tryReadString(path,
1160 process->getSyscallArg(tc, index))) {
1161 return -EFAULT;
1162 }
1163 Addr bufPtr = process->getSyscallArg(tc, index);
1164
1165 // Adjust path for current working directory
1166 path = process->fullPath(path);
1167
1168#if NO_STAT64
1169 struct stat hostBuf;
1170 int result = lstat(path.c_str(), &hostBuf);
1171#else
1172 struct stat64 hostBuf;
1173 int result = lstat64(path.c_str(), &hostBuf);
1174#endif
1175
1176 if (result < 0)
1177 return -errno;
1178
1179 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1180
1181 return 0;
1182}
1183
1184/// Target fstat() handler.
1185template <class OS>
1186SyscallReturn
1187fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1188{
1189 int index = 0;
1190 int tgt_fd = p->getSyscallArg(tc, index);
1191 Addr bufPtr = p->getSyscallArg(tc, index);
1192
1193 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1194
1195 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1196 if (!ffdp)
1197 return -EBADF;
1198 int sim_fd = ffdp->getSimFD();
1199
1200 struct stat hostBuf;
1201 int result = fstat(sim_fd, &hostBuf);
1202
1203 if (result < 0)
1204 return -errno;
1205
1206 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1207
1208 return 0;
1209}
1210
1211
1212/// Target statfs() handler.
1213template <class OS>
1214SyscallReturn
1215statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1216 ThreadContext *tc)
1217{
1218#if NO_STATFS
1219 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1220#else
1221 std::string path;
1222
1223 int index = 0;
1224 if (!tc->getMemProxy().tryReadString(path,
1225 process->getSyscallArg(tc, index))) {
1226 return -EFAULT;
1227 }
1228 Addr bufPtr = process->getSyscallArg(tc, index);
1229
1230 // Adjust path for current working directory
1231 path = process->fullPath(path);
1232
1233 struct statfs hostBuf;
1234 int result = statfs(path.c_str(), &hostBuf);
1235
1236 if (result < 0)
1237 return -errno;
1238
1239 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1240#endif
1241 return 0;
1242}
1243
1244template <class OS>
1245SyscallReturn
1246cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1247{
1248 int index = 0;
1249
1250 TheISA::IntReg flags = p->getSyscallArg(tc, index);
1251 TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1252 Addr ptidPtr = p->getSyscallArg(tc, index);
1253
1254#if THE_ISA == RISCV_ISA
1255 /**
1256 * Linux kernel 4.15 sets CLONE_BACKWARDS flag for RISC-V.
1257 * The flag defines the list of clone() arguments in the following
1258 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1259 */
1260 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1261 Addr ctidPtr = p->getSyscallArg(tc, index);
1262#else
1263 Addr ctidPtr = p->getSyscallArg(tc, index);
1264 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1265#endif
1266
1267 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1268 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1269 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1270 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1271 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1272 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1273 return -EINVAL;
1274
1275 ThreadContext *ctc;
1276 if (!(ctc = p->findFreeContext()))
1277 fatal("clone: no spare thread context in system");
1278
1279 /**
1280 * Note that ProcessParams is generated by swig and there are no other
1281 * examples of how to create anything but this default constructor. The
1282 * fields are manually initialized instead of passing parameters to the
1283 * constructor.
1284 */
1285 ProcessParams *pp = new ProcessParams();
1286 pp->executable.assign(*(new std::string(p->progName())));
1287 pp->cmd.push_back(*(new std::string(p->progName())));
1288 pp->system = p->system;
1289 pp->cwd.assign(p->getcwd());
1290 pp->input.assign("stdin");
1291 pp->output.assign("stdout");
1292 pp->errout.assign("stderr");
1293 pp->uid = p->uid();
1294 pp->euid = p->euid();
1295 pp->gid = p->gid();
1296 pp->egid = p->egid();
1297
1298 /* Find the first free PID that's less than the maximum */
1299 std::set<int> const& pids = p->system->PIDs;
1300 int temp_pid = *pids.begin();
1301 do {
1302 temp_pid++;
1303 } while (pids.find(temp_pid) != pids.end());
1304 if (temp_pid >= System::maxPID)
1305 fatal("temp_pid is too large: %d", temp_pid);
1306
1307 pp->pid = temp_pid;
1308 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1309 Process *cp = pp->create();
1310 delete pp;
1311
1312 Process *owner = ctc->getProcessPtr();
1313 ctc->setProcessPtr(cp);
1314 cp->assignThreadContext(ctc->contextId());
1315 owner->revokeThreadContext(ctc->contextId());
1316
1317 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1318 BufferArg ptidBuf(ptidPtr, sizeof(long));
1319 long *ptid = (long *)ptidBuf.bufferPtr();
1320 *ptid = cp->pid();
1321 ptidBuf.copyOut(tc->getMemProxy());
1322 }
1323
1324 cp->initState();
1325 p->clone(tc, ctc, cp, flags);
1326
1327 if (flags & OS::TGT_CLONE_THREAD) {
1328 delete cp->sigchld;
1329 cp->sigchld = p->sigchld;
1330 } else if (flags & OS::TGT_SIGCHLD) {
1331 *cp->sigchld = true;
1332 }
1333
1334 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1335 BufferArg ctidBuf(ctidPtr, sizeof(long));
1336 long *ctid = (long *)ctidBuf.bufferPtr();
1337 *ctid = cp->pid();
1338 ctidBuf.copyOut(ctc->getMemProxy());
1339 }
1340
1341 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1342 cp->childClearTID = (uint64_t)ctidPtr;
1343
1344 ctc->clearArchRegs();
1345
1346#if THE_ISA == ALPHA_ISA
1347 TheISA::copyMiscRegs(tc, ctc);
1348#elif THE_ISA == SPARC_ISA
1349 TheISA::copyRegs(tc, ctc);
1350 ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1351 ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1352 ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1353 ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1354 ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1355 ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1356 ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1357 ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1358 for (int y = 8; y < 32; y++)
1359 ctc->setIntReg(y, tc->readIntReg(y));
1360#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA or THE_ISA == RISCV_ISA
1361 TheISA::copyRegs(tc, ctc);
1362#endif
1363
1364#if THE_ISA == X86_ISA
1365 if (flags & OS::TGT_CLONE_SETTLS) {
1366 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1367 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1368 }
1369#endif
1370
1371 if (newStack)
1372 ctc->setIntReg(TheISA::StackPointerReg, newStack);
1373
1374 cp->setSyscallReturn(ctc, 0);
1375
1376#if THE_ISA == ALPHA_ISA
1377 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1378#elif THE_ISA == SPARC_ISA
1379 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1380 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1381#endif
1382
1383 ctc->pcState(tc->nextInstAddr());
1384 ctc->activate();
1385
1386 return cp->pid();
1387}
1388
1389/// Target fstatfs() handler.
1390template <class OS>
1391SyscallReturn
1392fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1393{
1394 int index = 0;
1395 int tgt_fd = p->getSyscallArg(tc, index);
1396 Addr bufPtr = p->getSyscallArg(tc, index);
1397
1398 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1399 if (!ffdp)
1400 return -EBADF;
1401 int sim_fd = ffdp->getSimFD();
1402
1403 struct statfs hostBuf;
1404 int result = fstatfs(sim_fd, &hostBuf);
1405
1406 if (result < 0)
1407 return -errno;
1408
1409 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1410
1411 return 0;
1412}
1413
1414
1415/// Target writev() handler.
1416template <class OS>
1417SyscallReturn
1418writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1419{
1420 int index = 0;
1421 int tgt_fd = p->getSyscallArg(tc, index);
1422
1423 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1424 if (!hbfdp)
1425 return -EBADF;
1426 int sim_fd = hbfdp->getSimFD();
1427
1428 SETranslatingPortProxy &prox = tc->getMemProxy();
1429 uint64_t tiov_base = p->getSyscallArg(tc, index);
1430 size_t count = p->getSyscallArg(tc, index);
1431 struct iovec hiov[count];
1432 for (size_t i = 0; i < count; ++i) {
1433 typename OS::tgt_iovec tiov;
1434
1435 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1436 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1437 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1438 hiov[i].iov_base = new char [hiov[i].iov_len];
1439 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1440 hiov[i].iov_len);
1441 }
1442
1443 int result = writev(sim_fd, hiov, count);
1444
1445 for (size_t i = 0; i < count; ++i)
1446 delete [] (char *)hiov[i].iov_base;
1447
1448 if (result < 0)
1449 return -errno;
1450
1451 return result;
1452}
1453
1454/// Real mmap handler.
1455template <class OS>
1456SyscallReturn
1457mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1458 bool is_mmap2)
1459{
1460 int index = 0;
1461 Addr start = p->getSyscallArg(tc, index);
1462 uint64_t length = p->getSyscallArg(tc, index);
1463 int prot = p->getSyscallArg(tc, index);
1464 int tgt_flags = p->getSyscallArg(tc, index);
1465 int tgt_fd = p->getSyscallArg(tc, index);
1466 int offset = p->getSyscallArg(tc, index);
1467
1468 if (is_mmap2)
1469 offset *= TheISA::PageBytes;
1470
1471 if (start & (TheISA::PageBytes - 1) ||
1472 offset & (TheISA::PageBytes - 1) ||
1473 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1474 tgt_flags & OS::TGT_MAP_SHARED) ||
1475 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1476 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1477 !length) {
1478 return -EINVAL;
1479 }
1480
1481 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1482 // With shared mmaps, there are two cases to consider:
1483 // 1) anonymous: writes should modify the mapping and this should be
1484 // visible to observers who share the mapping. Currently, it's
1485 // difficult to update the shared mapping because there's no
1486 // structure which maintains information about the which virtual
1487 // memory areas are shared. If that structure existed, it would be
1488 // possible to make the translations point to the same frames.
1489 // 2) file-backed: writes should modify the mapping and the file
1490 // which is backed by the mapping. The shared mapping problem is the
1491 // same as what was mentioned about the anonymous mappings. For
1492 // file-backed mappings, the writes to the file are difficult
1493 // because it requires syncing what the mapping holds with the file
1494 // that resides on the host system. So, any write on a real system
1495 // would cause the change to be propagated to the file mapping at
1496 // some point in the future (the inode is tracked along with the
1497 // mapping). This isn't guaranteed to always happen, but it usually
1498 // works well enough. The guarantee is provided by the msync system
1499 // call. We could force the change through with shared mappings with
1500 // a call to msync, but that again would require more information
1501 // than we currently maintain.
1502 warn("mmap: writing to shared mmap region is currently "
1503 "unsupported. The write succeeds on the target, but it "
1504 "will not be propagated to the host or shared mappings");
1505 }
1506
1507 length = roundUp(length, TheISA::PageBytes);
1508
1509 int sim_fd = -1;
1510 uint8_t *pmap = nullptr;
1511 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1512 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1513
1514 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1515 if (dfdp) {
1516 EmulatedDriver *emul_driver = dfdp->getDriver();
1517 return emul_driver->mmap(p, tc, start, length, prot,
1518 tgt_flags, tgt_fd, offset);
1519 }
1520
1521 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1522 if (!ffdp)
1523 return -EBADF;
1524 sim_fd = ffdp->getSimFD();
1525
1526 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1527 sim_fd, offset);
1528
1529 if (pmap == (decltype(pmap))-1) {
1530 warn("mmap: failed to map file into host address space");
1531 return -errno;
1532 }
1533 }
1534
1535 // Extend global mmap region if necessary. Note that we ignore the
1536 // start address unless MAP_FIXED is specified.
1537 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1538 std::shared_ptr<MemState> mem_state = p->memState;
1539 Addr mmap_end = mem_state->getMmapEnd();
1540
1541 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1542 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1543
1544 mem_state->setMmapEnd(mmap_end);
1545 }
1546
1547 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1548 start, start + length - 1);
1549
1550 // We only allow mappings to overwrite existing mappings if
1551 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1552 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1553 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1554 if (clobber) {
1555 for (auto tc : p->system->threadContexts) {
1556 // If we might be overwriting old mappings, we need to
1557 // invalidate potentially stale mappings out of the TLBs.
1558 tc->getDTBPtr()->flushAll();
1559 tc->getITBPtr()->flushAll();
1560 }
1561 }
1562
1563 // Allocate physical memory and map it in. If the page table is already
1564 // mapped and clobber is not set, the simulator will issue throw a
1565 // fatal and bail out of the simulation.
1566 p->allocateMem(start, length, clobber);
1567
1568 // Transfer content into target address space.
1569 SETranslatingPortProxy &tp = tc->getMemProxy();
1570 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1571 // In general, we should zero the mapped area for anonymous mappings,
1572 // with something like:
1573 // tp.memsetBlob(start, 0, length);
1574 // However, given that we don't support sparse mappings, and
1575 // some applications can map a couple of gigabytes of space
1576 // (intending sparse usage), that can get painfully expensive.
1577 // Fortunately, since we don't properly implement munmap either,
1578 // there's no danger of remapping used memory, so for now all
1579 // newly mapped memory should already be zeroed so we can skip it.
1580 } else {
1581 // It is possible to mmap an area larger than a file, however
1582 // accessing unmapped portions the system triggers a "Bus error"
1583 // on the host. We must know when to stop copying the file from
1584 // the host into the target address space.
1585 struct stat file_stat;
1586 if (fstat(sim_fd, &file_stat) > 0)
1587 fatal("mmap: cannot stat file");
1588
1589 // Copy the portion of the file that is resident. This requires
1590 // checking both the mmap size and the filesize that we are
1591 // trying to mmap into this space; the mmap size also depends
1592 // on the specified offset into the file.
1593 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1594 length);
1595 tp.writeBlob(start, pmap, size);
1596
1597 // Cleanup the mmap region before exiting this function.
1598 munmap(pmap, length);
1599
1600 // Maintain the symbol table for dynamic executables.
1601 // The loader will call mmap to map the images into its address
1602 // space and we intercept that here. We can verify that we are
1603 // executing inside the loader by checking the program counter value.
1604 // XXX: with multiprogrammed workloads or multi-node configurations,
1605 // this will not work since there is a single global symbol table.
1606 ObjectFile *interpreter = p->getInterpreter();
1607 if (interpreter) {
1608 Addr text_start = interpreter->textBase();
1609 Addr text_end = text_start + interpreter->textSize();
1610
1611 Addr pc = tc->pcState().pc();
1612
1613 if (pc >= text_start && pc < text_end) {
1614 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1615 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1616 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1617
1618 if (lib) {
1619 lib->loadAllSymbols(debugSymbolTable,
1620 lib->textBase(), start);
1621 }
1622 }
1623 }
1624
1625 // Note that we do not zero out the remainder of the mapping. This
1626 // is done by a real system, but it probably will not affect
1627 // execution (hopefully).
1628 }
1629
1630 return start;
1631}
1632
1633template <class OS>
1634SyscallReturn
1635pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1636{
1637 int index = 0;
1638 int tgt_fd = p->getSyscallArg(tc, index);
1639 Addr bufPtr = p->getSyscallArg(tc, index);
1640 int nbytes = p->getSyscallArg(tc, index);
1641 int offset = p->getSyscallArg(tc, index);
1642
1643 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1644 if (!ffdp)
1645 return -EBADF;
1646 int sim_fd = ffdp->getSimFD();
1647
1648 BufferArg bufArg(bufPtr, nbytes);
1649 bufArg.copyIn(tc->getMemProxy());
1650
1651 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1652
1653 return (bytes_written == -1) ? -errno : bytes_written;
1654}
1655
1656/// Target mmap() handler.
1657template <class OS>
1658SyscallReturn
1659mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1660{
1661 return mmapImpl<OS>(desc, num, p, tc, false);
1662}
1663
1664/// Target mmap2() handler.
1665template <class OS>
1666SyscallReturn
1667mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1668{
1669 return mmapImpl<OS>(desc, num, p, tc, true);
1670}
1671
1672/// Target getrlimit() handler.
1673template <class OS>
1674SyscallReturn
1675getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1676 ThreadContext *tc)
1677{
1678 int index = 0;
1679 unsigned resource = process->getSyscallArg(tc, index);
1680 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1681
1682 switch (resource) {
1683 case OS::TGT_RLIMIT_STACK:
1684 // max stack size in bytes: make up a number (8MB for now)
1685 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1686 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1687 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1688 break;
1689
1690 case OS::TGT_RLIMIT_DATA:
1691 // max data segment size in bytes: make up a number
1692 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1693 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1694 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1695 break;
1696
1697 default:
1698 warn("getrlimit: unimplemented resource %d", resource);
1699 return -EINVAL;
1700 break;
1701 }
1702
1703 rlp.copyOut(tc->getMemProxy());
1704 return 0;
1705}
1706
1707template <class OS>
1708SyscallReturn
1709prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1710 ThreadContext *tc)
1711{
1712 int index = 0;
1713 if (process->getSyscallArg(tc, index) != 0)
1714 {
1715 warn("prlimit: ignoring rlimits for nonzero pid");
1716 return -EPERM;
1717 }
1718 int resource = process->getSyscallArg(tc, index);
1719 Addr n = process->getSyscallArg(tc, index);
1720 if (n != 0)
1721 warn("prlimit: ignoring new rlimit");
1722 Addr o = process->getSyscallArg(tc, index);
1723 if (o != 0)
1724 {
1725 TypedBufferArg<typename OS::rlimit> rlp(o);
1726 switch (resource) {
1727 case OS::TGT_RLIMIT_STACK:
1728 // max stack size in bytes: make up a number (8MB for now)
1729 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1730 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1731 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1732 break;
1733 case OS::TGT_RLIMIT_DATA:
1734 // max data segment size in bytes: make up a number
1735 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1736 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1737 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1738 break;
1739 default:
1740 warn("prlimit: unimplemented resource %d", resource);
1741 return -EINVAL;
1742 break;
1743 }
1744 rlp.copyOut(tc->getMemProxy());
1745 }
1746 return 0;
1747}
1748
1749/// Target clock_gettime() function.
1750template <class OS>
1751SyscallReturn
1752clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1753{
1754 int index = 1;
1755 //int clk_id = p->getSyscallArg(tc, index);
1756 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1757
1758 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1759 tp->tv_sec += seconds_since_epoch;
1760 tp->tv_sec = TheISA::htog(tp->tv_sec);
1761 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1762
1763 tp.copyOut(tc->getMemProxy());
1764
1765 return 0;
1766}
1767
1768/// Target clock_getres() function.
1769template <class OS>
1770SyscallReturn
1771clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1772{
1773 int index = 1;
1774 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1775
1776 // Set resolution at ns, which is what clock_gettime() returns
1777 tp->tv_sec = 0;
1778 tp->tv_nsec = 1;
1779
1780 tp.copyOut(tc->getMemProxy());
1781
1782 return 0;
1783}
1784
1785/// Target gettimeofday() handler.
1786template <class OS>
1787SyscallReturn
1788gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1789 ThreadContext *tc)
1790{
1791 int index = 0;
1792 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1793
1794 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1795 tp->tv_sec += seconds_since_epoch;
1796 tp->tv_sec = TheISA::htog(tp->tv_sec);
1797 tp->tv_usec = TheISA::htog(tp->tv_usec);
1798
1799 tp.copyOut(tc->getMemProxy());
1800
1801 return 0;
1802}
1803
1804
1805/// Target utimes() handler.
1806template <class OS>
1807SyscallReturn
1808utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1809 ThreadContext *tc)
1810{
1811 std::string path;
1812
1813 int index = 0;
1814 if (!tc->getMemProxy().tryReadString(path,
1815 process->getSyscallArg(tc, index))) {
1816 return -EFAULT;
1817 }
1818
1819 TypedBufferArg<typename OS::timeval [2]>
1820 tp(process->getSyscallArg(tc, index));
1821 tp.copyIn(tc->getMemProxy());
1822
1823 struct timeval hostTimeval[2];
1824 for (int i = 0; i < 2; ++i) {
1825 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1826 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1827 }
1828
1829 // Adjust path for current working directory
1830 path = process->fullPath(path);
1831
1832 int result = utimes(path.c_str(), hostTimeval);
1833
1834 if (result < 0)
1835 return -errno;
1836
1837 return 0;
1838}
1839
1840template <class OS>
1841SyscallReturn
1842execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1843{
1844 desc->setFlags(0);
1845
1846 int index = 0;
1847 std::string path;
1848 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1849 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1850 return -EFAULT;
1851
1852 if (access(path.c_str(), F_OK) == -1)
1853 return -EACCES;
1854
1855 auto read_in = [](std::vector<std::string> & vect,
1856 SETranslatingPortProxy & mem_proxy,
1857 Addr mem_loc)
1858 {
1859 for (int inc = 0; ; inc++) {
1860 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1861 b.copyIn(mem_proxy);
1862
1863 if (!*(Addr*)b.bufferPtr())
1864 break;
1865
1866 vect.push_back(std::string());
1867 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1868 }
1869 };
1870
1871 /**
1872 * Note that ProcessParams is generated by swig and there are no other
1873 * examples of how to create anything but this default constructor. The
1874 * fields are manually initialized instead of passing parameters to the
1875 * constructor.
1876 */
1877 ProcessParams *pp = new ProcessParams();
1878 pp->executable = path;
1879 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1880 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1881 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1882 read_in(pp->env, mem_proxy, envp_mem_loc);
1883 pp->uid = p->uid();
1884 pp->egid = p->egid();
1885 pp->euid = p->euid();
1886 pp->gid = p->gid();
1887 pp->ppid = p->ppid();
1888 pp->pid = p->pid();
1889 pp->input.assign("cin");
1890 pp->output.assign("cout");
1891 pp->errout.assign("cerr");
1892 pp->cwd.assign(p->getcwd());
1893 pp->system = p->system;
1894 /**
1895 * Prevent process object creation with identical PIDs (which will trip
1896 * a fatal check in Process constructor). The execve call is supposed to
1897 * take over the currently executing process' identity but replace
1898 * whatever it is doing with a new process image. Instead of hijacking
1899 * the process object in the simulator, we create a new process object
1900 * and bind to the previous process' thread below (hijacking the thread).
1901 */
1902 p->system->PIDs.erase(p->pid());
1903 Process *new_p = pp->create();
1904 delete pp;
1905
1906 /**
1907 * Work through the file descriptor array and close any files marked
1908 * close-on-exec.
1909 */
1910 new_p->fds = p->fds;
1911 for (int i = 0; i < new_p->fds->getSize(); i++) {
1912 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1913 if (fdep && fdep->getCOE())
1914 new_p->fds->closeFDEntry(i);
1915 }
1916
1917 *new_p->sigchld = true;
1918
1919 delete p;
1920 tc->clearArchRegs();
1921 tc->setProcessPtr(new_p);
1922 new_p->assignThreadContext(tc->contextId());
1923 new_p->initState();
1924 tc->activate();
1925 TheISA::PCState pcState = tc->pcState();
1926 tc->setNPC(pcState.instAddr());
1927
1928 desc->setFlags(SyscallDesc::SuppressReturnValue);
1929 return 0;
1930}
1931
1932/// Target getrusage() function.
1933template <class OS>
1934SyscallReturn
1935getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1936 ThreadContext *tc)
1937{
1938 int index = 0;
1939 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1940 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1941
1942 rup->ru_utime.tv_sec = 0;
1943 rup->ru_utime.tv_usec = 0;
1944 rup->ru_stime.tv_sec = 0;
1945 rup->ru_stime.tv_usec = 0;
1946 rup->ru_maxrss = 0;
1947 rup->ru_ixrss = 0;
1948 rup->ru_idrss = 0;
1949 rup->ru_isrss = 0;
1950 rup->ru_minflt = 0;
1951 rup->ru_majflt = 0;
1952 rup->ru_nswap = 0;
1953 rup->ru_inblock = 0;
1954 rup->ru_oublock = 0;
1955 rup->ru_msgsnd = 0;
1956 rup->ru_msgrcv = 0;
1957 rup->ru_nsignals = 0;
1958 rup->ru_nvcsw = 0;
1959 rup->ru_nivcsw = 0;
1960
1961 switch (who) {
1962 case OS::TGT_RUSAGE_SELF:
1963 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1964 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1965 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1966 break;
1967
1968 case OS::TGT_RUSAGE_CHILDREN:
1969 // do nothing. We have no child processes, so they take no time.
1970 break;
1971
1972 default:
1973 // don't really handle THREAD or CHILDREN, but just warn and
1974 // plow ahead
1975 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
1976 who);
1977 }
1978
1979 rup.copyOut(tc->getMemProxy());
1980
1981 return 0;
1982}
1983
1984/// Target times() function.
1985template <class OS>
1986SyscallReturn
1987timesFunc(SyscallDesc *desc, int callnum, Process *process,
1988 ThreadContext *tc)
1989{
1990 int index = 0;
1991 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1992
1993 // Fill in the time structure (in clocks)
1994 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1995 bufp->tms_utime = clocks;
1996 bufp->tms_stime = 0;
1997 bufp->tms_cutime = 0;
1998 bufp->tms_cstime = 0;
1999
2000 // Convert to host endianness
2001 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2002
2003 // Write back
2004 bufp.copyOut(tc->getMemProxy());
2005
2006 // Return clock ticks since system boot
2007 return clocks;
2008}
2009
2010/// Target time() function.
2011template <class OS>
2012SyscallReturn
2013timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2014{
2015 typename OS::time_t sec, usec;
2016 getElapsedTimeMicro(sec, usec);
2017 sec += seconds_since_epoch;
2018
2019 int index = 0;
2020 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2021 if (taddr != 0) {
2022 typename OS::time_t t = sec;
2023 t = TheISA::htog(t);
2024 SETranslatingPortProxy &p = tc->getMemProxy();
2025 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2026 }
2027 return sec;
2028}
2029
2030template <class OS>
2031SyscallReturn
2032tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2033{
2034 int index = 0;
2035 int tgid = process->getSyscallArg(tc, index);
2036 int tid = process->getSyscallArg(tc, index);
2037 int sig = process->getSyscallArg(tc, index);
2038
2039 /**
2040 * This system call is intended to allow killing a specific thread
2041 * within an arbitrary thread group if sanctioned with permission checks.
2042 * It's usually true that threads share the termination signal as pointed
2043 * out by the pthread_kill man page and this seems to be the intended
2044 * usage. Due to this being an emulated environment, assume the following:
2045 * Threads are allowed to call tgkill because the EUID for all threads
2046 * should be the same. There is no signal handling mechanism for kernel
2047 * registration of signal handlers since signals are poorly supported in
2048 * emulation mode. Since signal handlers cannot be registered, all
2049 * threads within in a thread group must share the termination signal.
2050 * We never exhaust PIDs so there's no chance of finding the wrong one
2051 * due to PID rollover.
2052 */
2053
2054 System *sys = tc->getSystemPtr();
2055 Process *tgt_proc = nullptr;
2056 for (int i = 0; i < sys->numContexts(); i++) {
2057 Process *temp = sys->threadContexts[i]->getProcessPtr();
2058 if (temp->pid() == tid) {
2059 tgt_proc = temp;
2060 break;
2061 }
2062 }
2063
2064 if (sig != 0 || sig != OS::TGT_SIGABRT)
2065 return -EINVAL;
2066
2067 if (tgt_proc == nullptr)
2068 return -ESRCH;
2069
2070 if (tgid != -1 && tgt_proc->tgid() != tgid)
2071 return -ESRCH;
2072
2073 if (sig == OS::TGT_SIGABRT)
2074 exitGroupFunc(desc, 252, process, tc);
2075
2076 return 0;
2077}
2078
2079
2080#endif // __SIM_SYSCALL_EMUL_HH__