eventq.hh (11990:5fad911cc326) eventq.hh (12040:8cd9d09aac7a)
1/*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 * Nathan Binkert
32 */
33
34/* @file
35 * EventQueue interfaces
36 */
37
38#ifndef __SIM_EVENTQ_HH__
39#define __SIM_EVENTQ_HH__
40
41#include <algorithm>
42#include <cassert>
43#include <climits>
44#include <iosfwd>
45#include <memory>
46#include <mutex>
47#include <string>
48
49#include "base/flags.hh"
50#include "base/types.hh"
51#include "debug/Event.hh"
52#include "sim/serialize.hh"
53
54class EventQueue; // forward declaration
55class BaseGlobalEvent;
56
57//! Simulation Quantum for multiple eventq simulation.
58//! The quantum value is the period length after which the queues
59//! synchronize themselves with each other. This means that any
60//! event to scheduled on Queue A which is generated by an event on
61//! Queue B should be at least simQuantum ticks away in future.
62extern Tick simQuantum;
63
64//! Current number of allocated main event queues.
65extern uint32_t numMainEventQueues;
66
67//! Array for main event queues.
68extern std::vector<EventQueue *> mainEventQueue;
69
70//! The current event queue for the running thread. Access to this queue
71//! does not require any locking from the thread.
72
73extern __thread EventQueue *_curEventQueue;
74
75//! Current mode of execution: parallel / serial
76extern bool inParallelMode;
77
78//! Function for returning eventq queue for the provided
79//! index. The function allocates a new queue in case one
80//! does not exist for the index, provided that the index
81//! is with in bounds.
82EventQueue *getEventQueue(uint32_t index);
83
84inline EventQueue *curEventQueue() { return _curEventQueue; }
85inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
86
87/**
88 * Common base class for Event and GlobalEvent, so they can share flag
89 * and priority definitions and accessor functions. This class should
90 * not be used directly.
91 */
92class EventBase
93{
94 protected:
95 typedef unsigned short FlagsType;
96 typedef ::Flags<FlagsType> Flags;
97
98 static const FlagsType PublicRead = 0x003f; // public readable flags
99 static const FlagsType PublicWrite = 0x001d; // public writable flags
100 static const FlagsType Squashed = 0x0001; // has been squashed
101 static const FlagsType Scheduled = 0x0002; // has been scheduled
1/*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 * Nathan Binkert
32 */
33
34/* @file
35 * EventQueue interfaces
36 */
37
38#ifndef __SIM_EVENTQ_HH__
39#define __SIM_EVENTQ_HH__
40
41#include <algorithm>
42#include <cassert>
43#include <climits>
44#include <iosfwd>
45#include <memory>
46#include <mutex>
47#include <string>
48
49#include "base/flags.hh"
50#include "base/types.hh"
51#include "debug/Event.hh"
52#include "sim/serialize.hh"
53
54class EventQueue; // forward declaration
55class BaseGlobalEvent;
56
57//! Simulation Quantum for multiple eventq simulation.
58//! The quantum value is the period length after which the queues
59//! synchronize themselves with each other. This means that any
60//! event to scheduled on Queue A which is generated by an event on
61//! Queue B should be at least simQuantum ticks away in future.
62extern Tick simQuantum;
63
64//! Current number of allocated main event queues.
65extern uint32_t numMainEventQueues;
66
67//! Array for main event queues.
68extern std::vector<EventQueue *> mainEventQueue;
69
70//! The current event queue for the running thread. Access to this queue
71//! does not require any locking from the thread.
72
73extern __thread EventQueue *_curEventQueue;
74
75//! Current mode of execution: parallel / serial
76extern bool inParallelMode;
77
78//! Function for returning eventq queue for the provided
79//! index. The function allocates a new queue in case one
80//! does not exist for the index, provided that the index
81//! is with in bounds.
82EventQueue *getEventQueue(uint32_t index);
83
84inline EventQueue *curEventQueue() { return _curEventQueue; }
85inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
86
87/**
88 * Common base class for Event and GlobalEvent, so they can share flag
89 * and priority definitions and accessor functions. This class should
90 * not be used directly.
91 */
92class EventBase
93{
94 protected:
95 typedef unsigned short FlagsType;
96 typedef ::Flags<FlagsType> Flags;
97
98 static const FlagsType PublicRead = 0x003f; // public readable flags
99 static const FlagsType PublicWrite = 0x001d; // public writable flags
100 static const FlagsType Squashed = 0x0001; // has been squashed
101 static const FlagsType Scheduled = 0x0002; // has been scheduled
102 static const FlagsType AutoDelete = 0x0004; // delete after dispatch
102 static const FlagsType Managed = 0x0004; // Use life cycle manager
103 static const FlagsType AutoDelete = Managed; // delete after dispatch
103 /**
104 * This used to be AutoSerialize. This value can't be reused
105 * without changing the checkpoint version since the flag field
106 * gets serialized.
107 */
108 static const FlagsType Reserved0 = 0x0008;
109 static const FlagsType IsExitEvent = 0x0010; // special exit event
110 static const FlagsType IsMainQueue = 0x0020; // on main event queue
111 static const FlagsType Initialized = 0x7a40; // somewhat random bits
112 static const FlagsType InitMask = 0xffc0; // mask for init bits
113
114 public:
115 typedef int8_t Priority;
116
117 /// Event priorities, to provide tie-breakers for events scheduled
118 /// at the same cycle. Most events are scheduled at the default
119 /// priority; these values are used to control events that need to
120 /// be ordered within a cycle.
121
122 /// Minimum priority
123 static const Priority Minimum_Pri = SCHAR_MIN;
124
125 /// If we enable tracing on a particular cycle, do that as the
126 /// very first thing so we don't miss any of the events on
127 /// that cycle (even if we enter the debugger).
128 static const Priority Debug_Enable_Pri = -101;
129
130 /// Breakpoints should happen before anything else (except
131 /// enabling trace output), so we don't miss any action when
132 /// debugging.
133 static const Priority Debug_Break_Pri = -100;
134
135 /// CPU switches schedule the new CPU's tick event for the
136 /// same cycle (after unscheduling the old CPU's tick event).
137 /// The switch needs to come before any tick events to make
138 /// sure we don't tick both CPUs in the same cycle.
139 static const Priority CPU_Switch_Pri = -31;
140
141 /// For some reason "delayed" inter-cluster writebacks are
142 /// scheduled before regular writebacks (which have default
143 /// priority). Steve?
144 static const Priority Delayed_Writeback_Pri = -1;
145
146 /// Default is zero for historical reasons.
147 static const Priority Default_Pri = 0;
148
149 /// DVFS update event leads to stats dump therefore given a lower priority
150 /// to ensure all relevant states have been updated
151 static const Priority DVFS_Update_Pri = 31;
152
153 /// Serailization needs to occur before tick events also, so
154 /// that a serialize/unserialize is identical to an on-line
155 /// CPU switch.
156 static const Priority Serialize_Pri = 32;
157
158 /// CPU ticks must come after other associated CPU events
159 /// (such as writebacks).
160 static const Priority CPU_Tick_Pri = 50;
161
162 /// Statistics events (dump, reset, etc.) come after
163 /// everything else, but before exit.
164 static const Priority Stat_Event_Pri = 90;
165
166 /// Progress events come at the end.
167 static const Priority Progress_Event_Pri = 95;
168
169 /// If we want to exit on this cycle, it's the very last thing
170 /// we do.
171 static const Priority Sim_Exit_Pri = 100;
172
173 /// Maximum priority
174 static const Priority Maximum_Pri = SCHAR_MAX;
175};
176
177/*
178 * An item on an event queue. The action caused by a given
179 * event is specified by deriving a subclass and overriding the
180 * process() member function.
181 *
182 * Caution, the order of members is chosen to maximize data packing.
183 */
184class Event : public EventBase, public Serializable
185{
186 friend class EventQueue;
187
188 private:
189 // The event queue is now a linked list of linked lists. The
190 // 'nextBin' pointer is to find the bin, where a bin is defined as
191 // when+priority. All events in the same bin will be stored in a
192 // second linked list (a stack) maintained by the 'nextInBin'
193 // pointer. The list will be accessed in LIFO order. The end
194 // result is that the insert/removal in 'nextBin' is
195 // linear/constant, and the lookup/removal in 'nextInBin' is
196 // constant/constant. Hopefully this is a significant improvement
197 // over the current fully linear insertion.
198 Event *nextBin;
199 Event *nextInBin;
200
201 static Event *insertBefore(Event *event, Event *curr);
202 static Event *removeItem(Event *event, Event *last);
203
204 Tick _when; //!< timestamp when event should be processed
205 Priority _priority; //!< event priority
206 Flags flags;
207
208#ifndef NDEBUG
209 /// Global counter to generate unique IDs for Event instances
210 static Counter instanceCounter;
211
212 /// This event's unique ID. We can also use pointer values for
213 /// this but they're not consistent across runs making debugging
214 /// more difficult. Thus we use a global counter value when
215 /// debugging.
216 Counter instance;
217
218 /// queue to which this event belongs (though it may or may not be
219 /// scheduled on this queue yet)
220 EventQueue *queue;
221#endif
222
223#ifdef EVENTQ_DEBUG
224 Tick whenCreated; //!< time created
225 Tick whenScheduled; //!< time scheduled
226#endif
227
228 void
229 setWhen(Tick when, EventQueue *q)
230 {
231 _when = when;
232#ifndef NDEBUG
233 queue = q;
234#endif
235#ifdef EVENTQ_DEBUG
236 whenScheduled = curTick();
237#endif
238 }
239
240 bool
241 initialized() const
242 {
243 return (flags & InitMask) == Initialized;
244 }
245
246 protected:
247 /// Accessor for flags.
248 Flags
249 getFlags() const
250 {
251 return flags & PublicRead;
252 }
253
254 bool
255 isFlagSet(Flags _flags) const
256 {
257 assert(_flags.noneSet(~PublicRead));
258 return flags.isSet(_flags);
259 }
260
261 /// Accessor for flags.
262 void
263 setFlags(Flags _flags)
264 {
265 assert(_flags.noneSet(~PublicWrite));
266 flags.set(_flags);
267 }
268
269 void
270 clearFlags(Flags _flags)
271 {
272 assert(_flags.noneSet(~PublicWrite));
273 flags.clear(_flags);
274 }
275
276 void
277 clearFlags()
278 {
279 flags.clear(PublicWrite);
280 }
281
282 // This function isn't really useful if TRACING_ON is not defined
283 virtual void trace(const char *action); //!< trace event activity
284
104 /**
105 * This used to be AutoSerialize. This value can't be reused
106 * without changing the checkpoint version since the flag field
107 * gets serialized.
108 */
109 static const FlagsType Reserved0 = 0x0008;
110 static const FlagsType IsExitEvent = 0x0010; // special exit event
111 static const FlagsType IsMainQueue = 0x0020; // on main event queue
112 static const FlagsType Initialized = 0x7a40; // somewhat random bits
113 static const FlagsType InitMask = 0xffc0; // mask for init bits
114
115 public:
116 typedef int8_t Priority;
117
118 /// Event priorities, to provide tie-breakers for events scheduled
119 /// at the same cycle. Most events are scheduled at the default
120 /// priority; these values are used to control events that need to
121 /// be ordered within a cycle.
122
123 /// Minimum priority
124 static const Priority Minimum_Pri = SCHAR_MIN;
125
126 /// If we enable tracing on a particular cycle, do that as the
127 /// very first thing so we don't miss any of the events on
128 /// that cycle (even if we enter the debugger).
129 static const Priority Debug_Enable_Pri = -101;
130
131 /// Breakpoints should happen before anything else (except
132 /// enabling trace output), so we don't miss any action when
133 /// debugging.
134 static const Priority Debug_Break_Pri = -100;
135
136 /// CPU switches schedule the new CPU's tick event for the
137 /// same cycle (after unscheduling the old CPU's tick event).
138 /// The switch needs to come before any tick events to make
139 /// sure we don't tick both CPUs in the same cycle.
140 static const Priority CPU_Switch_Pri = -31;
141
142 /// For some reason "delayed" inter-cluster writebacks are
143 /// scheduled before regular writebacks (which have default
144 /// priority). Steve?
145 static const Priority Delayed_Writeback_Pri = -1;
146
147 /// Default is zero for historical reasons.
148 static const Priority Default_Pri = 0;
149
150 /// DVFS update event leads to stats dump therefore given a lower priority
151 /// to ensure all relevant states have been updated
152 static const Priority DVFS_Update_Pri = 31;
153
154 /// Serailization needs to occur before tick events also, so
155 /// that a serialize/unserialize is identical to an on-line
156 /// CPU switch.
157 static const Priority Serialize_Pri = 32;
158
159 /// CPU ticks must come after other associated CPU events
160 /// (such as writebacks).
161 static const Priority CPU_Tick_Pri = 50;
162
163 /// Statistics events (dump, reset, etc.) come after
164 /// everything else, but before exit.
165 static const Priority Stat_Event_Pri = 90;
166
167 /// Progress events come at the end.
168 static const Priority Progress_Event_Pri = 95;
169
170 /// If we want to exit on this cycle, it's the very last thing
171 /// we do.
172 static const Priority Sim_Exit_Pri = 100;
173
174 /// Maximum priority
175 static const Priority Maximum_Pri = SCHAR_MAX;
176};
177
178/*
179 * An item on an event queue. The action caused by a given
180 * event is specified by deriving a subclass and overriding the
181 * process() member function.
182 *
183 * Caution, the order of members is chosen to maximize data packing.
184 */
185class Event : public EventBase, public Serializable
186{
187 friend class EventQueue;
188
189 private:
190 // The event queue is now a linked list of linked lists. The
191 // 'nextBin' pointer is to find the bin, where a bin is defined as
192 // when+priority. All events in the same bin will be stored in a
193 // second linked list (a stack) maintained by the 'nextInBin'
194 // pointer. The list will be accessed in LIFO order. The end
195 // result is that the insert/removal in 'nextBin' is
196 // linear/constant, and the lookup/removal in 'nextInBin' is
197 // constant/constant. Hopefully this is a significant improvement
198 // over the current fully linear insertion.
199 Event *nextBin;
200 Event *nextInBin;
201
202 static Event *insertBefore(Event *event, Event *curr);
203 static Event *removeItem(Event *event, Event *last);
204
205 Tick _when; //!< timestamp when event should be processed
206 Priority _priority; //!< event priority
207 Flags flags;
208
209#ifndef NDEBUG
210 /// Global counter to generate unique IDs for Event instances
211 static Counter instanceCounter;
212
213 /// This event's unique ID. We can also use pointer values for
214 /// this but they're not consistent across runs making debugging
215 /// more difficult. Thus we use a global counter value when
216 /// debugging.
217 Counter instance;
218
219 /// queue to which this event belongs (though it may or may not be
220 /// scheduled on this queue yet)
221 EventQueue *queue;
222#endif
223
224#ifdef EVENTQ_DEBUG
225 Tick whenCreated; //!< time created
226 Tick whenScheduled; //!< time scheduled
227#endif
228
229 void
230 setWhen(Tick when, EventQueue *q)
231 {
232 _when = when;
233#ifndef NDEBUG
234 queue = q;
235#endif
236#ifdef EVENTQ_DEBUG
237 whenScheduled = curTick();
238#endif
239 }
240
241 bool
242 initialized() const
243 {
244 return (flags & InitMask) == Initialized;
245 }
246
247 protected:
248 /// Accessor for flags.
249 Flags
250 getFlags() const
251 {
252 return flags & PublicRead;
253 }
254
255 bool
256 isFlagSet(Flags _flags) const
257 {
258 assert(_flags.noneSet(~PublicRead));
259 return flags.isSet(_flags);
260 }
261
262 /// Accessor for flags.
263 void
264 setFlags(Flags _flags)
265 {
266 assert(_flags.noneSet(~PublicWrite));
267 flags.set(_flags);
268 }
269
270 void
271 clearFlags(Flags _flags)
272 {
273 assert(_flags.noneSet(~PublicWrite));
274 flags.clear(_flags);
275 }
276
277 void
278 clearFlags()
279 {
280 flags.clear(PublicWrite);
281 }
282
283 // This function isn't really useful if TRACING_ON is not defined
284 virtual void trace(const char *action); //!< trace event activity
285
286 protected: /* Memory management */
287 /**
288 * @{
289 * Memory management hooks for events that have the Managed flag set
290 *
291 * Events can use automatic memory management by setting the
292 * Managed flag. The default implementation automatically deletes
293 * events once they have been removed from the event queue. This
294 * typically happens when events are descheduled or have been
295 * triggered and not rescheduled.
296 *
297 * The methods below may be overridden by events that need custom
298 * memory management. For example, events exported to Python need
299 * to impement reference counting to ensure that the Python
300 * implementation of the event is kept alive while it lives in the
301 * event queue.
302 *
303 * @note Memory managers are responsible for implementing
304 * reference counting (by overriding both acquireImpl() and
305 * releaseImpl()) or checking if an event is no longer scheduled
306 * in releaseImpl() before deallocating it.
307 */
308
309 /**
310 * Managed event scheduled and being held in the event queue.
311 */
312 void acquire()
313 {
314 if (flags.isSet(Event::Managed))
315 acquireImpl();
316 }
317
318 /**
319 * Managed event removed from the event queue.
320 */
321 void release() {
322 if (flags.isSet(Event::Managed))
323 releaseImpl();
324 }
325
326 virtual void acquireImpl() {}
327
328 virtual void releaseImpl() {
329 if (!scheduled())
330 delete this;
331 }
332
333 /** @} */
334
285 public:
286
287 /*
288 * Event constructor
289 * @param queue that the event gets scheduled on
290 */
291 Event(Priority p = Default_Pri, Flags f = 0)
292 : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
293 flags(Initialized | f)
294 {
295 assert(f.noneSet(~PublicWrite));
296#ifndef NDEBUG
297 instance = ++instanceCounter;
298 queue = NULL;
299#endif
300#ifdef EVENTQ_DEBUG
301 whenCreated = curTick();
302 whenScheduled = 0;
303#endif
304 }
305
306 virtual ~Event();
307 virtual const std::string name() const;
308
309 /// Return a C string describing the event. This string should
310 /// *not* be dynamically allocated; just a const char array
311 /// describing the event class.
312 virtual const char *description() const;
313
314 /// Dump the current event data
315 void dump() const;
316
317 public:
318 /*
319 * This member function is invoked when the event is processed
320 * (occurs). There is no default implementation; each subclass
321 * must provide its own implementation. The event is not
322 * automatically deleted after it is processed (to allow for
323 * statically allocated event objects).
324 *
325 * If the AutoDestroy flag is set, the object is deleted once it
326 * is processed.
327 */
328 virtual void process() = 0;
329
330 /// Determine if the current event is scheduled
331 bool scheduled() const { return flags.isSet(Scheduled); }
332
333 /// Squash the current event
334 void squash() { flags.set(Squashed); }
335
336 /// Check whether the event is squashed
337 bool squashed() const { return flags.isSet(Squashed); }
338
339 /// See if this is a SimExitEvent (without resorting to RTTI)
340 bool isExitEvent() const { return flags.isSet(IsExitEvent); }
341
342 /// Check whether this event will auto-delete
335 public:
336
337 /*
338 * Event constructor
339 * @param queue that the event gets scheduled on
340 */
341 Event(Priority p = Default_Pri, Flags f = 0)
342 : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
343 flags(Initialized | f)
344 {
345 assert(f.noneSet(~PublicWrite));
346#ifndef NDEBUG
347 instance = ++instanceCounter;
348 queue = NULL;
349#endif
350#ifdef EVENTQ_DEBUG
351 whenCreated = curTick();
352 whenScheduled = 0;
353#endif
354 }
355
356 virtual ~Event();
357 virtual const std::string name() const;
358
359 /// Return a C string describing the event. This string should
360 /// *not* be dynamically allocated; just a const char array
361 /// describing the event class.
362 virtual const char *description() const;
363
364 /// Dump the current event data
365 void dump() const;
366
367 public:
368 /*
369 * This member function is invoked when the event is processed
370 * (occurs). There is no default implementation; each subclass
371 * must provide its own implementation. The event is not
372 * automatically deleted after it is processed (to allow for
373 * statically allocated event objects).
374 *
375 * If the AutoDestroy flag is set, the object is deleted once it
376 * is processed.
377 */
378 virtual void process() = 0;
379
380 /// Determine if the current event is scheduled
381 bool scheduled() const { return flags.isSet(Scheduled); }
382
383 /// Squash the current event
384 void squash() { flags.set(Squashed); }
385
386 /// Check whether the event is squashed
387 bool squashed() const { return flags.isSet(Squashed); }
388
389 /// See if this is a SimExitEvent (without resorting to RTTI)
390 bool isExitEvent() const { return flags.isSet(IsExitEvent); }
391
392 /// Check whether this event will auto-delete
343 bool isAutoDelete() const { return flags.isSet(AutoDelete); }
393 bool isManaged() const { return flags.isSet(Managed); }
394 bool isAutoDelete() const { return isManaged(); }
344
345 /// Get the time that the event is scheduled
346 Tick when() const { return _when; }
347
348 /// Get the event priority
349 Priority priority() const { return _priority; }
350
351 //! If this is part of a GlobalEvent, return the pointer to the
352 //! Global Event. By default, there is no GlobalEvent, so return
353 //! NULL. (Overridden in GlobalEvent::BarrierEvent.)
354 virtual BaseGlobalEvent *globalEvent() { return NULL; }
355
356 void serialize(CheckpointOut &cp) const override;
357 void unserialize(CheckpointIn &cp) override;
358};
359
360inline bool
361operator<(const Event &l, const Event &r)
362{
363 return l.when() < r.when() ||
364 (l.when() == r.when() && l.priority() < r.priority());
365}
366
367inline bool
368operator>(const Event &l, const Event &r)
369{
370 return l.when() > r.when() ||
371 (l.when() == r.when() && l.priority() > r.priority());
372}
373
374inline bool
375operator<=(const Event &l, const Event &r)
376{
377 return l.when() < r.when() ||
378 (l.when() == r.when() && l.priority() <= r.priority());
379}
380inline bool
381operator>=(const Event &l, const Event &r)
382{
383 return l.when() > r.when() ||
384 (l.when() == r.when() && l.priority() >= r.priority());
385}
386
387inline bool
388operator==(const Event &l, const Event &r)
389{
390 return l.when() == r.when() && l.priority() == r.priority();
391}
392
393inline bool
394operator!=(const Event &l, const Event &r)
395{
396 return l.when() != r.when() || l.priority() != r.priority();
397}
398
399/**
400 * Queue of events sorted in time order
401 *
402 * Events are scheduled (inserted into the event queue) using the
403 * schedule() method. This method either inserts a <i>synchronous</i>
404 * or <i>asynchronous</i> event.
405 *
406 * Synchronous events are scheduled using schedule() method with the
407 * argument 'global' set to false (default). This should only be done
408 * from a thread holding the event queue lock
409 * (EventQueue::service_mutex). The lock is always held when an event
410 * handler is called, it can therefore always insert events into its
411 * own event queue unless it voluntarily releases the lock.
412 *
413 * Events can be scheduled across thread (and event queue borders) by
414 * either scheduling asynchronous events or taking the target event
415 * queue's lock. However, the lock should <i>never</i> be taken
416 * directly since this is likely to cause deadlocks. Instead, code
417 * that needs to schedule events in other event queues should
418 * temporarily release its own queue and lock the new queue. This
419 * prevents deadlocks since a single thread never owns more than one
420 * event queue lock. This functionality is provided by the
421 * ScopedMigration helper class. Note that temporarily migrating
422 * between event queues can make the simulation non-deterministic, it
423 * should therefore be limited to cases where that can be tolerated
424 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
425 *
426 * Asynchronous events can also be scheduled using the normal
427 * schedule() method with the 'global' parameter set to true. Unlike
428 * the previous queue migration strategy, this strategy is fully
429 * deterministic. This causes the event to be inserted in a separate
430 * queue of asynchronous events (async_queue), which is merged main
431 * event queue at the end of each simulation quantum (by calling the
432 * handleAsyncInsertions() method). Note that this implies that such
433 * events must happen at least one simulation quantum into the future,
434 * otherwise they risk being scheduled in the past by
435 * handleAsyncInsertions().
436 */
437class EventQueue
438{
439 private:
440 std::string objName;
441 Event *head;
442 Tick _curTick;
443
444 //! Mutex to protect async queue.
445 std::mutex async_queue_mutex;
446
447 //! List of events added by other threads to this event queue.
448 std::list<Event*> async_queue;
449
450 /**
451 * Lock protecting event handling.
452 *
453 * This lock is always taken when servicing events. It is assumed
454 * that the thread scheduling new events (not asynchronous events
455 * though) have taken this lock. This is normally done by
456 * serviceOne() since new events are typically scheduled as a
457 * response to an earlier event.
458 *
459 * This lock is intended to be used to temporarily steal an event
460 * queue to support inter-thread communication when some
461 * deterministic timing can be sacrificed for speed. For example,
462 * the KVM CPU can use this support to access devices running in a
463 * different thread.
464 *
465 * @see EventQueue::ScopedMigration.
466 * @see EventQueue::ScopedRelease
467 * @see EventQueue::lock()
468 * @see EventQueue::unlock()
469 */
470 std::mutex service_mutex;
471
472 //! Insert / remove event from the queue. Should only be called
473 //! by thread operating this queue.
474 void insert(Event *event);
475 void remove(Event *event);
476
477 //! Function for adding events to the async queue. The added events
478 //! are added to main event queue later. Threads, other than the
479 //! owning thread, should call this function instead of insert().
480 void asyncInsert(Event *event);
481
482 EventQueue(const EventQueue &);
483
484 public:
485 /**
486 * Temporarily migrate execution to a different event queue.
487 *
488 * An instance of this class temporarily migrates execution to a
489 * different event queue by releasing the current queue, locking
490 * the new queue, and updating curEventQueue(). This can, for
491 * example, be useful when performing IO across thread event
492 * queues when timing is not crucial (e.g., during fast
493 * forwarding).
494 */
495 class ScopedMigration
496 {
497 public:
498 ScopedMigration(EventQueue *_new_eq)
499 : new_eq(*_new_eq), old_eq(*curEventQueue())
500 {
501 old_eq.unlock();
502 new_eq.lock();
503 curEventQueue(&new_eq);
504 }
505
506 ~ScopedMigration()
507 {
508 new_eq.unlock();
509 old_eq.lock();
510 curEventQueue(&old_eq);
511 }
512
513 private:
514 EventQueue &new_eq;
515 EventQueue &old_eq;
516 };
517
518 /**
519 * Temporarily release the event queue service lock.
520 *
521 * There are cases where it is desirable to temporarily release
522 * the event queue lock to prevent deadlocks. For example, when
523 * waiting on the global barrier, we need to release the lock to
524 * prevent deadlocks from happening when another thread tries to
525 * temporarily take over the event queue waiting on the barrier.
526 */
527 class ScopedRelease
528 {
529 public:
530 ScopedRelease(EventQueue *_eq)
531 : eq(*_eq)
532 {
533 eq.unlock();
534 }
535
536 ~ScopedRelease()
537 {
538 eq.lock();
539 }
540
541 private:
542 EventQueue &eq;
543 };
544
545 EventQueue(const std::string &n);
546
547 virtual const std::string name() const { return objName; }
548 void name(const std::string &st) { objName = st; }
549
550 //! Schedule the given event on this queue. Safe to call from any
551 //! thread.
552 void schedule(Event *event, Tick when, bool global = false);
553
554 //! Deschedule the specified event. Should be called only from the
555 //! owning thread.
556 void deschedule(Event *event);
557
558 //! Reschedule the specified event. Should be called only from
559 //! the owning thread.
560 void reschedule(Event *event, Tick when, bool always = false);
561
562 Tick nextTick() const { return head->when(); }
563 void setCurTick(Tick newVal) { _curTick = newVal; }
564 Tick getCurTick() const { return _curTick; }
565 Event *getHead() const { return head; }
566
567 Event *serviceOne();
568
569 // process all events up to the given timestamp. we inline a
570 // quick test to see if there are any events to process; if so,
571 // call the internal out-of-line version to process them all.
572 void
573 serviceEvents(Tick when)
574 {
575 while (!empty()) {
576 if (nextTick() > when)
577 break;
578
579 /**
580 * @todo this assert is a good bug catcher. I need to
581 * make it true again.
582 */
583 //assert(head->when() >= when && "event scheduled in the past");
584 serviceOne();
585 }
586
587 setCurTick(when);
588 }
589
590 // return true if no events are queued
591 bool empty() const { return head == NULL; }
592
593 void dump() const;
594
595 bool debugVerify() const;
596
597 //! Function for moving events from the async_queue to the main queue.
598 void handleAsyncInsertions();
599
600 /**
601 * Function to signal that the event loop should be woken up because
602 * an event has been scheduled by an agent outside the gem5 event
603 * loop(s) whose event insertion may not have been noticed by gem5.
604 * This function isn't needed by the usual gem5 event loop but may
605 * be necessary in derived EventQueues which host gem5 onto other
606 * schedulers.
607 *
608 * @param when Time of a delayed wakeup (if known). This parameter
609 * can be used by an implementation to schedule a wakeup in the
610 * future if it is sure it will remain active until then.
611 * Or it can be ignored and the event queue can be woken up now.
612 */
613 virtual void wakeup(Tick when = (Tick)-1) { }
614
615 /**
616 * function for replacing the head of the event queue, so that a
617 * different set of events can run without disturbing events that have
618 * already been scheduled. Already scheduled events can be processed
619 * by replacing the original head back.
620 * USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
621 * NOT RECOMMENDED FOR USE.
622 */
623 Event* replaceHead(Event* s);
624
625 /**@{*/
626 /**
627 * Provide an interface for locking/unlocking the event queue.
628 *
629 * @warn Do NOT use these methods directly unless you really know
630 * what you are doing. Incorrect use can easily lead to simulator
631 * deadlocks.
632 *
633 * @see EventQueue::ScopedMigration.
634 * @see EventQueue::ScopedRelease
635 * @see EventQueue
636 */
637 void lock() { service_mutex.lock(); }
638 void unlock() { service_mutex.unlock(); }
639 /**@}*/
640
641 /**
642 * Reschedule an event after a checkpoint.
643 *
644 * Since events don't know which event queue they belong to,
645 * parent objects need to reschedule events themselves. This
646 * method conditionally schedules an event that has the Scheduled
647 * flag set. It should be called by parent objects after
648 * unserializing an object.
649 *
650 * @warn Only use this method after unserializing an Event.
651 */
652 void checkpointReschedule(Event *event);
653
654 virtual ~EventQueue() { }
655};
656
657void dumpMainQueue();
658
659class EventManager
660{
661 protected:
662 /** A pointer to this object's event queue */
663 EventQueue *eventq;
664
665 public:
666 EventManager(EventManager &em) : eventq(em.eventq) {}
667 EventManager(EventManager *em) : eventq(em->eventq) {}
668 EventManager(EventQueue *eq) : eventq(eq) {}
669
670 EventQueue *
671 eventQueue() const
672 {
673 return eventq;
674 }
675
676 void
677 schedule(Event &event, Tick when)
678 {
679 eventq->schedule(&event, when);
680 }
681
682 void
683 deschedule(Event &event)
684 {
685 eventq->deschedule(&event);
686 }
687
688 void
689 reschedule(Event &event, Tick when, bool always = false)
690 {
691 eventq->reschedule(&event, when, always);
692 }
693
694 void
695 schedule(Event *event, Tick when)
696 {
697 eventq->schedule(event, when);
698 }
699
700 void
701 deschedule(Event *event)
702 {
703 eventq->deschedule(event);
704 }
705
706 void
707 reschedule(Event *event, Tick when, bool always = false)
708 {
709 eventq->reschedule(event, when, always);
710 }
711
712 void wakeupEventQueue(Tick when = (Tick)-1)
713 {
714 eventq->wakeup(when);
715 }
716
717 void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
718};
719
720template <class T, void (T::* F)()>
721void
722DelayFunction(EventQueue *eventq, Tick when, T *object)
723{
724 class DelayEvent : public Event
725 {
726 private:
727 T *object;
728
729 public:
730 DelayEvent(T *o)
731 : Event(Default_Pri, AutoDelete), object(o)
732 { }
733 void process() { (object->*F)(); }
734 const char *description() const { return "delay"; }
735 };
736
737 eventq->schedule(new DelayEvent(object), when);
738}
739
740template <class T, void (T::* F)()>
741class EventWrapper : public Event
742{
743 private:
744 T *object;
745
746 public:
747 EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
748 : Event(p), object(obj)
749 {
750 if (del)
751 setFlags(AutoDelete);
752 }
753
754 EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
755 : Event(p), object(&obj)
756 {
757 if (del)
758 setFlags(AutoDelete);
759 }
760
761 void process() { (object->*F)(); }
762
763 const std::string
764 name() const
765 {
766 return object->name() + ".wrapped_event";
767 }
768
769 const char *description() const { return "EventWrapped"; }
770};
771
772#endif // __SIM_EVENTQ_HH__
395
396 /// Get the time that the event is scheduled
397 Tick when() const { return _when; }
398
399 /// Get the event priority
400 Priority priority() const { return _priority; }
401
402 //! If this is part of a GlobalEvent, return the pointer to the
403 //! Global Event. By default, there is no GlobalEvent, so return
404 //! NULL. (Overridden in GlobalEvent::BarrierEvent.)
405 virtual BaseGlobalEvent *globalEvent() { return NULL; }
406
407 void serialize(CheckpointOut &cp) const override;
408 void unserialize(CheckpointIn &cp) override;
409};
410
411inline bool
412operator<(const Event &l, const Event &r)
413{
414 return l.when() < r.when() ||
415 (l.when() == r.when() && l.priority() < r.priority());
416}
417
418inline bool
419operator>(const Event &l, const Event &r)
420{
421 return l.when() > r.when() ||
422 (l.when() == r.when() && l.priority() > r.priority());
423}
424
425inline bool
426operator<=(const Event &l, const Event &r)
427{
428 return l.when() < r.when() ||
429 (l.when() == r.when() && l.priority() <= r.priority());
430}
431inline bool
432operator>=(const Event &l, const Event &r)
433{
434 return l.when() > r.when() ||
435 (l.when() == r.when() && l.priority() >= r.priority());
436}
437
438inline bool
439operator==(const Event &l, const Event &r)
440{
441 return l.when() == r.when() && l.priority() == r.priority();
442}
443
444inline bool
445operator!=(const Event &l, const Event &r)
446{
447 return l.when() != r.when() || l.priority() != r.priority();
448}
449
450/**
451 * Queue of events sorted in time order
452 *
453 * Events are scheduled (inserted into the event queue) using the
454 * schedule() method. This method either inserts a <i>synchronous</i>
455 * or <i>asynchronous</i> event.
456 *
457 * Synchronous events are scheduled using schedule() method with the
458 * argument 'global' set to false (default). This should only be done
459 * from a thread holding the event queue lock
460 * (EventQueue::service_mutex). The lock is always held when an event
461 * handler is called, it can therefore always insert events into its
462 * own event queue unless it voluntarily releases the lock.
463 *
464 * Events can be scheduled across thread (and event queue borders) by
465 * either scheduling asynchronous events or taking the target event
466 * queue's lock. However, the lock should <i>never</i> be taken
467 * directly since this is likely to cause deadlocks. Instead, code
468 * that needs to schedule events in other event queues should
469 * temporarily release its own queue and lock the new queue. This
470 * prevents deadlocks since a single thread never owns more than one
471 * event queue lock. This functionality is provided by the
472 * ScopedMigration helper class. Note that temporarily migrating
473 * between event queues can make the simulation non-deterministic, it
474 * should therefore be limited to cases where that can be tolerated
475 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
476 *
477 * Asynchronous events can also be scheduled using the normal
478 * schedule() method with the 'global' parameter set to true. Unlike
479 * the previous queue migration strategy, this strategy is fully
480 * deterministic. This causes the event to be inserted in a separate
481 * queue of asynchronous events (async_queue), which is merged main
482 * event queue at the end of each simulation quantum (by calling the
483 * handleAsyncInsertions() method). Note that this implies that such
484 * events must happen at least one simulation quantum into the future,
485 * otherwise they risk being scheduled in the past by
486 * handleAsyncInsertions().
487 */
488class EventQueue
489{
490 private:
491 std::string objName;
492 Event *head;
493 Tick _curTick;
494
495 //! Mutex to protect async queue.
496 std::mutex async_queue_mutex;
497
498 //! List of events added by other threads to this event queue.
499 std::list<Event*> async_queue;
500
501 /**
502 * Lock protecting event handling.
503 *
504 * This lock is always taken when servicing events. It is assumed
505 * that the thread scheduling new events (not asynchronous events
506 * though) have taken this lock. This is normally done by
507 * serviceOne() since new events are typically scheduled as a
508 * response to an earlier event.
509 *
510 * This lock is intended to be used to temporarily steal an event
511 * queue to support inter-thread communication when some
512 * deterministic timing can be sacrificed for speed. For example,
513 * the KVM CPU can use this support to access devices running in a
514 * different thread.
515 *
516 * @see EventQueue::ScopedMigration.
517 * @see EventQueue::ScopedRelease
518 * @see EventQueue::lock()
519 * @see EventQueue::unlock()
520 */
521 std::mutex service_mutex;
522
523 //! Insert / remove event from the queue. Should only be called
524 //! by thread operating this queue.
525 void insert(Event *event);
526 void remove(Event *event);
527
528 //! Function for adding events to the async queue. The added events
529 //! are added to main event queue later. Threads, other than the
530 //! owning thread, should call this function instead of insert().
531 void asyncInsert(Event *event);
532
533 EventQueue(const EventQueue &);
534
535 public:
536 /**
537 * Temporarily migrate execution to a different event queue.
538 *
539 * An instance of this class temporarily migrates execution to a
540 * different event queue by releasing the current queue, locking
541 * the new queue, and updating curEventQueue(). This can, for
542 * example, be useful when performing IO across thread event
543 * queues when timing is not crucial (e.g., during fast
544 * forwarding).
545 */
546 class ScopedMigration
547 {
548 public:
549 ScopedMigration(EventQueue *_new_eq)
550 : new_eq(*_new_eq), old_eq(*curEventQueue())
551 {
552 old_eq.unlock();
553 new_eq.lock();
554 curEventQueue(&new_eq);
555 }
556
557 ~ScopedMigration()
558 {
559 new_eq.unlock();
560 old_eq.lock();
561 curEventQueue(&old_eq);
562 }
563
564 private:
565 EventQueue &new_eq;
566 EventQueue &old_eq;
567 };
568
569 /**
570 * Temporarily release the event queue service lock.
571 *
572 * There are cases where it is desirable to temporarily release
573 * the event queue lock to prevent deadlocks. For example, when
574 * waiting on the global barrier, we need to release the lock to
575 * prevent deadlocks from happening when another thread tries to
576 * temporarily take over the event queue waiting on the barrier.
577 */
578 class ScopedRelease
579 {
580 public:
581 ScopedRelease(EventQueue *_eq)
582 : eq(*_eq)
583 {
584 eq.unlock();
585 }
586
587 ~ScopedRelease()
588 {
589 eq.lock();
590 }
591
592 private:
593 EventQueue &eq;
594 };
595
596 EventQueue(const std::string &n);
597
598 virtual const std::string name() const { return objName; }
599 void name(const std::string &st) { objName = st; }
600
601 //! Schedule the given event on this queue. Safe to call from any
602 //! thread.
603 void schedule(Event *event, Tick when, bool global = false);
604
605 //! Deschedule the specified event. Should be called only from the
606 //! owning thread.
607 void deschedule(Event *event);
608
609 //! Reschedule the specified event. Should be called only from
610 //! the owning thread.
611 void reschedule(Event *event, Tick when, bool always = false);
612
613 Tick nextTick() const { return head->when(); }
614 void setCurTick(Tick newVal) { _curTick = newVal; }
615 Tick getCurTick() const { return _curTick; }
616 Event *getHead() const { return head; }
617
618 Event *serviceOne();
619
620 // process all events up to the given timestamp. we inline a
621 // quick test to see if there are any events to process; if so,
622 // call the internal out-of-line version to process them all.
623 void
624 serviceEvents(Tick when)
625 {
626 while (!empty()) {
627 if (nextTick() > when)
628 break;
629
630 /**
631 * @todo this assert is a good bug catcher. I need to
632 * make it true again.
633 */
634 //assert(head->when() >= when && "event scheduled in the past");
635 serviceOne();
636 }
637
638 setCurTick(when);
639 }
640
641 // return true if no events are queued
642 bool empty() const { return head == NULL; }
643
644 void dump() const;
645
646 bool debugVerify() const;
647
648 //! Function for moving events from the async_queue to the main queue.
649 void handleAsyncInsertions();
650
651 /**
652 * Function to signal that the event loop should be woken up because
653 * an event has been scheduled by an agent outside the gem5 event
654 * loop(s) whose event insertion may not have been noticed by gem5.
655 * This function isn't needed by the usual gem5 event loop but may
656 * be necessary in derived EventQueues which host gem5 onto other
657 * schedulers.
658 *
659 * @param when Time of a delayed wakeup (if known). This parameter
660 * can be used by an implementation to schedule a wakeup in the
661 * future if it is sure it will remain active until then.
662 * Or it can be ignored and the event queue can be woken up now.
663 */
664 virtual void wakeup(Tick when = (Tick)-1) { }
665
666 /**
667 * function for replacing the head of the event queue, so that a
668 * different set of events can run without disturbing events that have
669 * already been scheduled. Already scheduled events can be processed
670 * by replacing the original head back.
671 * USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
672 * NOT RECOMMENDED FOR USE.
673 */
674 Event* replaceHead(Event* s);
675
676 /**@{*/
677 /**
678 * Provide an interface for locking/unlocking the event queue.
679 *
680 * @warn Do NOT use these methods directly unless you really know
681 * what you are doing. Incorrect use can easily lead to simulator
682 * deadlocks.
683 *
684 * @see EventQueue::ScopedMigration.
685 * @see EventQueue::ScopedRelease
686 * @see EventQueue
687 */
688 void lock() { service_mutex.lock(); }
689 void unlock() { service_mutex.unlock(); }
690 /**@}*/
691
692 /**
693 * Reschedule an event after a checkpoint.
694 *
695 * Since events don't know which event queue they belong to,
696 * parent objects need to reschedule events themselves. This
697 * method conditionally schedules an event that has the Scheduled
698 * flag set. It should be called by parent objects after
699 * unserializing an object.
700 *
701 * @warn Only use this method after unserializing an Event.
702 */
703 void checkpointReschedule(Event *event);
704
705 virtual ~EventQueue() { }
706};
707
708void dumpMainQueue();
709
710class EventManager
711{
712 protected:
713 /** A pointer to this object's event queue */
714 EventQueue *eventq;
715
716 public:
717 EventManager(EventManager &em) : eventq(em.eventq) {}
718 EventManager(EventManager *em) : eventq(em->eventq) {}
719 EventManager(EventQueue *eq) : eventq(eq) {}
720
721 EventQueue *
722 eventQueue() const
723 {
724 return eventq;
725 }
726
727 void
728 schedule(Event &event, Tick when)
729 {
730 eventq->schedule(&event, when);
731 }
732
733 void
734 deschedule(Event &event)
735 {
736 eventq->deschedule(&event);
737 }
738
739 void
740 reschedule(Event &event, Tick when, bool always = false)
741 {
742 eventq->reschedule(&event, when, always);
743 }
744
745 void
746 schedule(Event *event, Tick when)
747 {
748 eventq->schedule(event, when);
749 }
750
751 void
752 deschedule(Event *event)
753 {
754 eventq->deschedule(event);
755 }
756
757 void
758 reschedule(Event *event, Tick when, bool always = false)
759 {
760 eventq->reschedule(event, when, always);
761 }
762
763 void wakeupEventQueue(Tick when = (Tick)-1)
764 {
765 eventq->wakeup(when);
766 }
767
768 void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
769};
770
771template <class T, void (T::* F)()>
772void
773DelayFunction(EventQueue *eventq, Tick when, T *object)
774{
775 class DelayEvent : public Event
776 {
777 private:
778 T *object;
779
780 public:
781 DelayEvent(T *o)
782 : Event(Default_Pri, AutoDelete), object(o)
783 { }
784 void process() { (object->*F)(); }
785 const char *description() const { return "delay"; }
786 };
787
788 eventq->schedule(new DelayEvent(object), when);
789}
790
791template <class T, void (T::* F)()>
792class EventWrapper : public Event
793{
794 private:
795 T *object;
796
797 public:
798 EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
799 : Event(p), object(obj)
800 {
801 if (del)
802 setFlags(AutoDelete);
803 }
804
805 EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
806 : Event(p), object(&obj)
807 {
808 if (del)
809 setFlags(AutoDelete);
810 }
811
812 void process() { (object->*F)(); }
813
814 const std::string
815 name() const
816 {
817 return object->name() + ".wrapped_event";
818 }
819
820 const char *description() const { return "EventWrapped"; }
821};
822
823#endif // __SIM_EVENTQ_HH__