Deleted Added
sdiff udiff text old ( 11907:48a3d32da9d8 ) new ( 11908:2fd0307d03e9 )
full compact
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#define NO_STAT64 (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51
52#define NO_STATFS (defined(__APPLE__) || defined(__OpenBSD__) || \
53 defined(__FreeBSD__) || defined(__NetBSD__))
54
55#define NO_FALLOCATE (defined(__APPLE__) || defined(__OpenBSD__) || \
56 defined(__FreeBSD__) || defined(__NetBSD__))
57
58///
59/// @file syscall_emul.hh
60///
61/// This file defines objects used to emulate syscalls from the target
62/// application on the host machine.
63
64#ifdef __CYGWIN32__
65#include <sys/fcntl.h>
66
67#endif
68#include <fcntl.h>
69#include <sys/mman.h>
70#include <sys/stat.h>
71#if (NO_STATFS == 0)
72#include <sys/statfs.h>
73#else
74#include <sys/mount.h>
75#endif
76#include <sys/time.h>
77#include <sys/uio.h>
78#include <unistd.h>
79
80#include <cerrno>
81#include <memory>
82#include <string>
83
84#include "arch/utility.hh"
85#include "base/intmath.hh"
86#include "base/loader/object_file.hh"
87#include "base/misc.hh"
88#include "base/trace.hh"
89#include "base/types.hh"
90#include "config/the_isa.hh"
91#include "cpu/base.hh"
92#include "cpu/thread_context.hh"
93#include "mem/page_table.hh"
94#include "params/Process.hh"
95#include "sim/emul_driver.hh"
96#include "sim/process.hh"
97#include "sim/syscall_debug_macros.hh"
98#include "sim/syscall_desc.hh"
99#include "sim/syscall_emul_buf.hh"
100#include "sim/syscall_return.hh"
101
102//////////////////////////////////////////////////////////////////////
103//
104// The following emulation functions are generic enough that they
105// don't need to be recompiled for different emulated OS's. They are
106// defined in sim/syscall_emul.cc.
107//
108//////////////////////////////////////////////////////////////////////
109
110
111/// Handler for unimplemented syscalls that we haven't thought about.
112SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
113 Process *p, ThreadContext *tc);
114
115/// Handler for unimplemented syscalls that we never intend to
116/// implement (signal handling, etc.) and should not affect the correct
117/// behavior of the program. Print a warning only if the appropriate
118/// trace flag is enabled. Return success to the target program.
119SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
120 Process *p, ThreadContext *tc);
121
122// Target fallocateFunc() handler.
123SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
124 Process *p, ThreadContext *tc);
125
126/// Target exit() handler: terminate current context.
127SyscallReturn exitFunc(SyscallDesc *desc, int num,
128 Process *p, ThreadContext *tc);
129
130/// Target exit_group() handler: terminate simulation. (exit all threads)
131SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
132 Process *p, ThreadContext *tc);
133
134/// Target set_tid_address() handler.
135SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
136 Process *p, ThreadContext *tc);
137
138/// Target getpagesize() handler.
139SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
140 Process *p, ThreadContext *tc);
141
142/// Target brk() handler: set brk address.
143SyscallReturn brkFunc(SyscallDesc *desc, int num,
144 Process *p, ThreadContext *tc);
145
146/// Target close() handler.
147SyscallReturn closeFunc(SyscallDesc *desc, int num,
148 Process *p, ThreadContext *tc);
149
150// Target read() handler.
151SyscallReturn readFunc(SyscallDesc *desc, int num,
152 Process *p, ThreadContext *tc);
153
154/// Target write() handler.
155SyscallReturn writeFunc(SyscallDesc *desc, int num,
156 Process *p, ThreadContext *tc);
157
158/// Target lseek() handler.
159SyscallReturn lseekFunc(SyscallDesc *desc, int num,
160 Process *p, ThreadContext *tc);
161
162/// Target _llseek() handler.
163SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
164 Process *p, ThreadContext *tc);
165
166/// Target munmap() handler.
167SyscallReturn munmapFunc(SyscallDesc *desc, int num,
168 Process *p, ThreadContext *tc);
169
170/// Target gethostname() handler.
171SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
172 Process *p, ThreadContext *tc);
173
174/// Target getcwd() handler.
175SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
176 Process *p, ThreadContext *tc);
177
178/// Target readlink() handler.
179SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
180 Process *p, ThreadContext *tc,
181 int index = 0);
182SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
183 Process *p, ThreadContext *tc);
184
185/// Target unlink() handler.
186SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
187 Process *p, ThreadContext *tc,
188 int index);
189SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
190 Process *p, ThreadContext *tc);
191
192/// Target mkdir() handler.
193SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
194 Process *p, ThreadContext *tc);
195
196/// Target rename() handler.
197SyscallReturn renameFunc(SyscallDesc *desc, int num,
198 Process *p, ThreadContext *tc);
199
200
201/// Target truncate() handler.
202SyscallReturn truncateFunc(SyscallDesc *desc, int num,
203 Process *p, ThreadContext *tc);
204
205
206/// Target ftruncate() handler.
207SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
208 Process *p, ThreadContext *tc);
209
210
211/// Target truncate64() handler.
212SyscallReturn truncate64Func(SyscallDesc *desc, int num,
213 Process *p, ThreadContext *tc);
214
215/// Target ftruncate64() handler.
216SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
217 Process *p, ThreadContext *tc);
218
219
220/// Target umask() handler.
221SyscallReturn umaskFunc(SyscallDesc *desc, int num,
222 Process *p, ThreadContext *tc);
223
224/// Target gettid() handler.
225SyscallReturn gettidFunc(SyscallDesc *desc, int num,
226 Process *p, ThreadContext *tc);
227
228/// Target chown() handler.
229SyscallReturn chownFunc(SyscallDesc *desc, int num,
230 Process *p, ThreadContext *tc);
231
232/// Target setpgid() handler.
233SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
234 Process *p, ThreadContext *tc);
235
236/// Target fchown() handler.
237SyscallReturn fchownFunc(SyscallDesc *desc, int num,
238 Process *p, ThreadContext *tc);
239
240/// Target dup() handler.
241SyscallReturn dupFunc(SyscallDesc *desc, int num,
242 Process *process, ThreadContext *tc);
243
244/// Target fcntl() handler.
245SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
246 Process *process, ThreadContext *tc);
247
248/// Target fcntl64() handler.
249SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
250 Process *process, ThreadContext *tc);
251
252/// Target setuid() handler.
253SyscallReturn setuidFunc(SyscallDesc *desc, int num,
254 Process *p, ThreadContext *tc);
255
256/// Target getpid() handler.
257SyscallReturn getpidFunc(SyscallDesc *desc, int num,
258 Process *p, ThreadContext *tc);
259
260/// Target getuid() handler.
261SyscallReturn getuidFunc(SyscallDesc *desc, int num,
262 Process *p, ThreadContext *tc);
263
264/// Target getgid() handler.
265SyscallReturn getgidFunc(SyscallDesc *desc, int num,
266 Process *p, ThreadContext *tc);
267
268/// Target getppid() handler.
269SyscallReturn getppidFunc(SyscallDesc *desc, int num,
270 Process *p, ThreadContext *tc);
271
272/// Target geteuid() handler.
273SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
274 Process *p, ThreadContext *tc);
275
276/// Target getegid() handler.
277SyscallReturn getegidFunc(SyscallDesc *desc, int num,
278 Process *p, ThreadContext *tc);
279
280/// Target access() handler
281SyscallReturn accessFunc(SyscallDesc *desc, int num,
282 Process *p, ThreadContext *tc);
283SyscallReturn accessFunc(SyscallDesc *desc, int num,
284 Process *p, ThreadContext *tc,
285 int index);
286
287/// Futex system call
288/// Implemented by Daniel Sanchez
289/// Used by printf's in multi-threaded apps
290template <class OS>
291SyscallReturn
292futexFunc(SyscallDesc *desc, int callnum, Process *process,
293 ThreadContext *tc)
294{
295 int index_uaddr = 0;
296 int index_op = 1;
297 int index_val = 2;
298 int index_timeout = 3;
299
300 uint64_t uaddr = process->getSyscallArg(tc, index_uaddr);
301 int op = process->getSyscallArg(tc, index_op);
302 int val = process->getSyscallArg(tc, index_val);
303 uint64_t timeout = process->getSyscallArg(tc, index_timeout);
304
305 std::map<uint64_t, std::list<ThreadContext *> * >
306 &futex_map = tc->getSystemPtr()->futexMap;
307
308 DPRINTF(SyscallVerbose, "futex: Address=%llx, op=%d, val=%d\n",
309 uaddr, op, val);
310
311 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
312
313 if (op == OS::TGT_FUTEX_WAIT) {
314 if (timeout != 0) {
315 warn("futex: FUTEX_WAIT with non-null timeout unimplemented;"
316 "we'll wait indefinitely");
317 }
318
319 uint8_t *buf = new uint8_t[sizeof(int)];
320 tc->getMemProxy().readBlob((Addr)uaddr, buf, (int)sizeof(int));
321 int mem_val = *((int *)buf);
322 delete[] buf;
323
324 if (val != mem_val) {
325 DPRINTF(SyscallVerbose, "futex: FUTEX_WAKE, read: %d, "
326 "expected: %d\n", mem_val, val);
327 return -OS::TGT_EWOULDBLOCK;
328 }
329
330 // Queue the thread context
331 std::list<ThreadContext *> * tcWaitList;
332 if (futex_map.count(uaddr)) {
333 tcWaitList = futex_map.find(uaddr)->second;
334 } else {
335 tcWaitList = new std::list<ThreadContext *>();
336 futex_map.insert(std::pair< uint64_t,
337 std::list<ThreadContext *> * >(uaddr, tcWaitList));
338 }
339 tcWaitList->push_back(tc);
340 DPRINTF(SyscallVerbose, "futex: FUTEX_WAIT, suspending calling thread "
341 "context on address 0x%lx\n", uaddr);
342 tc->suspend();
343 return 0;
344 } else if (op == OS::TGT_FUTEX_WAKE){
345 int wokenUp = 0;
346 std::list<ThreadContext *> * tcWaitList;
347 if (futex_map.count(uaddr)) {
348 tcWaitList = futex_map.find(uaddr)->second;
349 while (tcWaitList->size() > 0 && wokenUp < val) {
350 tcWaitList->front()->activate();
351 tcWaitList->pop_front();
352 wokenUp++;
353 }
354 if (tcWaitList->empty()) {
355 futex_map.erase(uaddr);
356 delete tcWaitList;
357 }
358 }
359 DPRINTF(SyscallVerbose, "futex: FUTEX_WAKE, activated %d waiting "
360 "thread context on address 0x%lx\n",
361 wokenUp, uaddr);
362 return wokenUp;
363 } else {
364 warn("futex: op %d is not implemented, just returning...", op);
365 return 0;
366 }
367
368}
369
370
371/// Pseudo Funcs - These functions use a different return convension,
372/// returning a second value in a register other than the normal return register
373SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
374 Process *process, ThreadContext *tc);
375
376/// Target getpidPseudo() handler.
377SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
378 Process *p, ThreadContext *tc);
379
380/// Target getuidPseudo() handler.
381SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
382 Process *p, ThreadContext *tc);
383
384/// Target getgidPseudo() handler.
385SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
386 Process *p, ThreadContext *tc);
387
388
389/// A readable name for 1,000,000, for converting microseconds to seconds.
390const int one_million = 1000000;
391/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
392const int one_billion = 1000000000;
393
394/// Approximate seconds since the epoch (1/1/1970). About a billion,
395/// by my reckoning. We want to keep this a constant (not use the
396/// real-world time) to keep simulations repeatable.
397const unsigned seconds_since_epoch = 1000000000;
398
399/// Helper function to convert current elapsed time to seconds and
400/// microseconds.
401template <class T1, class T2>
402void
403getElapsedTimeMicro(T1 &sec, T2 &usec)
404{
405 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
406 sec = elapsed_usecs / one_million;
407 usec = elapsed_usecs % one_million;
408}
409
410/// Helper function to convert current elapsed time to seconds and
411/// nanoseconds.
412template <class T1, class T2>
413void
414getElapsedTimeNano(T1 &sec, T2 &nsec)
415{
416 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
417 sec = elapsed_nsecs / one_billion;
418 nsec = elapsed_nsecs % one_billion;
419}
420
421//////////////////////////////////////////////////////////////////////
422//
423// The following emulation functions are generic, but need to be
424// templated to account for differences in types, constants, etc.
425//
426//////////////////////////////////////////////////////////////////////
427
428 typedef struct statfs hst_statfs;
429#if NO_STAT64
430 typedef struct stat hst_stat;
431 typedef struct stat hst_stat64;
432#else
433 typedef struct stat hst_stat;
434 typedef struct stat64 hst_stat64;
435#endif
436
437//// Helper function to convert a host stat buffer to a target stat
438//// buffer. Also copies the target buffer out to the simulated
439//// memory space. Used by stat(), fstat(), and lstat().
440
441template <typename target_stat, typename host_stat>
442static void
443convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
444{
445 using namespace TheISA;
446
447 if (fakeTTY)
448 tgt->st_dev = 0xA;
449 else
450 tgt->st_dev = host->st_dev;
451 tgt->st_dev = TheISA::htog(tgt->st_dev);
452 tgt->st_ino = host->st_ino;
453 tgt->st_ino = TheISA::htog(tgt->st_ino);
454 tgt->st_mode = host->st_mode;
455 if (fakeTTY) {
456 // Claim to be a character device
457 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
458 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
459 }
460 tgt->st_mode = TheISA::htog(tgt->st_mode);
461 tgt->st_nlink = host->st_nlink;
462 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
463 tgt->st_uid = host->st_uid;
464 tgt->st_uid = TheISA::htog(tgt->st_uid);
465 tgt->st_gid = host->st_gid;
466 tgt->st_gid = TheISA::htog(tgt->st_gid);
467 if (fakeTTY)
468 tgt->st_rdev = 0x880d;
469 else
470 tgt->st_rdev = host->st_rdev;
471 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
472 tgt->st_size = host->st_size;
473 tgt->st_size = TheISA::htog(tgt->st_size);
474 tgt->st_atimeX = host->st_atime;
475 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
476 tgt->st_mtimeX = host->st_mtime;
477 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
478 tgt->st_ctimeX = host->st_ctime;
479 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
480 // Force the block size to be 8KB. This helps to ensure buffered io works
481 // consistently across different hosts.
482 tgt->st_blksize = 0x2000;
483 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
484 tgt->st_blocks = host->st_blocks;
485 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
486}
487
488// Same for stat64
489
490template <typename target_stat, typename host_stat64>
491static void
492convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
493{
494 using namespace TheISA;
495
496 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
497#if defined(STAT_HAVE_NSEC)
498 tgt->st_atime_nsec = host->st_atime_nsec;
499 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
500 tgt->st_mtime_nsec = host->st_mtime_nsec;
501 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
502 tgt->st_ctime_nsec = host->st_ctime_nsec;
503 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
504#else
505 tgt->st_atime_nsec = 0;
506 tgt->st_mtime_nsec = 0;
507 tgt->st_ctime_nsec = 0;
508#endif
509}
510
511// Here are a couple of convenience functions
512template<class OS>
513static void
514copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
515 hst_stat *host, bool fakeTTY = false)
516{
517 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
518 tgt_stat_buf tgt(addr);
519 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
520 tgt.copyOut(mem);
521}
522
523template<class OS>
524static void
525copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
526 hst_stat64 *host, bool fakeTTY = false)
527{
528 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
529 tgt_stat_buf tgt(addr);
530 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
531 tgt.copyOut(mem);
532}
533
534template <class OS>
535static void
536copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
537 hst_statfs *host)
538{
539 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
540
541 tgt->f_type = TheISA::htog(host->f_type);
542#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
543 tgt->f_bsize = TheISA::htog(host->f_iosize);
544#else
545 tgt->f_bsize = TheISA::htog(host->f_bsize);
546#endif
547 tgt->f_blocks = TheISA::htog(host->f_blocks);
548 tgt->f_bfree = TheISA::htog(host->f_bfree);
549 tgt->f_bavail = TheISA::htog(host->f_bavail);
550 tgt->f_files = TheISA::htog(host->f_files);
551 tgt->f_ffree = TheISA::htog(host->f_ffree);
552 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
553#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
554 tgt->f_namelen = TheISA::htog(host->f_namemax);
555 tgt->f_frsize = TheISA::htog(host->f_bsize);
556#elif defined(__APPLE__)
557 tgt->f_namelen = 0;
558 tgt->f_frsize = 0;
559#else
560 tgt->f_namelen = TheISA::htog(host->f_namelen);
561 tgt->f_frsize = TheISA::htog(host->f_frsize);
562#endif
563#if defined(__linux__)
564 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
565#else
566 /*
567 * The fields are different sizes per OS. Don't bother with
568 * f_spare or f_reserved on non-Linux for now.
569 */
570 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
571#endif
572
573 tgt.copyOut(mem);
574}
575
576/// Target ioctl() handler. For the most part, programs call ioctl()
577/// only to find out if their stdout is a tty, to determine whether to
578/// do line or block buffering. We always claim that output fds are
579/// not TTYs to provide repeatable results.
580template <class OS>
581SyscallReturn
582ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
583{
584 int index = 0;
585 int tgt_fd = p->getSyscallArg(tc, index);
586 unsigned req = p->getSyscallArg(tc, index);
587
588 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
589
590 if (OS::isTtyReq(req))
591 return -ENOTTY;
592
593 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
594 if (!dfdp)
595 return -EBADF;
596
597 /**
598 * If the driver is valid, issue the ioctl through it. Otherwise,
599 * there's an implicit assumption that the device is a TTY type and we
600 * return that we do not have a valid TTY.
601 */
602 EmulatedDriver *emul_driver = dfdp->getDriver();
603 if (emul_driver)
604 return emul_driver->ioctl(p, tc, req);
605
606 /**
607 * For lack of a better return code, return ENOTTY. Ideally, we should
608 * return something better here, but at least we issue the warning.
609 */
610 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
611 tgt_fd, req, tc->pcState());
612 return -ENOTTY;
613}
614
615template <class OS>
616SyscallReturn
617openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
618 bool isopenat)
619{
620 int index = 0;
621 int tgt_dirfd = -1;
622
623 /**
624 * If using the openat variant, read in the target directory file
625 * descriptor from the simulated process.
626 */
627 if (isopenat)
628 tgt_dirfd = p->getSyscallArg(tc, index);
629
630 /**
631 * Retrieve the simulated process' memory proxy and then read in the path
632 * string from that memory space into the host's working memory space.
633 */
634 std::string path;
635 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
636 return -EFAULT;
637
638#ifdef __CYGWIN32__
639 int host_flags = O_BINARY;
640#else
641 int host_flags = 0;
642#endif
643 /**
644 * Translate target flags into host flags. Flags exist which are not
645 * ported between architectures which can cause check failures.
646 */
647 int tgt_flags = p->getSyscallArg(tc, index);
648 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
649 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
650 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
651 host_flags |= OS::openFlagTable[i].hostFlag;
652 }
653 }
654 if (tgt_flags) {
655 warn("open%s: cannot decode flags 0x%x",
656 isopenat ? "at" : "", tgt_flags);
657 }
658#ifdef __CYGWIN32__
659 host_flags |= O_BINARY;
660#endif
661
662 int mode = p->getSyscallArg(tc, index);
663
664 /**
665 * If the simulated process called open or openat with AT_FDCWD specified,
666 * take the current working directory value which was passed into the
667 * process class as a Python parameter and append the current path to
668 * create a full path.
669 * Otherwise, openat with a valid target directory file descriptor has
670 * been called. If the path option, which was passed in as a parameter,
671 * is not absolute, retrieve the directory file descriptor's path and
672 * prepend it to the path passed in as a parameter.
673 * In every case, we should have a full path (which is relevant to the
674 * host) to work with after this block has been passed.
675 */
676 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
677 path = p->fullPath(path);
678 } else if (!startswith(path, "/")) {
679 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
680 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
681 if (!ffdp)
682 return -EBADF;
683 path.insert(0, ffdp->getFileName());
684 }
685
686 /**
687 * Since this is an emulated environment, we create pseudo file
688 * descriptors for device requests that have been registered with
689 * the process class through Python; this allows us to create a file
690 * descriptor for subsequent ioctl or mmap calls.
691 */
692 if (startswith(path, "/dev/")) {
693 std::string filename = path.substr(strlen("/dev/"));
694 EmulatedDriver *drv = p->findDriver(filename);
695 if (drv) {
696 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
697 "driver open with path[%s]\n",
698 isopenat ? "at" : "", path.c_str());
699 return drv->open(p, tc, mode, host_flags);
700 }
701 /**
702 * Fall through here for pass through to host devices, such
703 * as /dev/zero
704 */
705 }
706
707 /**
708 * Some special paths and files cannot be called on the host and need
709 * to be handled as special cases inside the simulator.
710 * If the full path that was created above does not match any of the
711 * special cases, pass it through to the open call on the host to let
712 * the host open the file on our behalf.
713 * If the host cannot open the file, return the host's error code back
714 * through the system call to the simulated process.
715 */
716 int sim_fd = -1;
717 std::vector<std::string> special_paths =
718 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
719 for (auto entry : special_paths) {
720 if (startswith(path, entry))
721 sim_fd = OS::openSpecialFile(path, p, tc);
722 }
723 if (sim_fd == -1) {
724 sim_fd = open(path.c_str(), host_flags, mode);
725 }
726 if (sim_fd == -1) {
727 int local = -errno;
728 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
729 isopenat ? "at" : "", path.c_str());
730 return local;
731 }
732
733 /**
734 * The file was opened successfully and needs to be recorded in the
735 * process' file descriptor array so that it can be retrieved later.
736 * The target file descriptor that is chosen will be the lowest unused
737 * file descriptor.
738 * Return the indirect target file descriptor back to the simulated
739 * process to act as a handle for the opened file.
740 */
741 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
742 int tgt_fd = p->fds->allocFD(ffdp);
743 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
744 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
745 return tgt_fd;
746}
747
748/// Target open() handler.
749template <class OS>
750SyscallReturn
751openFunc(SyscallDesc *desc, int callnum, Process *process,
752 ThreadContext *tc)
753{
754 return openImpl<OS>(desc, callnum, process, tc, false);
755}
756
757/// Target openat() handler.
758template <class OS>
759SyscallReturn
760openatFunc(SyscallDesc *desc, int callnum, Process *process,
761 ThreadContext *tc)
762{
763 return openImpl<OS>(desc, callnum, process, tc, true);
764}
765
766/// Target unlinkat() handler.
767template <class OS>
768SyscallReturn
769unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
770 ThreadContext *tc)
771{
772 int index = 0;
773 int dirfd = process->getSyscallArg(tc, index);
774 if (dirfd != OS::TGT_AT_FDCWD)
775 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
776
777 return unlinkHelper(desc, callnum, process, tc, 1);
778}
779
780/// Target facessat() handler
781template <class OS>
782SyscallReturn
783faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
784 ThreadContext *tc)
785{
786 int index = 0;
787 int dirfd = process->getSyscallArg(tc, index);
788 if (dirfd != OS::TGT_AT_FDCWD)
789 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
790 return accessFunc(desc, callnum, process, tc, 1);
791}
792
793/// Target readlinkat() handler
794template <class OS>
795SyscallReturn
796readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
797 ThreadContext *tc)
798{
799 int index = 0;
800 int dirfd = process->getSyscallArg(tc, index);
801 if (dirfd != OS::TGT_AT_FDCWD)
802 warn("openat: first argument not AT_FDCWD; unlikely to work");
803 return readlinkFunc(desc, callnum, process, tc, 1);
804}
805
806/// Target renameat() handler.
807template <class OS>
808SyscallReturn
809renameatFunc(SyscallDesc *desc, int callnum, Process *process,
810 ThreadContext *tc)
811{
812 int index = 0;
813
814 int olddirfd = process->getSyscallArg(tc, index);
815 if (olddirfd != OS::TGT_AT_FDCWD)
816 warn("renameat: first argument not AT_FDCWD; unlikely to work");
817
818 std::string old_name;
819
820 if (!tc->getMemProxy().tryReadString(old_name,
821 process->getSyscallArg(tc, index)))
822 return -EFAULT;
823
824 int newdirfd = process->getSyscallArg(tc, index);
825 if (newdirfd != OS::TGT_AT_FDCWD)
826 warn("renameat: third argument not AT_FDCWD; unlikely to work");
827
828 std::string new_name;
829
830 if (!tc->getMemProxy().tryReadString(new_name,
831 process->getSyscallArg(tc, index)))
832 return -EFAULT;
833
834 // Adjust path for current working directory
835 old_name = process->fullPath(old_name);
836 new_name = process->fullPath(new_name);
837
838 int result = rename(old_name.c_str(), new_name.c_str());
839 return (result == -1) ? -errno : result;
840}
841
842/// Target sysinfo() handler.
843template <class OS>
844SyscallReturn
845sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
846 ThreadContext *tc)
847{
848
849 int index = 0;
850 TypedBufferArg<typename OS::tgt_sysinfo>
851 sysinfo(process->getSyscallArg(tc, index));
852
853 sysinfo->uptime = seconds_since_epoch;
854 sysinfo->totalram = process->system->memSize();
855 sysinfo->mem_unit = 1;
856
857 sysinfo.copyOut(tc->getMemProxy());
858
859 return 0;
860}
861
862/// Target chmod() handler.
863template <class OS>
864SyscallReturn
865chmodFunc(SyscallDesc *desc, int callnum, Process *process,
866 ThreadContext *tc)
867{
868 std::string path;
869
870 int index = 0;
871 if (!tc->getMemProxy().tryReadString(path,
872 process->getSyscallArg(tc, index))) {
873 return -EFAULT;
874 }
875
876 uint32_t mode = process->getSyscallArg(tc, index);
877 mode_t hostMode = 0;
878
879 // XXX translate mode flags via OS::something???
880 hostMode = mode;
881
882 // Adjust path for current working directory
883 path = process->fullPath(path);
884
885 // do the chmod
886 int result = chmod(path.c_str(), hostMode);
887 if (result < 0)
888 return -errno;
889
890 return 0;
891}
892
893
894/// Target fchmod() handler.
895template <class OS>
896SyscallReturn
897fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
898{
899 int index = 0;
900 int tgt_fd = p->getSyscallArg(tc, index);
901 uint32_t mode = p->getSyscallArg(tc, index);
902
903 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
904 if (!ffdp)
905 return -EBADF;
906 int sim_fd = ffdp->getSimFD();
907
908 mode_t hostMode = mode;
909
910 int result = fchmod(sim_fd, hostMode);
911
912 return (result < 0) ? -errno : 0;
913}
914
915/// Target mremap() handler.
916template <class OS>
917SyscallReturn
918mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
919{
920 int index = 0;
921 Addr start = process->getSyscallArg(tc, index);
922 uint64_t old_length = process->getSyscallArg(tc, index);
923 uint64_t new_length = process->getSyscallArg(tc, index);
924 uint64_t flags = process->getSyscallArg(tc, index);
925 uint64_t provided_address = 0;
926 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
927
928 if (use_provided_address)
929 provided_address = process->getSyscallArg(tc, index);
930
931 if ((start % TheISA::PageBytes != 0) ||
932 (provided_address % TheISA::PageBytes != 0)) {
933 warn("mremap failing: arguments not page aligned");
934 return -EINVAL;
935 }
936
937 new_length = roundUp(new_length, TheISA::PageBytes);
938
939 if (new_length > old_length) {
940 std::shared_ptr<MemState> mem_state = process->memState;
941 Addr mmap_end = mem_state->getMmapEnd();
942
943 if ((start + old_length) == mmap_end &&
944 (!use_provided_address || provided_address == start)) {
945 uint64_t diff = new_length - old_length;
946 process->allocateMem(mmap_end, diff);
947 mem_state->setMmapEnd(mmap_end + diff);
948 return start;
949 } else {
950 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
951 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
952 return -ENOMEM;
953 } else {
954 uint64_t new_start = use_provided_address ?
955 provided_address : mmap_end;
956 process->pTable->remap(start, old_length, new_start);
957 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
958 new_start, new_start + new_length,
959 new_length - old_length);
960 // add on the remaining unallocated pages
961 process->allocateMem(new_start + old_length,
962 new_length - old_length,
963 use_provided_address /* clobber */);
964 if (!use_provided_address)
965 mem_state->setMmapEnd(mmap_end + new_length);
966 if (use_provided_address &&
967 new_start + new_length > mem_state->getMmapEnd()) {
968 // something fishy going on here, at least notify the user
969 // @todo: increase mmap_end?
970 warn("mmap region limit exceeded with MREMAP_FIXED\n");
971 }
972 warn("returning %08p as start\n", new_start);
973 return new_start;
974 }
975 }
976 } else {
977 if (use_provided_address && provided_address != start)
978 process->pTable->remap(start, new_length, provided_address);
979 process->pTable->unmap(start + new_length, old_length - new_length);
980 return use_provided_address ? provided_address : start;
981 }
982}
983
984/// Target stat() handler.
985template <class OS>
986SyscallReturn
987statFunc(SyscallDesc *desc, int callnum, Process *process,
988 ThreadContext *tc)
989{
990 std::string path;
991
992 int index = 0;
993 if (!tc->getMemProxy().tryReadString(path,
994 process->getSyscallArg(tc, index))) {
995 return -EFAULT;
996 }
997 Addr bufPtr = process->getSyscallArg(tc, index);
998
999 // Adjust path for current working directory
1000 path = process->fullPath(path);
1001
1002 struct stat hostBuf;
1003 int result = stat(path.c_str(), &hostBuf);
1004
1005 if (result < 0)
1006 return -errno;
1007
1008 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1009
1010 return 0;
1011}
1012
1013
1014/// Target stat64() handler.
1015template <class OS>
1016SyscallReturn
1017stat64Func(SyscallDesc *desc, int callnum, Process *process,
1018 ThreadContext *tc)
1019{
1020 std::string path;
1021
1022 int index = 0;
1023 if (!tc->getMemProxy().tryReadString(path,
1024 process->getSyscallArg(tc, index)))
1025 return -EFAULT;
1026 Addr bufPtr = process->getSyscallArg(tc, index);
1027
1028 // Adjust path for current working directory
1029 path = process->fullPath(path);
1030
1031#if NO_STAT64
1032 struct stat hostBuf;
1033 int result = stat(path.c_str(), &hostBuf);
1034#else
1035 struct stat64 hostBuf;
1036 int result = stat64(path.c_str(), &hostBuf);
1037#endif
1038
1039 if (result < 0)
1040 return -errno;
1041
1042 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1043
1044 return 0;
1045}
1046
1047
1048/// Target fstatat64() handler.
1049template <class OS>
1050SyscallReturn
1051fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1052 ThreadContext *tc)
1053{
1054 int index = 0;
1055 int dirfd = process->getSyscallArg(tc, index);
1056 if (dirfd != OS::TGT_AT_FDCWD)
1057 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1058
1059 std::string path;
1060 if (!tc->getMemProxy().tryReadString(path,
1061 process->getSyscallArg(tc, index)))
1062 return -EFAULT;
1063 Addr bufPtr = process->getSyscallArg(tc, index);
1064
1065 // Adjust path for current working directory
1066 path = process->fullPath(path);
1067
1068#if NO_STAT64
1069 struct stat hostBuf;
1070 int result = stat(path.c_str(), &hostBuf);
1071#else
1072 struct stat64 hostBuf;
1073 int result = stat64(path.c_str(), &hostBuf);
1074#endif
1075
1076 if (result < 0)
1077 return -errno;
1078
1079 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1080
1081 return 0;
1082}
1083
1084
1085/// Target fstat64() handler.
1086template <class OS>
1087SyscallReturn
1088fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1089{
1090 int index = 0;
1091 int tgt_fd = p->getSyscallArg(tc, index);
1092 Addr bufPtr = p->getSyscallArg(tc, index);
1093
1094 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1095 if (!ffdp)
1096 return -EBADF;
1097 int sim_fd = ffdp->getSimFD();
1098
1099#if NO_STAT64
1100 struct stat hostBuf;
1101 int result = fstat(sim_fd, &hostBuf);
1102#else
1103 struct stat64 hostBuf;
1104 int result = fstat64(sim_fd, &hostBuf);
1105#endif
1106
1107 if (result < 0)
1108 return -errno;
1109
1110 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1111
1112 return 0;
1113}
1114
1115
1116/// Target lstat() handler.
1117template <class OS>
1118SyscallReturn
1119lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1120 ThreadContext *tc)
1121{
1122 std::string path;
1123
1124 int index = 0;
1125 if (!tc->getMemProxy().tryReadString(path,
1126 process->getSyscallArg(tc, index))) {
1127 return -EFAULT;
1128 }
1129 Addr bufPtr = process->getSyscallArg(tc, index);
1130
1131 // Adjust path for current working directory
1132 path = process->fullPath(path);
1133
1134 struct stat hostBuf;
1135 int result = lstat(path.c_str(), &hostBuf);
1136
1137 if (result < 0)
1138 return -errno;
1139
1140 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1141
1142 return 0;
1143}
1144
1145/// Target lstat64() handler.
1146template <class OS>
1147SyscallReturn
1148lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1149 ThreadContext *tc)
1150{
1151 std::string path;
1152
1153 int index = 0;
1154 if (!tc->getMemProxy().tryReadString(path,
1155 process->getSyscallArg(tc, index))) {
1156 return -EFAULT;
1157 }
1158 Addr bufPtr = process->getSyscallArg(tc, index);
1159
1160 // Adjust path for current working directory
1161 path = process->fullPath(path);
1162
1163#if NO_STAT64
1164 struct stat hostBuf;
1165 int result = lstat(path.c_str(), &hostBuf);
1166#else
1167 struct stat64 hostBuf;
1168 int result = lstat64(path.c_str(), &hostBuf);
1169#endif
1170
1171 if (result < 0)
1172 return -errno;
1173
1174 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1175
1176 return 0;
1177}
1178
1179/// Target fstat() handler.
1180template <class OS>
1181SyscallReturn
1182fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1183{
1184 int index = 0;
1185 int tgt_fd = p->getSyscallArg(tc, index);
1186 Addr bufPtr = p->getSyscallArg(tc, index);
1187
1188 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1189
1190 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1191 if (!ffdp)
1192 return -EBADF;
1193 int sim_fd = ffdp->getSimFD();
1194
1195 struct stat hostBuf;
1196 int result = fstat(sim_fd, &hostBuf);
1197
1198 if (result < 0)
1199 return -errno;
1200
1201 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1202
1203 return 0;
1204}
1205
1206
1207/// Target statfs() handler.
1208template <class OS>
1209SyscallReturn
1210statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1211 ThreadContext *tc)
1212{
1213#if NO_STATFS
1214 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1215#else
1216 std::string path;
1217
1218 int index = 0;
1219 if (!tc->getMemProxy().tryReadString(path,
1220 process->getSyscallArg(tc, index))) {
1221 return -EFAULT;
1222 }
1223 Addr bufPtr = process->getSyscallArg(tc, index);
1224
1225 // Adjust path for current working directory
1226 path = process->fullPath(path);
1227
1228 struct statfs hostBuf;
1229 int result = statfs(path.c_str(), &hostBuf);
1230
1231 if (result < 0)
1232 return -errno;
1233
1234 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1235#endif
1236 return 0;
1237}
1238
1239template <class OS>
1240SyscallReturn
1241cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1242{
1243 int index = 0;
1244 TheISA::IntReg flags = p->getSyscallArg(tc, index);
1245 TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1246 Addr ptidPtr = p->getSyscallArg(tc, index);
1247 Addr ctidPtr = p->getSyscallArg(tc, index);
1248 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1249
1250 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1251 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1252 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1253 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1254 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1255 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1256 return -EINVAL;
1257
1258 ThreadContext *ctc;
1259 if (!(ctc = p->findFreeContext()))
1260 fatal("clone: no spare thread context in system");
1261
1262 /**
1263 * Note that ProcessParams is generated by swig and there are no other
1264 * examples of how to create anything but this default constructor. The
1265 * fields are manually initialized instead of passing parameters to the
1266 * constructor.
1267 */
1268 ProcessParams *pp = new ProcessParams();
1269 pp->executable.assign(*(new std::string(p->progName())));
1270 pp->cmd.push_back(*(new std::string(p->progName())));
1271 pp->system = p->system;
1272 pp->cwd.assign(p->getcwd());
1273 pp->input.assign("stdin");
1274 pp->output.assign("stdout");
1275 pp->errout.assign("stderr");
1276 pp->uid = p->uid();
1277 pp->euid = p->euid();
1278 pp->gid = p->gid();
1279 pp->egid = p->egid();
1280
1281 /* Find the first free PID that's less than the maximum */
1282 std::set<int> const& pids = p->system->PIDs;
1283 int temp_pid = *pids.begin();
1284 do {
1285 temp_pid++;
1286 } while (pids.find(temp_pid) != pids.end());
1287 if (temp_pid >= System::maxPID)
1288 fatal("temp_pid is too large: %d", temp_pid);
1289
1290 pp->pid = temp_pid;
1291 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1292 Process *cp = pp->create();
1293 delete pp;
1294
1295 Process *owner = ctc->getProcessPtr();
1296 ctc->setProcessPtr(cp);
1297 cp->assignThreadContext(ctc->contextId());
1298 owner->revokeThreadContext(ctc->contextId());
1299
1300 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1301 BufferArg ptidBuf(ptidPtr, sizeof(long));
1302 long *ptid = (long *)ptidBuf.bufferPtr();
1303 *ptid = cp->pid();
1304 ptidBuf.copyOut(tc->getMemProxy());
1305 }
1306
1307 cp->initState();
1308 p->clone(tc, ctc, cp, flags);
1309
1310 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1311 BufferArg ctidBuf(ctidPtr, sizeof(long));
1312 long *ctid = (long *)ctidBuf.bufferPtr();
1313 *ctid = cp->pid();
1314 ctidBuf.copyOut(ctc->getMemProxy());
1315 }
1316
1317 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1318 cp->childClearTID = (uint64_t)ctidPtr;
1319
1320 ctc->clearArchRegs();
1321
1322#if THE_ISA == ALPHA_ISA
1323 TheISA::copyMiscRegs(tc, ctc);
1324#elif THE_ISA == SPARC_ISA
1325 TheISA::copyRegs(tc, ctc);
1326 ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1327 ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1328 ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1329 ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1330 ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1331 ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1332 ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1333 ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1334 for (int y = 8; y < 32; y++)
1335 ctc->setIntReg(y, tc->readIntReg(y));
1336#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA
1337 TheISA::copyRegs(tc, ctc);
1338#endif
1339
1340#if THE_ISA == X86_ISA
1341 if (flags & OS::TGT_CLONE_SETTLS) {
1342 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1343 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1344 }
1345#endif
1346
1347 if (newStack)
1348 ctc->setIntReg(TheISA::StackPointerReg, newStack);
1349
1350 cp->setSyscallReturn(ctc, 0);
1351
1352#if THE_ISA == ALPHA_ISA
1353 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1354#elif THE_ISA == SPARC_ISA
1355 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1356 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1357#endif
1358
1359 ctc->pcState(tc->nextInstAddr());
1360 ctc->activate();
1361
1362 return cp->pid();
1363}
1364
1365/// Target fstatfs() handler.
1366template <class OS>
1367SyscallReturn
1368fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1369{
1370 int index = 0;
1371 int tgt_fd = p->getSyscallArg(tc, index);
1372 Addr bufPtr = p->getSyscallArg(tc, index);
1373
1374 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1375 if (!ffdp)
1376 return -EBADF;
1377 int sim_fd = ffdp->getSimFD();
1378
1379 struct statfs hostBuf;
1380 int result = fstatfs(sim_fd, &hostBuf);
1381
1382 if (result < 0)
1383 return -errno;
1384
1385 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1386
1387 return 0;
1388}
1389
1390
1391/// Target writev() handler.
1392template <class OS>
1393SyscallReturn
1394writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1395{
1396 int index = 0;
1397 int tgt_fd = p->getSyscallArg(tc, index);
1398
1399 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1400 if (!hbfdp)
1401 return -EBADF;
1402 int sim_fd = hbfdp->getSimFD();
1403
1404 SETranslatingPortProxy &prox = tc->getMemProxy();
1405 uint64_t tiov_base = p->getSyscallArg(tc, index);
1406 size_t count = p->getSyscallArg(tc, index);
1407 struct iovec hiov[count];
1408 for (size_t i = 0; i < count; ++i) {
1409 typename OS::tgt_iovec tiov;
1410
1411 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1412 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1413 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1414 hiov[i].iov_base = new char [hiov[i].iov_len];
1415 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1416 hiov[i].iov_len);
1417 }
1418
1419 int result = writev(sim_fd, hiov, count);
1420
1421 for (size_t i = 0; i < count; ++i)
1422 delete [] (char *)hiov[i].iov_base;
1423
1424 if (result < 0)
1425 return -errno;
1426
1427 return result;
1428}
1429
1430/// Real mmap handler.
1431template <class OS>
1432SyscallReturn
1433mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1434 bool is_mmap2)
1435{
1436 int index = 0;
1437 Addr start = p->getSyscallArg(tc, index);
1438 uint64_t length = p->getSyscallArg(tc, index);
1439 int prot = p->getSyscallArg(tc, index);
1440 int tgt_flags = p->getSyscallArg(tc, index);
1441 int tgt_fd = p->getSyscallArg(tc, index);
1442 int offset = p->getSyscallArg(tc, index);
1443
1444 if (is_mmap2)
1445 offset *= TheISA::PageBytes;
1446
1447 if (start & (TheISA::PageBytes - 1) ||
1448 offset & (TheISA::PageBytes - 1) ||
1449 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1450 tgt_flags & OS::TGT_MAP_SHARED) ||
1451 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1452 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1453 !length) {
1454 return -EINVAL;
1455 }
1456
1457 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1458 // With shared mmaps, there are two cases to consider:
1459 // 1) anonymous: writes should modify the mapping and this should be
1460 // visible to observers who share the mapping. Currently, it's
1461 // difficult to update the shared mapping because there's no
1462 // structure which maintains information about the which virtual
1463 // memory areas are shared. If that structure existed, it would be
1464 // possible to make the translations point to the same frames.
1465 // 2) file-backed: writes should modify the mapping and the file
1466 // which is backed by the mapping. The shared mapping problem is the
1467 // same as what was mentioned about the anonymous mappings. For
1468 // file-backed mappings, the writes to the file are difficult
1469 // because it requires syncing what the mapping holds with the file
1470 // that resides on the host system. So, any write on a real system
1471 // would cause the change to be propagated to the file mapping at
1472 // some point in the future (the inode is tracked along with the
1473 // mapping). This isn't guaranteed to always happen, but it usually
1474 // works well enough. The guarantee is provided by the msync system
1475 // call. We could force the change through with shared mappings with
1476 // a call to msync, but that again would require more information
1477 // than we currently maintain.
1478 warn("mmap: writing to shared mmap region is currently "
1479 "unsupported. The write succeeds on the target, but it "
1480 "will not be propagated to the host or shared mappings");
1481 }
1482
1483 length = roundUp(length, TheISA::PageBytes);
1484
1485 int sim_fd = -1;
1486 uint8_t *pmap = nullptr;
1487 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1488 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1489
1490 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1491 if (dfdp) {
1492 EmulatedDriver *emul_driver = dfdp->getDriver();
1493 return emul_driver->mmap(p, tc, start, length, prot,
1494 tgt_flags, tgt_fd, offset);
1495 }
1496
1497 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1498 if (!ffdp)
1499 return -EBADF;
1500 sim_fd = ffdp->getSimFD();
1501
1502 pmap = (decltype(pmap))mmap(NULL, length, PROT_READ, MAP_PRIVATE,
1503 sim_fd, offset);
1504
1505 if (pmap == (decltype(pmap))-1) {
1506 warn("mmap: failed to map file into host address space");
1507 return -errno;
1508 }
1509 }
1510
1511 // Extend global mmap region if necessary. Note that we ignore the
1512 // start address unless MAP_FIXED is specified.
1513 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1514 std::shared_ptr<MemState> mem_state = p->memState;
1515 Addr mmap_end = mem_state->getMmapEnd();
1516
1517 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1518 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1519
1520 mem_state->setMmapEnd(mmap_end);
1521 }
1522
1523 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1524 start, start + length - 1);
1525
1526 // We only allow mappings to overwrite existing mappings if
1527 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1528 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1529 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1530 if (clobber) {
1531 for (auto tc : p->system->threadContexts) {
1532 // If we might be overwriting old mappings, we need to
1533 // invalidate potentially stale mappings out of the TLBs.
1534 tc->getDTBPtr()->flushAll();
1535 tc->getITBPtr()->flushAll();
1536 }
1537 }
1538
1539 // Allocate physical memory and map it in. If the page table is already
1540 // mapped and clobber is not set, the simulator will issue throw a
1541 // fatal and bail out of the simulation.
1542 p->allocateMem(start, length, clobber);
1543
1544 // Transfer content into target address space.
1545 SETranslatingPortProxy &tp = tc->getMemProxy();
1546 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1547 // In general, we should zero the mapped area for anonymous mappings,
1548 // with something like:
1549 // tp.memsetBlob(start, 0, length);
1550 // However, given that we don't support sparse mappings, and
1551 // some applications can map a couple of gigabytes of space
1552 // (intending sparse usage), that can get painfully expensive.
1553 // Fortunately, since we don't properly implement munmap either,
1554 // there's no danger of remapping used memory, so for now all
1555 // newly mapped memory should already be zeroed so we can skip it.
1556 } else {
1557 // It is possible to mmap an area larger than a file, however
1558 // accessing unmapped portions the system triggers a "Bus error"
1559 // on the host. We must know when to stop copying the file from
1560 // the host into the target address space.
1561 struct stat file_stat;
1562 if (fstat(sim_fd, &file_stat) > 0)
1563 fatal("mmap: cannot stat file");
1564
1565 // Copy the portion of the file that is resident. This requires
1566 // checking both the mmap size and the filesize that we are
1567 // trying to mmap into this space; the mmap size also depends
1568 // on the specified offset into the file.
1569 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1570 length);
1571 tp.writeBlob(start, pmap, size);
1572
1573 // Cleanup the mmap region before exiting this function.
1574 munmap(pmap, length);
1575
1576 // Maintain the symbol table for dynamic executables.
1577 // The loader will call mmap to map the images into its address
1578 // space and we intercept that here. We can verify that we are
1579 // executing inside the loader by checking the program counter value.
1580 // XXX: with multiprogrammed workloads or multi-node configurations,
1581 // this will not work since there is a single global symbol table.
1582 ObjectFile *interpreter = p->getInterpreter();
1583 if (interpreter) {
1584 Addr text_start = interpreter->textBase();
1585 Addr text_end = text_start + interpreter->textSize();
1586
1587 Addr pc = tc->pcState().pc();
1588
1589 if (pc >= text_start && pc < text_end) {
1590 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1591 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1592 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1593
1594 if (lib) {
1595 lib->loadAllSymbols(debugSymbolTable,
1596 lib->textBase(), start);
1597 }
1598 }
1599 }
1600
1601 // Note that we do not zero out the remainder of the mapping. This
1602 // is done by a real system, but it probably will not affect
1603 // execution (hopefully).
1604 }
1605
1606 return start;
1607}
1608
1609template <class OS>
1610SyscallReturn
1611pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1612{
1613 int index = 0;
1614 int tgt_fd = p->getSyscallArg(tc, index);
1615 Addr bufPtr = p->getSyscallArg(tc, index);
1616 int nbytes = p->getSyscallArg(tc, index);
1617 int offset = p->getSyscallArg(tc, index);
1618
1619 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1620 if (!ffdp)
1621 return -EBADF;
1622 int sim_fd = ffdp->getSimFD();
1623
1624 BufferArg bufArg(bufPtr, nbytes);
1625 bufArg.copyIn(tc->getMemProxy());
1626
1627 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1628
1629 return (bytes_written == -1) ? -errno : bytes_written;
1630}
1631
1632/// Target mmap() handler.
1633template <class OS>
1634SyscallReturn
1635mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1636{
1637 return mmapImpl<OS>(desc, num, p, tc, false);
1638}
1639
1640/// Target mmap2() handler.
1641template <class OS>
1642SyscallReturn
1643mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1644{
1645 return mmapImpl<OS>(desc, num, p, tc, true);
1646}
1647
1648/// Target getrlimit() handler.
1649template <class OS>
1650SyscallReturn
1651getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1652 ThreadContext *tc)
1653{
1654 int index = 0;
1655 unsigned resource = process->getSyscallArg(tc, index);
1656 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1657
1658 switch (resource) {
1659 case OS::TGT_RLIMIT_STACK:
1660 // max stack size in bytes: make up a number (8MB for now)
1661 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1662 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1663 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1664 break;
1665
1666 case OS::TGT_RLIMIT_DATA:
1667 // max data segment size in bytes: make up a number
1668 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1669 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1670 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1671 break;
1672
1673 default:
1674 warn("getrlimit: unimplemented resource %d", resource);
1675 return -EINVAL;
1676 break;
1677 }
1678
1679 rlp.copyOut(tc->getMemProxy());
1680 return 0;
1681}
1682
1683/// Target clock_gettime() function.
1684template <class OS>
1685SyscallReturn
1686clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1687{
1688 int index = 1;
1689 //int clk_id = p->getSyscallArg(tc, index);
1690 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1691
1692 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1693 tp->tv_sec += seconds_since_epoch;
1694 tp->tv_sec = TheISA::htog(tp->tv_sec);
1695 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1696
1697 tp.copyOut(tc->getMemProxy());
1698
1699 return 0;
1700}
1701
1702/// Target clock_getres() function.
1703template <class OS>
1704SyscallReturn
1705clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1706{
1707 int index = 1;
1708 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1709
1710 // Set resolution at ns, which is what clock_gettime() returns
1711 tp->tv_sec = 0;
1712 tp->tv_nsec = 1;
1713
1714 tp.copyOut(tc->getMemProxy());
1715
1716 return 0;
1717}
1718
1719/// Target gettimeofday() handler.
1720template <class OS>
1721SyscallReturn
1722gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1723 ThreadContext *tc)
1724{
1725 int index = 0;
1726 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1727
1728 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1729 tp->tv_sec += seconds_since_epoch;
1730 tp->tv_sec = TheISA::htog(tp->tv_sec);
1731 tp->tv_usec = TheISA::htog(tp->tv_usec);
1732
1733 tp.copyOut(tc->getMemProxy());
1734
1735 return 0;
1736}
1737
1738
1739/// Target utimes() handler.
1740template <class OS>
1741SyscallReturn
1742utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1743 ThreadContext *tc)
1744{
1745 std::string path;
1746
1747 int index = 0;
1748 if (!tc->getMemProxy().tryReadString(path,
1749 process->getSyscallArg(tc, index))) {
1750 return -EFAULT;
1751 }
1752
1753 TypedBufferArg<typename OS::timeval [2]>
1754 tp(process->getSyscallArg(tc, index));
1755 tp.copyIn(tc->getMemProxy());
1756
1757 struct timeval hostTimeval[2];
1758 for (int i = 0; i < 2; ++i) {
1759 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1760 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1761 }
1762
1763 // Adjust path for current working directory
1764 path = process->fullPath(path);
1765
1766 int result = utimes(path.c_str(), hostTimeval);
1767
1768 if (result < 0)
1769 return -errno;
1770
1771 return 0;
1772}
1773
1774template <class OS>
1775SyscallReturn
1776execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1777{
1778 desc->setFlags(0);
1779
1780 int index = 0;
1781 std::string path;
1782 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1783 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1784 return -EFAULT;
1785
1786 if (access(path.c_str(), F_OK) == -1)
1787 return -EACCES;
1788
1789 auto read_in = [](std::vector<std::string> & vect,
1790 SETranslatingPortProxy & mem_proxy,
1791 Addr mem_loc)
1792 {
1793 for (int inc = 0; ; inc++) {
1794 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1795 b.copyIn(mem_proxy);
1796
1797 if (!*(Addr*)b.bufferPtr())
1798 break;
1799
1800 vect.push_back(std::string());
1801 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1802 }
1803 };
1804
1805 /**
1806 * Note that ProcessParams is generated by swig and there are no other
1807 * examples of how to create anything but this default constructor. The
1808 * fields are manually initialized instead of passing parameters to the
1809 * constructor.
1810 */
1811 ProcessParams *pp = new ProcessParams();
1812 pp->executable = path;
1813 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1814 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1815 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1816 read_in(pp->env, mem_proxy, envp_mem_loc);
1817 pp->uid = p->uid();
1818 pp->egid = p->egid();
1819 pp->euid = p->euid();
1820 pp->gid = p->gid();
1821 pp->ppid = p->ppid();
1822 pp->pid = p->pid();
1823 pp->input.assign("cin");
1824 pp->output.assign("cout");
1825 pp->errout.assign("cerr");
1826 pp->cwd.assign(p->getcwd());
1827 pp->system = p->system;
1828 /**
1829 * Prevent process object creation with identical PIDs (which will trip
1830 * a fatal check in Process constructor). The execve call is supposed to
1831 * take over the currently executing process' identity but replace
1832 * whatever it is doing with a new process image. Instead of hijacking
1833 * the process object in the simulator, we create a new process object
1834 * and bind to the previous process' thread below (hijacking the thread).
1835 */
1836 p->system->PIDs.erase(p->pid());
1837 Process *new_p = pp->create();
1838 delete pp;
1839
1840 /**
1841 * Work through the file descriptor array and close any files marked
1842 * close-on-exec.
1843 */
1844 new_p->fds = p->fds;
1845 for (int i = 0; i < new_p->fds->getSize(); i++) {
1846 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1847 if (fdep && fdep->getCOE())
1848 new_p->fds->closeFDEntry(i);
1849 }
1850
1851 *new_p->sigchld = true;
1852
1853 delete p;
1854 tc->clearArchRegs();
1855 tc->setProcessPtr(new_p);
1856 new_p->assignThreadContext(tc->contextId());
1857 new_p->initState();
1858 tc->activate();
1859 TheISA::PCState pcState = tc->pcState();
1860 tc->setNPC(pcState.instAddr());
1861
1862 desc->setFlags(SyscallDesc::SuppressReturnValue);
1863 return 0;
1864}
1865
1866/// Target getrusage() function.
1867template <class OS>
1868SyscallReturn
1869getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1870 ThreadContext *tc)
1871{
1872 int index = 0;
1873 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1874 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1875
1876 rup->ru_utime.tv_sec = 0;
1877 rup->ru_utime.tv_usec = 0;
1878 rup->ru_stime.tv_sec = 0;
1879 rup->ru_stime.tv_usec = 0;
1880 rup->ru_maxrss = 0;
1881 rup->ru_ixrss = 0;
1882 rup->ru_idrss = 0;
1883 rup->ru_isrss = 0;
1884 rup->ru_minflt = 0;
1885 rup->ru_majflt = 0;
1886 rup->ru_nswap = 0;
1887 rup->ru_inblock = 0;
1888 rup->ru_oublock = 0;
1889 rup->ru_msgsnd = 0;
1890 rup->ru_msgrcv = 0;
1891 rup->ru_nsignals = 0;
1892 rup->ru_nvcsw = 0;
1893 rup->ru_nivcsw = 0;
1894
1895 switch (who) {
1896 case OS::TGT_RUSAGE_SELF:
1897 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1898 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1899 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1900 break;
1901
1902 case OS::TGT_RUSAGE_CHILDREN:
1903 // do nothing. We have no child processes, so they take no time.
1904 break;
1905
1906 default:
1907 // don't really handle THREAD or CHILDREN, but just warn and
1908 // plow ahead
1909 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
1910 who);
1911 }
1912
1913 rup.copyOut(tc->getMemProxy());
1914
1915 return 0;
1916}
1917
1918/// Target times() function.
1919template <class OS>
1920SyscallReturn
1921timesFunc(SyscallDesc *desc, int callnum, Process *process,
1922 ThreadContext *tc)
1923{
1924 int index = 0;
1925 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
1926
1927 // Fill in the time structure (in clocks)
1928 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
1929 bufp->tms_utime = clocks;
1930 bufp->tms_stime = 0;
1931 bufp->tms_cutime = 0;
1932 bufp->tms_cstime = 0;
1933
1934 // Convert to host endianness
1935 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
1936
1937 // Write back
1938 bufp.copyOut(tc->getMemProxy());
1939
1940 // Return clock ticks since system boot
1941 return clocks;
1942}
1943
1944/// Target time() function.
1945template <class OS>
1946SyscallReturn
1947timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
1948{
1949 typename OS::time_t sec, usec;
1950 getElapsedTimeMicro(sec, usec);
1951 sec += seconds_since_epoch;
1952
1953 int index = 0;
1954 Addr taddr = (Addr)process->getSyscallArg(tc, index);
1955 if (taddr != 0) {
1956 typename OS::time_t t = sec;
1957 t = TheISA::htog(t);
1958 SETranslatingPortProxy &p = tc->getMemProxy();
1959 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
1960 }
1961 return sec;
1962}
1963
1964
1965#endif // __SIM_SYSCALL_EMUL_HH__