Deleted Added
sdiff udiff text old ( 12796:16dffc0e6c7f ) new ( 13031:47510ddc366d )
full compact
1/*
2 * Copyright (c) 2012-2013, 2015 ARM Limited
3 * Copyright (c) 2015 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Kevin Lim
43 */
44
45#ifndef __SIM_SYSCALL_EMUL_HH__
46#define __SIM_SYSCALL_EMUL_HH__
47
48#if (defined(__APPLE__) || defined(__OpenBSD__) || \
49 defined(__FreeBSD__) || defined(__CYGWIN__) || \
50 defined(__NetBSD__))
51#define NO_STAT64 1
52#else
53#define NO_STAT64 0
54#endif
55
56#if (defined(__APPLE__) || defined(__OpenBSD__) || \
57 defined(__FreeBSD__) || defined(__NetBSD__))
58#define NO_STATFS 1
59#else
60#define NO_STATFS 0
61#endif
62
63#if (defined(__APPLE__) || defined(__OpenBSD__) || \
64 defined(__FreeBSD__) || defined(__NetBSD__))
65#define NO_FALLOCATE 1
66#else
67#define NO_FALLOCATE 0
68#endif
69
70///
71/// @file syscall_emul.hh
72///
73/// This file defines objects used to emulate syscalls from the target
74/// application on the host machine.
75
76#ifdef __CYGWIN32__
77#include <sys/fcntl.h>
78
79#endif
80#include <fcntl.h>
81#include <sys/mman.h>
82#include <sys/stat.h>
83#if (NO_STATFS == 0)
84#include <sys/statfs.h>
85#else
86#include <sys/mount.h>
87#endif
88#include <sys/time.h>
89#include <sys/uio.h>
90#include <unistd.h>
91
92#include <cerrno>
93#include <memory>
94#include <string>
95
96#include "arch/generic/tlb.hh"
97#include "arch/utility.hh"
98#include "base/intmath.hh"
99#include "base/loader/object_file.hh"
100#include "base/logging.hh"
101#include "base/trace.hh"
102#include "base/types.hh"
103#include "config/the_isa.hh"
104#include "cpu/base.hh"
105#include "cpu/thread_context.hh"
106#include "mem/page_table.hh"
107#include "params/Process.hh"
108#include "sim/emul_driver.hh"
109#include "sim/futex_map.hh"
110#include "sim/process.hh"
111#include "sim/syscall_debug_macros.hh"
112#include "sim/syscall_desc.hh"
113#include "sim/syscall_emul_buf.hh"
114#include "sim/syscall_return.hh"
115
116//////////////////////////////////////////////////////////////////////
117//
118// The following emulation functions are generic enough that they
119// don't need to be recompiled for different emulated OS's. They are
120// defined in sim/syscall_emul.cc.
121//
122//////////////////////////////////////////////////////////////////////
123
124
125/// Handler for unimplemented syscalls that we haven't thought about.
126SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
127 Process *p, ThreadContext *tc);
128
129/// Handler for unimplemented syscalls that we never intend to
130/// implement (signal handling, etc.) and should not affect the correct
131/// behavior of the program. Print a warning only if the appropriate
132/// trace flag is enabled. Return success to the target program.
133SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
134 Process *p, ThreadContext *tc);
135
136// Target fallocateFunc() handler.
137SyscallReturn fallocateFunc(SyscallDesc *desc, int num,
138 Process *p, ThreadContext *tc);
139
140/// Target exit() handler: terminate current context.
141SyscallReturn exitFunc(SyscallDesc *desc, int num,
142 Process *p, ThreadContext *tc);
143
144/// Target exit_group() handler: terminate simulation. (exit all threads)
145SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
146 Process *p, ThreadContext *tc);
147
148/// Target set_tid_address() handler.
149SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num,
150 Process *p, ThreadContext *tc);
151
152/// Target getpagesize() handler.
153SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
154 Process *p, ThreadContext *tc);
155
156/// Target brk() handler: set brk address.
157SyscallReturn brkFunc(SyscallDesc *desc, int num,
158 Process *p, ThreadContext *tc);
159
160/// Target close() handler.
161SyscallReturn closeFunc(SyscallDesc *desc, int num,
162 Process *p, ThreadContext *tc);
163
164// Target read() handler.
165SyscallReturn readFunc(SyscallDesc *desc, int num,
166 Process *p, ThreadContext *tc);
167
168/// Target write() handler.
169SyscallReturn writeFunc(SyscallDesc *desc, int num,
170 Process *p, ThreadContext *tc);
171
172/// Target lseek() handler.
173SyscallReturn lseekFunc(SyscallDesc *desc, int num,
174 Process *p, ThreadContext *tc);
175
176/// Target _llseek() handler.
177SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
178 Process *p, ThreadContext *tc);
179
180/// Target munmap() handler.
181SyscallReturn munmapFunc(SyscallDesc *desc, int num,
182 Process *p, ThreadContext *tc);
183
184/// Target gethostname() handler.
185SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
186 Process *p, ThreadContext *tc);
187
188/// Target getcwd() handler.
189SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
190 Process *p, ThreadContext *tc);
191
192/// Target readlink() handler.
193SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
194 Process *p, ThreadContext *tc,
195 int index = 0);
196SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
197 Process *p, ThreadContext *tc);
198
199/// Target unlink() handler.
200SyscallReturn unlinkHelper(SyscallDesc *desc, int num,
201 Process *p, ThreadContext *tc,
202 int index);
203SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
204 Process *p, ThreadContext *tc);
205
206/// Target link() handler
207SyscallReturn linkFunc(SyscallDesc *desc, int num, Process *p,
208 ThreadContext *tc);
209
210/// Target symlink() handler.
211SyscallReturn symlinkFunc(SyscallDesc *desc, int num, Process *p,
212 ThreadContext *tc);
213
214/// Target mkdir() handler.
215SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
216 Process *p, ThreadContext *tc);
217
218/// Target mknod() handler.
219SyscallReturn mknodFunc(SyscallDesc *desc, int num,
220 Process *p, ThreadContext *tc);
221
222/// Target chdir() handler.
223SyscallReturn chdirFunc(SyscallDesc *desc, int num,
224 Process *p, ThreadContext *tc);
225
226// Target rmdir() handler.
227SyscallReturn rmdirFunc(SyscallDesc *desc, int num,
228 Process *p, ThreadContext *tc);
229
230/// Target rename() handler.
231SyscallReturn renameFunc(SyscallDesc *desc, int num,
232 Process *p, ThreadContext *tc);
233
234
235/// Target truncate() handler.
236SyscallReturn truncateFunc(SyscallDesc *desc, int num,
237 Process *p, ThreadContext *tc);
238
239
240/// Target ftruncate() handler.
241SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
242 Process *p, ThreadContext *tc);
243
244
245/// Target truncate64() handler.
246SyscallReturn truncate64Func(SyscallDesc *desc, int num,
247 Process *p, ThreadContext *tc);
248
249/// Target ftruncate64() handler.
250SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
251 Process *p, ThreadContext *tc);
252
253
254/// Target umask() handler.
255SyscallReturn umaskFunc(SyscallDesc *desc, int num,
256 Process *p, ThreadContext *tc);
257
258/// Target gettid() handler.
259SyscallReturn gettidFunc(SyscallDesc *desc, int num,
260 Process *p, ThreadContext *tc);
261
262/// Target chown() handler.
263SyscallReturn chownFunc(SyscallDesc *desc, int num,
264 Process *p, ThreadContext *tc);
265
266/// Target setpgid() handler.
267SyscallReturn setpgidFunc(SyscallDesc *desc, int num,
268 Process *p, ThreadContext *tc);
269
270/// Target fchown() handler.
271SyscallReturn fchownFunc(SyscallDesc *desc, int num,
272 Process *p, ThreadContext *tc);
273
274/// Target dup() handler.
275SyscallReturn dupFunc(SyscallDesc *desc, int num,
276 Process *process, ThreadContext *tc);
277
278/// Target dup2() handler.
279SyscallReturn dup2Func(SyscallDesc *desc, int num,
280 Process *process, ThreadContext *tc);
281
282/// Target fcntl() handler.
283SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
284 Process *process, ThreadContext *tc);
285
286/// Target fcntl64() handler.
287SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
288 Process *process, ThreadContext *tc);
289
290/// Target setuid() handler.
291SyscallReturn setuidFunc(SyscallDesc *desc, int num,
292 Process *p, ThreadContext *tc);
293
294/// Target pipe() handler.
295SyscallReturn pipeFunc(SyscallDesc *desc, int num,
296 Process *p, ThreadContext *tc);
297
298/// Internal pipe() handler.
299SyscallReturn pipeImpl(SyscallDesc *desc, int num, Process *p,
300 ThreadContext *tc, bool pseudoPipe);
301
302/// Target getpid() handler.
303SyscallReturn getpidFunc(SyscallDesc *desc, int num,
304 Process *p, ThreadContext *tc);
305
306// Target getdents() handler.
307SyscallReturn getdentsFunc(SyscallDesc *desc, int num,
308 Process *p, ThreadContext *tc);
309
310// Target getuid() handler.
311SyscallReturn getuidFunc(SyscallDesc *desc, int num,
312 Process *p, ThreadContext *tc);
313
314/// Target getgid() handler.
315SyscallReturn getgidFunc(SyscallDesc *desc, int num,
316 Process *p, ThreadContext *tc);
317
318/// Target getppid() handler.
319SyscallReturn getppidFunc(SyscallDesc *desc, int num,
320 Process *p, ThreadContext *tc);
321
322/// Target geteuid() handler.
323SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
324 Process *p, ThreadContext *tc);
325
326/// Target getegid() handler.
327SyscallReturn getegidFunc(SyscallDesc *desc, int num,
328 Process *p, ThreadContext *tc);
329
330/// Target access() handler
331SyscallReturn accessFunc(SyscallDesc *desc, int num,
332 Process *p, ThreadContext *tc);
333SyscallReturn accessFunc(SyscallDesc *desc, int num,
334 Process *p, ThreadContext *tc,
335 int index);
336
337/// Futex system call
338/// Implemented by Daniel Sanchez
339/// Used by printf's in multi-threaded apps
340template <class OS>
341SyscallReturn
342futexFunc(SyscallDesc *desc, int callnum, Process *process,
343 ThreadContext *tc)
344{
345 using namespace std;
346
347 int index = 0;
348 Addr uaddr = process->getSyscallArg(tc, index);
349 int op = process->getSyscallArg(tc, index);
350 int val = process->getSyscallArg(tc, index);
351
352 /*
353 * Unsupported option that does not affect the correctness of the
354 * application. This is a performance optimization utilized by Linux.
355 */
356 op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
357
358 FutexMap &futex_map = tc->getSystemPtr()->futexMap;
359
360 if (OS::TGT_FUTEX_WAIT == op) {
361 // Ensure futex system call accessed atomically.
362 BufferArg buf(uaddr, sizeof(int));
363 buf.copyIn(tc->getMemProxy());
364 int mem_val = *(int*)buf.bufferPtr();
365
366 /*
367 * The value in memory at uaddr is not equal with the expected val
368 * (a different thread must have changed it before the system call was
369 * invoked). In this case, we need to throw an error.
370 */
371 if (val != mem_val)
372 return -OS::TGT_EWOULDBLOCK;
373
374 futex_map.suspend(uaddr, process->tgid(), tc);
375
376 return 0;
377 } else if (OS::TGT_FUTEX_WAKE == op) {
378 return futex_map.wakeup(uaddr, process->tgid(), val);
379 }
380
381 warn("futex: op %d not implemented; ignoring.", op);
382 return -ENOSYS;
383}
384
385
386/// Pseudo Funcs - These functions use a different return convension,
387/// returning a second value in a register other than the normal return register
388SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
389 Process *process, ThreadContext *tc);
390
391/// Target getpidPseudo() handler.
392SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
393 Process *p, ThreadContext *tc);
394
395/// Target getuidPseudo() handler.
396SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
397 Process *p, ThreadContext *tc);
398
399/// Target getgidPseudo() handler.
400SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
401 Process *p, ThreadContext *tc);
402
403
404/// A readable name for 1,000,000, for converting microseconds to seconds.
405const int one_million = 1000000;
406/// A readable name for 1,000,000,000, for converting nanoseconds to seconds.
407const int one_billion = 1000000000;
408
409/// Approximate seconds since the epoch (1/1/1970). About a billion,
410/// by my reckoning. We want to keep this a constant (not use the
411/// real-world time) to keep simulations repeatable.
412const unsigned seconds_since_epoch = 1000000000;
413
414/// Helper function to convert current elapsed time to seconds and
415/// microseconds.
416template <class T1, class T2>
417void
418getElapsedTimeMicro(T1 &sec, T2 &usec)
419{
420 uint64_t elapsed_usecs = curTick() / SimClock::Int::us;
421 sec = elapsed_usecs / one_million;
422 usec = elapsed_usecs % one_million;
423}
424
425/// Helper function to convert current elapsed time to seconds and
426/// nanoseconds.
427template <class T1, class T2>
428void
429getElapsedTimeNano(T1 &sec, T2 &nsec)
430{
431 uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns;
432 sec = elapsed_nsecs / one_billion;
433 nsec = elapsed_nsecs % one_billion;
434}
435
436//////////////////////////////////////////////////////////////////////
437//
438// The following emulation functions are generic, but need to be
439// templated to account for differences in types, constants, etc.
440//
441//////////////////////////////////////////////////////////////////////
442
443 typedef struct statfs hst_statfs;
444#if NO_STAT64
445 typedef struct stat hst_stat;
446 typedef struct stat hst_stat64;
447#else
448 typedef struct stat hst_stat;
449 typedef struct stat64 hst_stat64;
450#endif
451
452//// Helper function to convert a host stat buffer to a target stat
453//// buffer. Also copies the target buffer out to the simulated
454//// memory space. Used by stat(), fstat(), and lstat().
455
456template <typename target_stat, typename host_stat>
457void
458convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
459{
460 using namespace TheISA;
461
462 if (fakeTTY)
463 tgt->st_dev = 0xA;
464 else
465 tgt->st_dev = host->st_dev;
466 tgt->st_dev = TheISA::htog(tgt->st_dev);
467 tgt->st_ino = host->st_ino;
468 tgt->st_ino = TheISA::htog(tgt->st_ino);
469 tgt->st_mode = host->st_mode;
470 if (fakeTTY) {
471 // Claim to be a character device
472 tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
473 tgt->st_mode |= S_IFCHR; // Set S_IFCHR
474 }
475 tgt->st_mode = TheISA::htog(tgt->st_mode);
476 tgt->st_nlink = host->st_nlink;
477 tgt->st_nlink = TheISA::htog(tgt->st_nlink);
478 tgt->st_uid = host->st_uid;
479 tgt->st_uid = TheISA::htog(tgt->st_uid);
480 tgt->st_gid = host->st_gid;
481 tgt->st_gid = TheISA::htog(tgt->st_gid);
482 if (fakeTTY)
483 tgt->st_rdev = 0x880d;
484 else
485 tgt->st_rdev = host->st_rdev;
486 tgt->st_rdev = TheISA::htog(tgt->st_rdev);
487 tgt->st_size = host->st_size;
488 tgt->st_size = TheISA::htog(tgt->st_size);
489 tgt->st_atimeX = host->st_atime;
490 tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
491 tgt->st_mtimeX = host->st_mtime;
492 tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
493 tgt->st_ctimeX = host->st_ctime;
494 tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
495 // Force the block size to be 8KB. This helps to ensure buffered io works
496 // consistently across different hosts.
497 tgt->st_blksize = 0x2000;
498 tgt->st_blksize = TheISA::htog(tgt->st_blksize);
499 tgt->st_blocks = host->st_blocks;
500 tgt->st_blocks = TheISA::htog(tgt->st_blocks);
501}
502
503// Same for stat64
504
505template <typename target_stat, typename host_stat64>
506void
507convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
508{
509 using namespace TheISA;
510
511 convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
512#if defined(STAT_HAVE_NSEC)
513 tgt->st_atime_nsec = host->st_atime_nsec;
514 tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
515 tgt->st_mtime_nsec = host->st_mtime_nsec;
516 tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
517 tgt->st_ctime_nsec = host->st_ctime_nsec;
518 tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
519#else
520 tgt->st_atime_nsec = 0;
521 tgt->st_mtime_nsec = 0;
522 tgt->st_ctime_nsec = 0;
523#endif
524}
525
526// Here are a couple of convenience functions
527template<class OS>
528void
529copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
530 hst_stat *host, bool fakeTTY = false)
531{
532 typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
533 tgt_stat_buf tgt(addr);
534 convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
535 tgt.copyOut(mem);
536}
537
538template<class OS>
539void
540copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
541 hst_stat64 *host, bool fakeTTY = false)
542{
543 typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
544 tgt_stat_buf tgt(addr);
545 convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
546 tgt.copyOut(mem);
547}
548
549template <class OS>
550void
551copyOutStatfsBuf(SETranslatingPortProxy &mem, Addr addr,
552 hst_statfs *host)
553{
554 TypedBufferArg<typename OS::tgt_statfs> tgt(addr);
555
556 tgt->f_type = TheISA::htog(host->f_type);
557#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
558 tgt->f_bsize = TheISA::htog(host->f_iosize);
559#else
560 tgt->f_bsize = TheISA::htog(host->f_bsize);
561#endif
562 tgt->f_blocks = TheISA::htog(host->f_blocks);
563 tgt->f_bfree = TheISA::htog(host->f_bfree);
564 tgt->f_bavail = TheISA::htog(host->f_bavail);
565 tgt->f_files = TheISA::htog(host->f_files);
566 tgt->f_ffree = TheISA::htog(host->f_ffree);
567 memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid));
568#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
569 tgt->f_namelen = TheISA::htog(host->f_namemax);
570 tgt->f_frsize = TheISA::htog(host->f_bsize);
571#elif defined(__APPLE__)
572 tgt->f_namelen = 0;
573 tgt->f_frsize = 0;
574#else
575 tgt->f_namelen = TheISA::htog(host->f_namelen);
576 tgt->f_frsize = TheISA::htog(host->f_frsize);
577#endif
578#if defined(__linux__)
579 memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare));
580#else
581 /*
582 * The fields are different sizes per OS. Don't bother with
583 * f_spare or f_reserved on non-Linux for now.
584 */
585 memset(&tgt->f_spare, 0, sizeof(tgt->f_spare));
586#endif
587
588 tgt.copyOut(mem);
589}
590
591/// Target ioctl() handler. For the most part, programs call ioctl()
592/// only to find out if their stdout is a tty, to determine whether to
593/// do line or block buffering. We always claim that output fds are
594/// not TTYs to provide repeatable results.
595template <class OS>
596SyscallReturn
597ioctlFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
598{
599 int index = 0;
600 int tgt_fd = p->getSyscallArg(tc, index);
601 unsigned req = p->getSyscallArg(tc, index);
602
603 DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req);
604
605 if (OS::isTtyReq(req))
606 return -ENOTTY;
607
608 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>((*p->fds)[tgt_fd]);
609 if (!dfdp)
610 return -EBADF;
611
612 /**
613 * If the driver is valid, issue the ioctl through it. Otherwise,
614 * there's an implicit assumption that the device is a TTY type and we
615 * return that we do not have a valid TTY.
616 */
617 EmulatedDriver *emul_driver = dfdp->getDriver();
618 if (emul_driver)
619 return emul_driver->ioctl(p, tc, req);
620
621 /**
622 * For lack of a better return code, return ENOTTY. Ideally, we should
623 * return something better here, but at least we issue the warning.
624 */
625 warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n",
626 tgt_fd, req, tc->pcState());
627 return -ENOTTY;
628}
629
630template <class OS>
631SyscallReturn
632openImpl(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc,
633 bool isopenat)
634{
635 int index = 0;
636 int tgt_dirfd = -1;
637
638 /**
639 * If using the openat variant, read in the target directory file
640 * descriptor from the simulated process.
641 */
642 if (isopenat)
643 tgt_dirfd = p->getSyscallArg(tc, index);
644
645 /**
646 * Retrieve the simulated process' memory proxy and then read in the path
647 * string from that memory space into the host's working memory space.
648 */
649 std::string path;
650 if (!tc->getMemProxy().tryReadString(path, p->getSyscallArg(tc, index)))
651 return -EFAULT;
652
653#ifdef __CYGWIN32__
654 int host_flags = O_BINARY;
655#else
656 int host_flags = 0;
657#endif
658 /**
659 * Translate target flags into host flags. Flags exist which are not
660 * ported between architectures which can cause check failures.
661 */
662 int tgt_flags = p->getSyscallArg(tc, index);
663 for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
664 if (tgt_flags & OS::openFlagTable[i].tgtFlag) {
665 tgt_flags &= ~OS::openFlagTable[i].tgtFlag;
666 host_flags |= OS::openFlagTable[i].hostFlag;
667 }
668 }
669 if (tgt_flags) {
670 warn("open%s: cannot decode flags 0x%x",
671 isopenat ? "at" : "", tgt_flags);
672 }
673#ifdef __CYGWIN32__
674 host_flags |= O_BINARY;
675#endif
676
677 int mode = p->getSyscallArg(tc, index);
678
679 /**
680 * If the simulated process called open or openat with AT_FDCWD specified,
681 * take the current working directory value which was passed into the
682 * process class as a Python parameter and append the current path to
683 * create a full path.
684 * Otherwise, openat with a valid target directory file descriptor has
685 * been called. If the path option, which was passed in as a parameter,
686 * is not absolute, retrieve the directory file descriptor's path and
687 * prepend it to the path passed in as a parameter.
688 * In every case, we should have a full path (which is relevant to the
689 * host) to work with after this block has been passed.
690 */
691 if (!isopenat || (isopenat && tgt_dirfd == OS::TGT_AT_FDCWD)) {
692 path = p->fullPath(path);
693 } else if (!startswith(path, "/")) {
694 std::shared_ptr<FDEntry> fdep = ((*p->fds)[tgt_dirfd]);
695 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
696 if (!ffdp)
697 return -EBADF;
698 path.insert(0, ffdp->getFileName());
699 }
700
701 /**
702 * Since this is an emulated environment, we create pseudo file
703 * descriptors for device requests that have been registered with
704 * the process class through Python; this allows us to create a file
705 * descriptor for subsequent ioctl or mmap calls.
706 */
707 if (startswith(path, "/dev/")) {
708 std::string filename = path.substr(strlen("/dev/"));
709 EmulatedDriver *drv = p->findDriver(filename);
710 if (drv) {
711 DPRINTF_SYSCALL(Verbose, "open%s: passing call to "
712 "driver open with path[%s]\n",
713 isopenat ? "at" : "", path.c_str());
714 return drv->open(p, tc, mode, host_flags);
715 }
716 /**
717 * Fall through here for pass through to host devices, such
718 * as /dev/zero
719 */
720 }
721
722 /**
723 * Some special paths and files cannot be called on the host and need
724 * to be handled as special cases inside the simulator.
725 * If the full path that was created above does not match any of the
726 * special cases, pass it through to the open call on the host to let
727 * the host open the file on our behalf.
728 * If the host cannot open the file, return the host's error code back
729 * through the system call to the simulated process.
730 */
731 int sim_fd = -1;
732 std::vector<std::string> special_paths =
733 { "/proc/", "/system/", "/sys/", "/platform/", "/etc/passwd" };
734 for (auto entry : special_paths) {
735 if (startswith(path, entry))
736 sim_fd = OS::openSpecialFile(path, p, tc);
737 }
738 if (sim_fd == -1) {
739 sim_fd = open(path.c_str(), host_flags, mode);
740 }
741 if (sim_fd == -1) {
742 int local = -errno;
743 DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s\n",
744 isopenat ? "at" : "", path.c_str());
745 return local;
746 }
747
748 /**
749 * The file was opened successfully and needs to be recorded in the
750 * process' file descriptor array so that it can be retrieved later.
751 * The target file descriptor that is chosen will be the lowest unused
752 * file descriptor.
753 * Return the indirect target file descriptor back to the simulated
754 * process to act as a handle for the opened file.
755 */
756 auto ffdp = std::make_shared<FileFDEntry>(sim_fd, host_flags, path, 0);
757 int tgt_fd = p->fds->allocFD(ffdp);
758 DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n",
759 isopenat ? "at" : "", sim_fd, tgt_fd, path.c_str());
760 return tgt_fd;
761}
762
763/// Target open() handler.
764template <class OS>
765SyscallReturn
766openFunc(SyscallDesc *desc, int callnum, Process *process,
767 ThreadContext *tc)
768{
769 return openImpl<OS>(desc, callnum, process, tc, false);
770}
771
772/// Target openat() handler.
773template <class OS>
774SyscallReturn
775openatFunc(SyscallDesc *desc, int callnum, Process *process,
776 ThreadContext *tc)
777{
778 return openImpl<OS>(desc, callnum, process, tc, true);
779}
780
781/// Target unlinkat() handler.
782template <class OS>
783SyscallReturn
784unlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
785 ThreadContext *tc)
786{
787 int index = 0;
788 int dirfd = process->getSyscallArg(tc, index);
789 if (dirfd != OS::TGT_AT_FDCWD)
790 warn("unlinkat: first argument not AT_FDCWD; unlikely to work");
791
792 return unlinkHelper(desc, callnum, process, tc, 1);
793}
794
795/// Target facessat() handler
796template <class OS>
797SyscallReturn
798faccessatFunc(SyscallDesc *desc, int callnum, Process *process,
799 ThreadContext *tc)
800{
801 int index = 0;
802 int dirfd = process->getSyscallArg(tc, index);
803 if (dirfd != OS::TGT_AT_FDCWD)
804 warn("faccessat: first argument not AT_FDCWD; unlikely to work");
805 return accessFunc(desc, callnum, process, tc, 1);
806}
807
808/// Target readlinkat() handler
809template <class OS>
810SyscallReturn
811readlinkatFunc(SyscallDesc *desc, int callnum, Process *process,
812 ThreadContext *tc)
813{
814 int index = 0;
815 int dirfd = process->getSyscallArg(tc, index);
816 if (dirfd != OS::TGT_AT_FDCWD)
817 warn("openat: first argument not AT_FDCWD; unlikely to work");
818 return readlinkFunc(desc, callnum, process, tc, 1);
819}
820
821/// Target renameat() handler.
822template <class OS>
823SyscallReturn
824renameatFunc(SyscallDesc *desc, int callnum, Process *process,
825 ThreadContext *tc)
826{
827 int index = 0;
828
829 int olddirfd = process->getSyscallArg(tc, index);
830 if (olddirfd != OS::TGT_AT_FDCWD)
831 warn("renameat: first argument not AT_FDCWD; unlikely to work");
832
833 std::string old_name;
834
835 if (!tc->getMemProxy().tryReadString(old_name,
836 process->getSyscallArg(tc, index)))
837 return -EFAULT;
838
839 int newdirfd = process->getSyscallArg(tc, index);
840 if (newdirfd != OS::TGT_AT_FDCWD)
841 warn("renameat: third argument not AT_FDCWD; unlikely to work");
842
843 std::string new_name;
844
845 if (!tc->getMemProxy().tryReadString(new_name,
846 process->getSyscallArg(tc, index)))
847 return -EFAULT;
848
849 // Adjust path for current working directory
850 old_name = process->fullPath(old_name);
851 new_name = process->fullPath(new_name);
852
853 int result = rename(old_name.c_str(), new_name.c_str());
854 return (result == -1) ? -errno : result;
855}
856
857/// Target sysinfo() handler.
858template <class OS>
859SyscallReturn
860sysinfoFunc(SyscallDesc *desc, int callnum, Process *process,
861 ThreadContext *tc)
862{
863
864 int index = 0;
865 TypedBufferArg<typename OS::tgt_sysinfo>
866 sysinfo(process->getSyscallArg(tc, index));
867
868 sysinfo->uptime = seconds_since_epoch;
869 sysinfo->totalram = process->system->memSize();
870 sysinfo->mem_unit = 1;
871
872 sysinfo.copyOut(tc->getMemProxy());
873
874 return 0;
875}
876
877/// Target chmod() handler.
878template <class OS>
879SyscallReturn
880chmodFunc(SyscallDesc *desc, int callnum, Process *process,
881 ThreadContext *tc)
882{
883 std::string path;
884
885 int index = 0;
886 if (!tc->getMemProxy().tryReadString(path,
887 process->getSyscallArg(tc, index))) {
888 return -EFAULT;
889 }
890
891 uint32_t mode = process->getSyscallArg(tc, index);
892 mode_t hostMode = 0;
893
894 // XXX translate mode flags via OS::something???
895 hostMode = mode;
896
897 // Adjust path for current working directory
898 path = process->fullPath(path);
899
900 // do the chmod
901 int result = chmod(path.c_str(), hostMode);
902 if (result < 0)
903 return -errno;
904
905 return 0;
906}
907
908
909/// Target fchmod() handler.
910template <class OS>
911SyscallReturn
912fchmodFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
913{
914 int index = 0;
915 int tgt_fd = p->getSyscallArg(tc, index);
916 uint32_t mode = p->getSyscallArg(tc, index);
917
918 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
919 if (!ffdp)
920 return -EBADF;
921 int sim_fd = ffdp->getSimFD();
922
923 mode_t hostMode = mode;
924
925 int result = fchmod(sim_fd, hostMode);
926
927 return (result < 0) ? -errno : 0;
928}
929
930/// Target mremap() handler.
931template <class OS>
932SyscallReturn
933mremapFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
934{
935 int index = 0;
936 Addr start = process->getSyscallArg(tc, index);
937 uint64_t old_length = process->getSyscallArg(tc, index);
938 uint64_t new_length = process->getSyscallArg(tc, index);
939 uint64_t flags = process->getSyscallArg(tc, index);
940 uint64_t provided_address = 0;
941 bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
942
943 if (use_provided_address)
944 provided_address = process->getSyscallArg(tc, index);
945
946 if ((start % TheISA::PageBytes != 0) ||
947 (provided_address % TheISA::PageBytes != 0)) {
948 warn("mremap failing: arguments not page aligned");
949 return -EINVAL;
950 }
951
952 new_length = roundUp(new_length, TheISA::PageBytes);
953
954 if (new_length > old_length) {
955 std::shared_ptr<MemState> mem_state = process->memState;
956 Addr mmap_end = mem_state->getMmapEnd();
957
958 if ((start + old_length) == mmap_end &&
959 (!use_provided_address || provided_address == start)) {
960 // This case cannot occur when growing downward, as
961 // start is greater than or equal to mmap_end.
962 uint64_t diff = new_length - old_length;
963 process->allocateMem(mmap_end, diff);
964 mem_state->setMmapEnd(mmap_end + diff);
965 return start;
966 } else {
967 if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
968 warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
969 return -ENOMEM;
970 } else {
971 uint64_t new_start = provided_address;
972 if (!use_provided_address) {
973 new_start = process->mmapGrowsDown() ?
974 mmap_end - new_length : mmap_end;
975 mmap_end = process->mmapGrowsDown() ?
976 new_start : mmap_end + new_length;
977 mem_state->setMmapEnd(mmap_end);
978 }
979
980 process->pTable->remap(start, old_length, new_start);
981 warn("mremapping to new vaddr %08p-%08p, adding %d\n",
982 new_start, new_start + new_length,
983 new_length - old_length);
984 // add on the remaining unallocated pages
985 process->allocateMem(new_start + old_length,
986 new_length - old_length,
987 use_provided_address /* clobber */);
988 if (use_provided_address &&
989 ((new_start + new_length > mem_state->getMmapEnd() &&
990 !process->mmapGrowsDown()) ||
991 (new_start < mem_state->getMmapEnd() &&
992 process->mmapGrowsDown()))) {
993 // something fishy going on here, at least notify the user
994 // @todo: increase mmap_end?
995 warn("mmap region limit exceeded with MREMAP_FIXED\n");
996 }
997 warn("returning %08p as start\n", new_start);
998 return new_start;
999 }
1000 }
1001 } else {
1002 if (use_provided_address && provided_address != start)
1003 process->pTable->remap(start, new_length, provided_address);
1004 process->pTable->unmap(start + new_length, old_length - new_length);
1005 return use_provided_address ? provided_address : start;
1006 }
1007}
1008
1009/// Target stat() handler.
1010template <class OS>
1011SyscallReturn
1012statFunc(SyscallDesc *desc, int callnum, Process *process,
1013 ThreadContext *tc)
1014{
1015 std::string path;
1016
1017 int index = 0;
1018 if (!tc->getMemProxy().tryReadString(path,
1019 process->getSyscallArg(tc, index))) {
1020 return -EFAULT;
1021 }
1022 Addr bufPtr = process->getSyscallArg(tc, index);
1023
1024 // Adjust path for current working directory
1025 path = process->fullPath(path);
1026
1027 struct stat hostBuf;
1028 int result = stat(path.c_str(), &hostBuf);
1029
1030 if (result < 0)
1031 return -errno;
1032
1033 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1034
1035 return 0;
1036}
1037
1038
1039/// Target stat64() handler.
1040template <class OS>
1041SyscallReturn
1042stat64Func(SyscallDesc *desc, int callnum, Process *process,
1043 ThreadContext *tc)
1044{
1045 std::string path;
1046
1047 int index = 0;
1048 if (!tc->getMemProxy().tryReadString(path,
1049 process->getSyscallArg(tc, index)))
1050 return -EFAULT;
1051 Addr bufPtr = process->getSyscallArg(tc, index);
1052
1053 // Adjust path for current working directory
1054 path = process->fullPath(path);
1055
1056#if NO_STAT64
1057 struct stat hostBuf;
1058 int result = stat(path.c_str(), &hostBuf);
1059#else
1060 struct stat64 hostBuf;
1061 int result = stat64(path.c_str(), &hostBuf);
1062#endif
1063
1064 if (result < 0)
1065 return -errno;
1066
1067 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1068
1069 return 0;
1070}
1071
1072
1073/// Target fstatat64() handler.
1074template <class OS>
1075SyscallReturn
1076fstatat64Func(SyscallDesc *desc, int callnum, Process *process,
1077 ThreadContext *tc)
1078{
1079 int index = 0;
1080 int dirfd = process->getSyscallArg(tc, index);
1081 if (dirfd != OS::TGT_AT_FDCWD)
1082 warn("fstatat64: first argument not AT_FDCWD; unlikely to work");
1083
1084 std::string path;
1085 if (!tc->getMemProxy().tryReadString(path,
1086 process->getSyscallArg(tc, index)))
1087 return -EFAULT;
1088 Addr bufPtr = process->getSyscallArg(tc, index);
1089
1090 // Adjust path for current working directory
1091 path = process->fullPath(path);
1092
1093#if NO_STAT64
1094 struct stat hostBuf;
1095 int result = stat(path.c_str(), &hostBuf);
1096#else
1097 struct stat64 hostBuf;
1098 int result = stat64(path.c_str(), &hostBuf);
1099#endif
1100
1101 if (result < 0)
1102 return -errno;
1103
1104 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1105
1106 return 0;
1107}
1108
1109
1110/// Target fstat64() handler.
1111template <class OS>
1112SyscallReturn
1113fstat64Func(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1114{
1115 int index = 0;
1116 int tgt_fd = p->getSyscallArg(tc, index);
1117 Addr bufPtr = p->getSyscallArg(tc, index);
1118
1119 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1120 if (!ffdp)
1121 return -EBADF;
1122 int sim_fd = ffdp->getSimFD();
1123
1124#if NO_STAT64
1125 struct stat hostBuf;
1126 int result = fstat(sim_fd, &hostBuf);
1127#else
1128 struct stat64 hostBuf;
1129 int result = fstat64(sim_fd, &hostBuf);
1130#endif
1131
1132 if (result < 0)
1133 return -errno;
1134
1135 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1136
1137 return 0;
1138}
1139
1140
1141/// Target lstat() handler.
1142template <class OS>
1143SyscallReturn
1144lstatFunc(SyscallDesc *desc, int callnum, Process *process,
1145 ThreadContext *tc)
1146{
1147 std::string path;
1148
1149 int index = 0;
1150 if (!tc->getMemProxy().tryReadString(path,
1151 process->getSyscallArg(tc, index))) {
1152 return -EFAULT;
1153 }
1154 Addr bufPtr = process->getSyscallArg(tc, index);
1155
1156 // Adjust path for current working directory
1157 path = process->fullPath(path);
1158
1159 struct stat hostBuf;
1160 int result = lstat(path.c_str(), &hostBuf);
1161
1162 if (result < 0)
1163 return -errno;
1164
1165 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1166
1167 return 0;
1168}
1169
1170/// Target lstat64() handler.
1171template <class OS>
1172SyscallReturn
1173lstat64Func(SyscallDesc *desc, int callnum, Process *process,
1174 ThreadContext *tc)
1175{
1176 std::string path;
1177
1178 int index = 0;
1179 if (!tc->getMemProxy().tryReadString(path,
1180 process->getSyscallArg(tc, index))) {
1181 return -EFAULT;
1182 }
1183 Addr bufPtr = process->getSyscallArg(tc, index);
1184
1185 // Adjust path for current working directory
1186 path = process->fullPath(path);
1187
1188#if NO_STAT64
1189 struct stat hostBuf;
1190 int result = lstat(path.c_str(), &hostBuf);
1191#else
1192 struct stat64 hostBuf;
1193 int result = lstat64(path.c_str(), &hostBuf);
1194#endif
1195
1196 if (result < 0)
1197 return -errno;
1198
1199 copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1200
1201 return 0;
1202}
1203
1204/// Target fstat() handler.
1205template <class OS>
1206SyscallReturn
1207fstatFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1208{
1209 int index = 0;
1210 int tgt_fd = p->getSyscallArg(tc, index);
1211 Addr bufPtr = p->getSyscallArg(tc, index);
1212
1213 DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd);
1214
1215 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1216 if (!ffdp)
1217 return -EBADF;
1218 int sim_fd = ffdp->getSimFD();
1219
1220 struct stat hostBuf;
1221 int result = fstat(sim_fd, &hostBuf);
1222
1223 if (result < 0)
1224 return -errno;
1225
1226 copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (sim_fd == 1));
1227
1228 return 0;
1229}
1230
1231
1232/// Target statfs() handler.
1233template <class OS>
1234SyscallReturn
1235statfsFunc(SyscallDesc *desc, int callnum, Process *process,
1236 ThreadContext *tc)
1237{
1238#if NO_STATFS
1239 warn("Host OS cannot support calls to statfs. Ignoring syscall");
1240#else
1241 std::string path;
1242
1243 int index = 0;
1244 if (!tc->getMemProxy().tryReadString(path,
1245 process->getSyscallArg(tc, index))) {
1246 return -EFAULT;
1247 }
1248 Addr bufPtr = process->getSyscallArg(tc, index);
1249
1250 // Adjust path for current working directory
1251 path = process->fullPath(path);
1252
1253 struct statfs hostBuf;
1254 int result = statfs(path.c_str(), &hostBuf);
1255
1256 if (result < 0)
1257 return -errno;
1258
1259 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1260#endif
1261 return 0;
1262}
1263
1264template <class OS>
1265SyscallReturn
1266cloneFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1267{
1268 int index = 0;
1269
1270 TheISA::IntReg flags = p->getSyscallArg(tc, index);
1271 TheISA::IntReg newStack = p->getSyscallArg(tc, index);
1272 Addr ptidPtr = p->getSyscallArg(tc, index);
1273
1274#if THE_ISA == RISCV_ISA
1275 /**
1276 * Linux kernel 4.15 sets CLONE_BACKWARDS flag for RISC-V.
1277 * The flag defines the list of clone() arguments in the following
1278 * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr
1279 */
1280 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1281 Addr ctidPtr = p->getSyscallArg(tc, index);
1282#else
1283 Addr ctidPtr = p->getSyscallArg(tc, index);
1284 Addr tlsPtr M5_VAR_USED = p->getSyscallArg(tc, index);
1285#endif
1286
1287 if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) ||
1288 ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) ||
1289 ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) ||
1290 ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) ||
1291 ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) ||
1292 ((flags & OS::TGT_CLONE_VM) && !(newStack)))
1293 return -EINVAL;
1294
1295 ThreadContext *ctc;
1296 if (!(ctc = p->findFreeContext()))
1297 fatal("clone: no spare thread context in system");
1298
1299 /**
1300 * Note that ProcessParams is generated by swig and there are no other
1301 * examples of how to create anything but this default constructor. The
1302 * fields are manually initialized instead of passing parameters to the
1303 * constructor.
1304 */
1305 ProcessParams *pp = new ProcessParams();
1306 pp->executable.assign(*(new std::string(p->progName())));
1307 pp->cmd.push_back(*(new std::string(p->progName())));
1308 pp->system = p->system;
1309 pp->cwd.assign(p->getcwd());
1310 pp->input.assign("stdin");
1311 pp->output.assign("stdout");
1312 pp->errout.assign("stderr");
1313 pp->uid = p->uid();
1314 pp->euid = p->euid();
1315 pp->gid = p->gid();
1316 pp->egid = p->egid();
1317
1318 /* Find the first free PID that's less than the maximum */
1319 std::set<int> const& pids = p->system->PIDs;
1320 int temp_pid = *pids.begin();
1321 do {
1322 temp_pid++;
1323 } while (pids.find(temp_pid) != pids.end());
1324 if (temp_pid >= System::maxPID)
1325 fatal("temp_pid is too large: %d", temp_pid);
1326
1327 pp->pid = temp_pid;
1328 pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid();
1329 Process *cp = pp->create();
1330 delete pp;
1331
1332 Process *owner = ctc->getProcessPtr();
1333 ctc->setProcessPtr(cp);
1334 cp->assignThreadContext(ctc->contextId());
1335 owner->revokeThreadContext(ctc->contextId());
1336
1337 if (flags & OS::TGT_CLONE_PARENT_SETTID) {
1338 BufferArg ptidBuf(ptidPtr, sizeof(long));
1339 long *ptid = (long *)ptidBuf.bufferPtr();
1340 *ptid = cp->pid();
1341 ptidBuf.copyOut(tc->getMemProxy());
1342 }
1343
1344 cp->initState();
1345 p->clone(tc, ctc, cp, flags);
1346
1347 if (flags & OS::TGT_CLONE_THREAD) {
1348 delete cp->sigchld;
1349 cp->sigchld = p->sigchld;
1350 } else if (flags & OS::TGT_SIGCHLD) {
1351 *cp->sigchld = true;
1352 }
1353
1354 if (flags & OS::TGT_CLONE_CHILD_SETTID) {
1355 BufferArg ctidBuf(ctidPtr, sizeof(long));
1356 long *ctid = (long *)ctidBuf.bufferPtr();
1357 *ctid = cp->pid();
1358 ctidBuf.copyOut(ctc->getMemProxy());
1359 }
1360
1361 if (flags & OS::TGT_CLONE_CHILD_CLEARTID)
1362 cp->childClearTID = (uint64_t)ctidPtr;
1363
1364 ctc->clearArchRegs();
1365
1366#if THE_ISA == ALPHA_ISA
1367 TheISA::copyMiscRegs(tc, ctc);
1368#elif THE_ISA == SPARC_ISA
1369 TheISA::copyRegs(tc, ctc);
1370 ctc->setIntReg(TheISA::NumIntArchRegs + 6, 0);
1371 ctc->setIntReg(TheISA::NumIntArchRegs + 4, 0);
1372 ctc->setIntReg(TheISA::NumIntArchRegs + 3, TheISA::NWindows - 2);
1373 ctc->setIntReg(TheISA::NumIntArchRegs + 5, TheISA::NWindows);
1374 ctc->setMiscReg(TheISA::MISCREG_CWP, 0);
1375 ctc->setIntReg(TheISA::NumIntArchRegs + 7, 0);
1376 ctc->setMiscRegNoEffect(TheISA::MISCREG_TL, 0);
1377 ctc->setMiscReg(TheISA::MISCREG_ASI, TheISA::ASI_PRIMARY);
1378 for (int y = 8; y < 32; y++)
1379 ctc->setIntReg(y, tc->readIntReg(y));
1380#elif THE_ISA == ARM_ISA or THE_ISA == X86_ISA or THE_ISA == RISCV_ISA
1381 TheISA::copyRegs(tc, ctc);
1382#endif
1383
1384#if THE_ISA == X86_ISA
1385 if (flags & OS::TGT_CLONE_SETTLS) {
1386 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_BASE, tlsPtr);
1387 ctc->setMiscRegNoEffect(TheISA::MISCREG_FS_EFF_BASE, tlsPtr);
1388 }
1389#endif
1390
1391 if (newStack)
1392 ctc->setIntReg(TheISA::StackPointerReg, newStack);
1393
1394 cp->setSyscallReturn(ctc, 0);
1395
1396#if THE_ISA == ALPHA_ISA
1397 ctc->setIntReg(TheISA::SyscallSuccessReg, 0);
1398#elif THE_ISA == SPARC_ISA
1399 tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0);
1400 ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1);
1401#endif
1402
1403 ctc->pcState(tc->nextInstAddr());
1404 ctc->activate();
1405
1406 return cp->pid();
1407}
1408
1409/// Target fstatfs() handler.
1410template <class OS>
1411SyscallReturn
1412fstatfsFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1413{
1414 int index = 0;
1415 int tgt_fd = p->getSyscallArg(tc, index);
1416 Addr bufPtr = p->getSyscallArg(tc, index);
1417
1418 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1419 if (!ffdp)
1420 return -EBADF;
1421 int sim_fd = ffdp->getSimFD();
1422
1423 struct statfs hostBuf;
1424 int result = fstatfs(sim_fd, &hostBuf);
1425
1426 if (result < 0)
1427 return -errno;
1428
1429 copyOutStatfsBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
1430
1431 return 0;
1432}
1433
1434
1435/// Target writev() handler.
1436template <class OS>
1437SyscallReturn
1438writevFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1439{
1440 int index = 0;
1441 int tgt_fd = p->getSyscallArg(tc, index);
1442
1443 auto hbfdp = std::dynamic_pointer_cast<HBFDEntry>((*p->fds)[tgt_fd]);
1444 if (!hbfdp)
1445 return -EBADF;
1446 int sim_fd = hbfdp->getSimFD();
1447
1448 SETranslatingPortProxy &prox = tc->getMemProxy();
1449 uint64_t tiov_base = p->getSyscallArg(tc, index);
1450 size_t count = p->getSyscallArg(tc, index);
1451 struct iovec hiov[count];
1452 for (size_t i = 0; i < count; ++i) {
1453 typename OS::tgt_iovec tiov;
1454
1455 prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
1456 (uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
1457 hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
1458 hiov[i].iov_base = new char [hiov[i].iov_len];
1459 prox.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
1460 hiov[i].iov_len);
1461 }
1462
1463 int result = writev(sim_fd, hiov, count);
1464
1465 for (size_t i = 0; i < count; ++i)
1466 delete [] (char *)hiov[i].iov_base;
1467
1468 if (result < 0)
1469 return -errno;
1470
1471 return result;
1472}
1473
1474/// Real mmap handler.
1475template <class OS>
1476SyscallReturn
1477mmapImpl(SyscallDesc *desc, int num, Process *p, ThreadContext *tc,
1478 bool is_mmap2)
1479{
1480 int index = 0;
1481 Addr start = p->getSyscallArg(tc, index);
1482 uint64_t length = p->getSyscallArg(tc, index);
1483 int prot = p->getSyscallArg(tc, index);
1484 int tgt_flags = p->getSyscallArg(tc, index);
1485 int tgt_fd = p->getSyscallArg(tc, index);
1486 int offset = p->getSyscallArg(tc, index);
1487
1488 if (is_mmap2)
1489 offset *= TheISA::PageBytes;
1490
1491 if (start & (TheISA::PageBytes - 1) ||
1492 offset & (TheISA::PageBytes - 1) ||
1493 (tgt_flags & OS::TGT_MAP_PRIVATE &&
1494 tgt_flags & OS::TGT_MAP_SHARED) ||
1495 (!(tgt_flags & OS::TGT_MAP_PRIVATE) &&
1496 !(tgt_flags & OS::TGT_MAP_SHARED)) ||
1497 !length) {
1498 return -EINVAL;
1499 }
1500
1501 if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) {
1502 // With shared mmaps, there are two cases to consider:
1503 // 1) anonymous: writes should modify the mapping and this should be
1504 // visible to observers who share the mapping. Currently, it's
1505 // difficult to update the shared mapping because there's no
1506 // structure which maintains information about the which virtual
1507 // memory areas are shared. If that structure existed, it would be
1508 // possible to make the translations point to the same frames.
1509 // 2) file-backed: writes should modify the mapping and the file
1510 // which is backed by the mapping. The shared mapping problem is the
1511 // same as what was mentioned about the anonymous mappings. For
1512 // file-backed mappings, the writes to the file are difficult
1513 // because it requires syncing what the mapping holds with the file
1514 // that resides on the host system. So, any write on a real system
1515 // would cause the change to be propagated to the file mapping at
1516 // some point in the future (the inode is tracked along with the
1517 // mapping). This isn't guaranteed to always happen, but it usually
1518 // works well enough. The guarantee is provided by the msync system
1519 // call. We could force the change through with shared mappings with
1520 // a call to msync, but that again would require more information
1521 // than we currently maintain.
1522 warn("mmap: writing to shared mmap region is currently "
1523 "unsupported. The write succeeds on the target, but it "
1524 "will not be propagated to the host or shared mappings");
1525 }
1526
1527 length = roundUp(length, TheISA::PageBytes);
1528
1529 int sim_fd = -1;
1530 uint8_t *pmap = nullptr;
1531 if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) {
1532 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1533
1534 auto dfdp = std::dynamic_pointer_cast<DeviceFDEntry>(fdep);
1535 if (dfdp) {
1536 EmulatedDriver *emul_driver = dfdp->getDriver();
1537 return emul_driver->mmap(p, tc, start, length, prot,
1538 tgt_flags, tgt_fd, offset);
1539 }
1540
1541 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1542 if (!ffdp)
1543 return -EBADF;
1544 sim_fd = ffdp->getSimFD();
1545
1546 pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE,
1547 sim_fd, offset);
1548
1549 if (pmap == (decltype(pmap))-1) {
1550 warn("mmap: failed to map file into host address space");
1551 return -errno;
1552 }
1553 }
1554
1555 // Extend global mmap region if necessary. Note that we ignore the
1556 // start address unless MAP_FIXED is specified.
1557 if (!(tgt_flags & OS::TGT_MAP_FIXED)) {
1558 std::shared_ptr<MemState> mem_state = p->memState;
1559 Addr mmap_end = mem_state->getMmapEnd();
1560
1561 start = p->mmapGrowsDown() ? mmap_end - length : mmap_end;
1562 mmap_end = p->mmapGrowsDown() ? start : mmap_end + length;
1563
1564 mem_state->setMmapEnd(mmap_end);
1565 }
1566
1567 DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n",
1568 start, start + length - 1);
1569
1570 // We only allow mappings to overwrite existing mappings if
1571 // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem
1572 // because we ignore the start hint if TGT_MAP_FIXED is not set.
1573 int clobber = tgt_flags & OS::TGT_MAP_FIXED;
1574 if (clobber) {
1575 for (auto tc : p->system->threadContexts) {
1576 // If we might be overwriting old mappings, we need to
1577 // invalidate potentially stale mappings out of the TLBs.
1578 tc->getDTBPtr()->flushAll();
1579 tc->getITBPtr()->flushAll();
1580 }
1581 }
1582
1583 // Allocate physical memory and map it in. If the page table is already
1584 // mapped and clobber is not set, the simulator will issue throw a
1585 // fatal and bail out of the simulation.
1586 p->allocateMem(start, length, clobber);
1587
1588 // Transfer content into target address space.
1589 SETranslatingPortProxy &tp = tc->getMemProxy();
1590 if (tgt_flags & OS::TGT_MAP_ANONYMOUS) {
1591 // In general, we should zero the mapped area for anonymous mappings,
1592 // with something like:
1593 // tp.memsetBlob(start, 0, length);
1594 // However, given that we don't support sparse mappings, and
1595 // some applications can map a couple of gigabytes of space
1596 // (intending sparse usage), that can get painfully expensive.
1597 // Fortunately, since we don't properly implement munmap either,
1598 // there's no danger of remapping used memory, so for now all
1599 // newly mapped memory should already be zeroed so we can skip it.
1600 } else {
1601 // It is possible to mmap an area larger than a file, however
1602 // accessing unmapped portions the system triggers a "Bus error"
1603 // on the host. We must know when to stop copying the file from
1604 // the host into the target address space.
1605 struct stat file_stat;
1606 if (fstat(sim_fd, &file_stat) > 0)
1607 fatal("mmap: cannot stat file");
1608
1609 // Copy the portion of the file that is resident. This requires
1610 // checking both the mmap size and the filesize that we are
1611 // trying to mmap into this space; the mmap size also depends
1612 // on the specified offset into the file.
1613 uint64_t size = std::min((uint64_t)file_stat.st_size - offset,
1614 length);
1615 tp.writeBlob(start, pmap, size);
1616
1617 // Cleanup the mmap region before exiting this function.
1618 munmap(pmap, length);
1619
1620 // Maintain the symbol table for dynamic executables.
1621 // The loader will call mmap to map the images into its address
1622 // space and we intercept that here. We can verify that we are
1623 // executing inside the loader by checking the program counter value.
1624 // XXX: with multiprogrammed workloads or multi-node configurations,
1625 // this will not work since there is a single global symbol table.
1626 ObjectFile *interpreter = p->getInterpreter();
1627 if (interpreter) {
1628 Addr text_start = interpreter->textBase();
1629 Addr text_end = text_start + interpreter->textSize();
1630
1631 Addr pc = tc->pcState().pc();
1632
1633 if (pc >= text_start && pc < text_end) {
1634 std::shared_ptr<FDEntry> fdep = (*p->fds)[tgt_fd];
1635 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>(fdep);
1636 ObjectFile *lib = createObjectFile(ffdp->getFileName());
1637
1638 if (lib) {
1639 lib->loadAllSymbols(debugSymbolTable,
1640 lib->textBase(), start);
1641 }
1642 }
1643 }
1644
1645 // Note that we do not zero out the remainder of the mapping. This
1646 // is done by a real system, but it probably will not affect
1647 // execution (hopefully).
1648 }
1649
1650 return start;
1651}
1652
1653template <class OS>
1654SyscallReturn
1655pwrite64Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1656{
1657 int index = 0;
1658 int tgt_fd = p->getSyscallArg(tc, index);
1659 Addr bufPtr = p->getSyscallArg(tc, index);
1660 int nbytes = p->getSyscallArg(tc, index);
1661 int offset = p->getSyscallArg(tc, index);
1662
1663 auto ffdp = std::dynamic_pointer_cast<FileFDEntry>((*p->fds)[tgt_fd]);
1664 if (!ffdp)
1665 return -EBADF;
1666 int sim_fd = ffdp->getSimFD();
1667
1668 BufferArg bufArg(bufPtr, nbytes);
1669 bufArg.copyIn(tc->getMemProxy());
1670
1671 int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset);
1672
1673 return (bytes_written == -1) ? -errno : bytes_written;
1674}
1675
1676/// Target mmap() handler.
1677template <class OS>
1678SyscallReturn
1679mmapFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1680{
1681 return mmapImpl<OS>(desc, num, p, tc, false);
1682}
1683
1684/// Target mmap2() handler.
1685template <class OS>
1686SyscallReturn
1687mmap2Func(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1688{
1689 return mmapImpl<OS>(desc, num, p, tc, true);
1690}
1691
1692/// Target getrlimit() handler.
1693template <class OS>
1694SyscallReturn
1695getrlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1696 ThreadContext *tc)
1697{
1698 int index = 0;
1699 unsigned resource = process->getSyscallArg(tc, index);
1700 TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
1701
1702 switch (resource) {
1703 case OS::TGT_RLIMIT_STACK:
1704 // max stack size in bytes: make up a number (8MB for now)
1705 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1706 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1707 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1708 break;
1709
1710 case OS::TGT_RLIMIT_DATA:
1711 // max data segment size in bytes: make up a number
1712 rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
1713 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1714 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1715 break;
1716
1717 default:
1718 warn("getrlimit: unimplemented resource %d", resource);
1719 return -EINVAL;
1720 break;
1721 }
1722
1723 rlp.copyOut(tc->getMemProxy());
1724 return 0;
1725}
1726
1727template <class OS>
1728SyscallReturn
1729prlimitFunc(SyscallDesc *desc, int callnum, Process *process,
1730 ThreadContext *tc)
1731{
1732 int index = 0;
1733 if (process->getSyscallArg(tc, index) != 0)
1734 {
1735 warn("prlimit: ignoring rlimits for nonzero pid");
1736 return -EPERM;
1737 }
1738 int resource = process->getSyscallArg(tc, index);
1739 Addr n = process->getSyscallArg(tc, index);
1740 if (n != 0)
1741 warn("prlimit: ignoring new rlimit");
1742 Addr o = process->getSyscallArg(tc, index);
1743 if (o != 0)
1744 {
1745 TypedBufferArg<typename OS::rlimit> rlp(o);
1746 switch (resource) {
1747 case OS::TGT_RLIMIT_STACK:
1748 // max stack size in bytes: make up a number (8MB for now)
1749 rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
1750 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1751 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1752 break;
1753 case OS::TGT_RLIMIT_DATA:
1754 // max data segment size in bytes: make up a number
1755 rlp->rlim_cur = rlp->rlim_max = 256*1024*1024;
1756 rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
1757 rlp->rlim_max = TheISA::htog(rlp->rlim_max);
1758 break;
1759 default:
1760 warn("prlimit: unimplemented resource %d", resource);
1761 return -EINVAL;
1762 break;
1763 }
1764 rlp.copyOut(tc->getMemProxy());
1765 }
1766 return 0;
1767}
1768
1769/// Target clock_gettime() function.
1770template <class OS>
1771SyscallReturn
1772clock_gettimeFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1773{
1774 int index = 1;
1775 //int clk_id = p->getSyscallArg(tc, index);
1776 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1777
1778 getElapsedTimeNano(tp->tv_sec, tp->tv_nsec);
1779 tp->tv_sec += seconds_since_epoch;
1780 tp->tv_sec = TheISA::htog(tp->tv_sec);
1781 tp->tv_nsec = TheISA::htog(tp->tv_nsec);
1782
1783 tp.copyOut(tc->getMemProxy());
1784
1785 return 0;
1786}
1787
1788/// Target clock_getres() function.
1789template <class OS>
1790SyscallReturn
1791clock_getresFunc(SyscallDesc *desc, int num, Process *p, ThreadContext *tc)
1792{
1793 int index = 1;
1794 TypedBufferArg<typename OS::timespec> tp(p->getSyscallArg(tc, index));
1795
1796 // Set resolution at ns, which is what clock_gettime() returns
1797 tp->tv_sec = 0;
1798 tp->tv_nsec = 1;
1799
1800 tp.copyOut(tc->getMemProxy());
1801
1802 return 0;
1803}
1804
1805/// Target gettimeofday() handler.
1806template <class OS>
1807SyscallReturn
1808gettimeofdayFunc(SyscallDesc *desc, int callnum, Process *process,
1809 ThreadContext *tc)
1810{
1811 int index = 0;
1812 TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
1813
1814 getElapsedTimeMicro(tp->tv_sec, tp->tv_usec);
1815 tp->tv_sec += seconds_since_epoch;
1816 tp->tv_sec = TheISA::htog(tp->tv_sec);
1817 tp->tv_usec = TheISA::htog(tp->tv_usec);
1818
1819 tp.copyOut(tc->getMemProxy());
1820
1821 return 0;
1822}
1823
1824
1825/// Target utimes() handler.
1826template <class OS>
1827SyscallReturn
1828utimesFunc(SyscallDesc *desc, int callnum, Process *process,
1829 ThreadContext *tc)
1830{
1831 std::string path;
1832
1833 int index = 0;
1834 if (!tc->getMemProxy().tryReadString(path,
1835 process->getSyscallArg(tc, index))) {
1836 return -EFAULT;
1837 }
1838
1839 TypedBufferArg<typename OS::timeval [2]>
1840 tp(process->getSyscallArg(tc, index));
1841 tp.copyIn(tc->getMemProxy());
1842
1843 struct timeval hostTimeval[2];
1844 for (int i = 0; i < 2; ++i) {
1845 hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
1846 hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
1847 }
1848
1849 // Adjust path for current working directory
1850 path = process->fullPath(path);
1851
1852 int result = utimes(path.c_str(), hostTimeval);
1853
1854 if (result < 0)
1855 return -errno;
1856
1857 return 0;
1858}
1859
1860template <class OS>
1861SyscallReturn
1862execveFunc(SyscallDesc *desc, int callnum, Process *p, ThreadContext *tc)
1863{
1864 desc->setFlags(0);
1865
1866 int index = 0;
1867 std::string path;
1868 SETranslatingPortProxy & mem_proxy = tc->getMemProxy();
1869 if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index)))
1870 return -EFAULT;
1871
1872 if (access(path.c_str(), F_OK) == -1)
1873 return -EACCES;
1874
1875 auto read_in = [](std::vector<std::string> & vect,
1876 SETranslatingPortProxy & mem_proxy,
1877 Addr mem_loc)
1878 {
1879 for (int inc = 0; ; inc++) {
1880 BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr));
1881 b.copyIn(mem_proxy);
1882
1883 if (!*(Addr*)b.bufferPtr())
1884 break;
1885
1886 vect.push_back(std::string());
1887 mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr());
1888 }
1889 };
1890
1891 /**
1892 * Note that ProcessParams is generated by swig and there are no other
1893 * examples of how to create anything but this default constructor. The
1894 * fields are manually initialized instead of passing parameters to the
1895 * constructor.
1896 */
1897 ProcessParams *pp = new ProcessParams();
1898 pp->executable = path;
1899 Addr argv_mem_loc = p->getSyscallArg(tc, index);
1900 read_in(pp->cmd, mem_proxy, argv_mem_loc);
1901 Addr envp_mem_loc = p->getSyscallArg(tc, index);
1902 read_in(pp->env, mem_proxy, envp_mem_loc);
1903 pp->uid = p->uid();
1904 pp->egid = p->egid();
1905 pp->euid = p->euid();
1906 pp->gid = p->gid();
1907 pp->ppid = p->ppid();
1908 pp->pid = p->pid();
1909 pp->input.assign("cin");
1910 pp->output.assign("cout");
1911 pp->errout.assign("cerr");
1912 pp->cwd.assign(p->getcwd());
1913 pp->system = p->system;
1914 /**
1915 * Prevent process object creation with identical PIDs (which will trip
1916 * a fatal check in Process constructor). The execve call is supposed to
1917 * take over the currently executing process' identity but replace
1918 * whatever it is doing with a new process image. Instead of hijacking
1919 * the process object in the simulator, we create a new process object
1920 * and bind to the previous process' thread below (hijacking the thread).
1921 */
1922 p->system->PIDs.erase(p->pid());
1923 Process *new_p = pp->create();
1924 delete pp;
1925
1926 /**
1927 * Work through the file descriptor array and close any files marked
1928 * close-on-exec.
1929 */
1930 new_p->fds = p->fds;
1931 for (int i = 0; i < new_p->fds->getSize(); i++) {
1932 std::shared_ptr<FDEntry> fdep = (*new_p->fds)[i];
1933 if (fdep && fdep->getCOE())
1934 new_p->fds->closeFDEntry(i);
1935 }
1936
1937 *new_p->sigchld = true;
1938
1939 delete p;
1940 tc->clearArchRegs();
1941 tc->setProcessPtr(new_p);
1942 new_p->assignThreadContext(tc->contextId());
1943 new_p->initState();
1944 tc->activate();
1945 TheISA::PCState pcState = tc->pcState();
1946 tc->setNPC(pcState.instAddr());
1947
1948 desc->setFlags(SyscallDesc::SuppressReturnValue);
1949 return 0;
1950}
1951
1952/// Target getrusage() function.
1953template <class OS>
1954SyscallReturn
1955getrusageFunc(SyscallDesc *desc, int callnum, Process *process,
1956 ThreadContext *tc)
1957{
1958 int index = 0;
1959 int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
1960 TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
1961
1962 rup->ru_utime.tv_sec = 0;
1963 rup->ru_utime.tv_usec = 0;
1964 rup->ru_stime.tv_sec = 0;
1965 rup->ru_stime.tv_usec = 0;
1966 rup->ru_maxrss = 0;
1967 rup->ru_ixrss = 0;
1968 rup->ru_idrss = 0;
1969 rup->ru_isrss = 0;
1970 rup->ru_minflt = 0;
1971 rup->ru_majflt = 0;
1972 rup->ru_nswap = 0;
1973 rup->ru_inblock = 0;
1974 rup->ru_oublock = 0;
1975 rup->ru_msgsnd = 0;
1976 rup->ru_msgrcv = 0;
1977 rup->ru_nsignals = 0;
1978 rup->ru_nvcsw = 0;
1979 rup->ru_nivcsw = 0;
1980
1981 switch (who) {
1982 case OS::TGT_RUSAGE_SELF:
1983 getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
1984 rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
1985 rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
1986 break;
1987
1988 case OS::TGT_RUSAGE_CHILDREN:
1989 // do nothing. We have no child processes, so they take no time.
1990 break;
1991
1992 default:
1993 // don't really handle THREAD or CHILDREN, but just warn and
1994 // plow ahead
1995 warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
1996 who);
1997 }
1998
1999 rup.copyOut(tc->getMemProxy());
2000
2001 return 0;
2002}
2003
2004/// Target times() function.
2005template <class OS>
2006SyscallReturn
2007timesFunc(SyscallDesc *desc, int callnum, Process *process,
2008 ThreadContext *tc)
2009{
2010 int index = 0;
2011 TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
2012
2013 // Fill in the time structure (in clocks)
2014 int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
2015 bufp->tms_utime = clocks;
2016 bufp->tms_stime = 0;
2017 bufp->tms_cutime = 0;
2018 bufp->tms_cstime = 0;
2019
2020 // Convert to host endianness
2021 bufp->tms_utime = TheISA::htog(bufp->tms_utime);
2022
2023 // Write back
2024 bufp.copyOut(tc->getMemProxy());
2025
2026 // Return clock ticks since system boot
2027 return clocks;
2028}
2029
2030/// Target time() function.
2031template <class OS>
2032SyscallReturn
2033timeFunc(SyscallDesc *desc, int callnum, Process *process, ThreadContext *tc)
2034{
2035 typename OS::time_t sec, usec;
2036 getElapsedTimeMicro(sec, usec);
2037 sec += seconds_since_epoch;
2038
2039 int index = 0;
2040 Addr taddr = (Addr)process->getSyscallArg(tc, index);
2041 if (taddr != 0) {
2042 typename OS::time_t t = sec;
2043 t = TheISA::htog(t);
2044 SETranslatingPortProxy &p = tc->getMemProxy();
2045 p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
2046 }
2047 return sec;
2048}
2049
2050template <class OS>
2051SyscallReturn
2052tgkillFunc(SyscallDesc *desc, int num, Process *process, ThreadContext *tc)
2053{
2054 int index = 0;
2055 int tgid = process->getSyscallArg(tc, index);
2056 int tid = process->getSyscallArg(tc, index);
2057 int sig = process->getSyscallArg(tc, index);
2058
2059 /**
2060 * This system call is intended to allow killing a specific thread
2061 * within an arbitrary thread group if sanctioned with permission checks.
2062 * It's usually true that threads share the termination signal as pointed
2063 * out by the pthread_kill man page and this seems to be the intended
2064 * usage. Due to this being an emulated environment, assume the following:
2065 * Threads are allowed to call tgkill because the EUID for all threads
2066 * should be the same. There is no signal handling mechanism for kernel
2067 * registration of signal handlers since signals are poorly supported in
2068 * emulation mode. Since signal handlers cannot be registered, all
2069 * threads within in a thread group must share the termination signal.
2070 * We never exhaust PIDs so there's no chance of finding the wrong one
2071 * due to PID rollover.
2072 */
2073
2074 System *sys = tc->getSystemPtr();
2075 Process *tgt_proc = nullptr;
2076 for (int i = 0; i < sys->numContexts(); i++) {
2077 Process *temp = sys->threadContexts[i]->getProcessPtr();
2078 if (temp->pid() == tid) {
2079 tgt_proc = temp;
2080 break;
2081 }
2082 }
2083
2084 if (sig != 0 || sig != OS::TGT_SIGABRT)
2085 return -EINVAL;
2086
2087 if (tgt_proc == nullptr)
2088 return -ESRCH;
2089
2090 if (tgid != -1 && tgt_proc->tgid() != tgid)
2091 return -ESRCH;
2092
2093 if (sig == OS::TGT_SIGABRT)
2094 exitGroupFunc(desc, 252, process, tc);
2095
2096 return 0;
2097}
2098
2099
2100#endif // __SIM_SYSCALL_EMUL_HH__