dot_writer.py (13870:2536e3a4b58d) dot_writer.py (14060:84e06ed846ea)
1# Copyright (c) 2012-2013 ARM Limited
1# Copyright (c) 2012-2013,2019 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Redistribution and use in source and binary forms, with or without
14# modification, are permitted provided that the following conditions are
15# met: redistributions of source code must retain the above copyright
16# notice, this list of conditions and the following disclaimer;
17# redistributions in binary form must reproduce the above copyright
18# notice, this list of conditions and the following disclaimer in the
19# documentation and/or other materials provided with the distribution;
20# neither the name of the copyright holders nor the names of its
21# contributors may be used to endorse or promote products derived from
22# this software without specific prior written permission.
23#
24# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35#
36# Authors: Andreas Hansson
37# Uri Wiener
38# Sascha Bischoff
39
40#####################################################################
41#
42# System visualization using DOT
43#
44# While config.ini and config.json provide an almost complete listing
45# of a system's components and connectivity, they lack a birds-eye
46# view. The output generated by do_dot() is a DOT-based figure (as a
47# pdf and an editable svg file) and its source dot code. Nodes are
48# components, and edges represent the memory hierarchy: the edges are
49# directed, from a master to slave. Initially all nodes are
50# generated, and then all edges are added. do_dot should be called
51# with the top-most SimObject (namely root but not necessarily), the
52# output folder and the output dot source filename. From the given
53# node, both processes (node and edge creation) is performed
54# recursivly, traversing all children of the given root.
55#
56# pydot is required. When missing, no output will be generated.
57#
58#####################################################################
59
60from __future__ import print_function
61from __future__ import absolute_import
62
63import m5, os, re
64from m5.SimObject import isRoot, isSimObjectVector
65from m5.params import PortRef, isNullPointer
66from m5.util import warn
67try:
68 import pydot
69except:
70 pydot = False
71
72def simnode_children(simNode):
73 for child in simNode._children.values():
74 if isNullPointer(child):
75 continue
76 if isSimObjectVector(child):
77 for obj in child:
78 if not isNullPointer(obj):
79 yield obj
80 else:
81 yield child
82
83# need to create all nodes (components) before creating edges (memory channels)
84def dot_create_nodes(simNode, callgraph):
85 if isRoot(simNode):
86 label = "root"
87 else:
88 label = simNode._name
89 full_path = re.sub('\.', '_', simNode.path())
90 # add class name under the label
91 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
92
93 # each component is a sub-graph (cluster)
94 cluster = dot_create_cluster(simNode, full_path, label)
95
96 # create nodes per port
97 for port_name in simNode._ports.keys():
98 port = simNode._port_refs.get(port_name, None)
99 if port != None:
100 full_port_name = full_path + "_" + port_name
101 port_node = dot_create_node(simNode, full_port_name, port_name)
102 cluster.add_node(port_node)
103
104 # recurse to children
105 for child in simnode_children(simNode):
106 dot_create_nodes(child, cluster)
107
108 callgraph.add_subgraph(cluster)
109
110# create all edges according to memory hierarchy
111def dot_create_edges(simNode, callgraph):
112 for port_name in simNode._ports.keys():
113 port = simNode._port_refs.get(port_name, None)
114 if port != None:
115 full_path = re.sub('\.', '_', simNode.path())
116 full_port_name = full_path + "_" + port_name
117 port_node = dot_create_node(simNode, full_port_name, port_name)
118 # create edges
119 if isinstance(port, PortRef):
120 dot_add_edge(simNode, callgraph, full_port_name, port)
121 else:
122 for p in port.elements:
123 dot_add_edge(simNode, callgraph, full_port_name, p)
124
125 # recurse to children
126 for child in simnode_children(simNode):
127 dot_create_edges(child, callgraph)
128
129def dot_add_edge(simNode, callgraph, full_port_name, port):
130 peer = port.peer
131 full_peer_path = re.sub('\.', '_', peer.simobj.path())
132 full_peer_port_name = full_peer_path + "_" + peer.name
133
134 # Each edge is encountered twice, once for each peer. We only want one
135 # edge, so we'll arbitrarily chose which peer "wins" based on their names.
136 if full_peer_port_name < full_port_name:
137 dir_type = {
138 (False, False) : 'both',
139 (True, False) : 'forward',
140 (False, True) : 'back',
141 (True, True) : 'none'
142 }[ (port.is_source,
143 peer.is_source) ]
144 edge = pydot.Edge(full_port_name, full_peer_port_name, dir=dir_type)
145 callgraph.add_edge(edge)
146
147def dot_create_cluster(simNode, full_path, label):
148 # get the parameter values of the node and use them as a tooltip
149 ini_strings = []
150 for param in sorted(simNode._params.keys()):
151 value = simNode._values.get(param)
152 if value != None:
153 # parameter name = value in HTML friendly format
154 ini_strings.append(str(param) + "&#61;" +
155 simNode._values[param].ini_str())
156 # join all the parameters with an HTML newline
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Redistribution and use in source and binary forms, with or without
14# modification, are permitted provided that the following conditions are
15# met: redistributions of source code must retain the above copyright
16# notice, this list of conditions and the following disclaimer;
17# redistributions in binary form must reproduce the above copyright
18# notice, this list of conditions and the following disclaimer in the
19# documentation and/or other materials provided with the distribution;
20# neither the name of the copyright holders nor the names of its
21# contributors may be used to endorse or promote products derived from
22# this software without specific prior written permission.
23#
24# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35#
36# Authors: Andreas Hansson
37# Uri Wiener
38# Sascha Bischoff
39
40#####################################################################
41#
42# System visualization using DOT
43#
44# While config.ini and config.json provide an almost complete listing
45# of a system's components and connectivity, they lack a birds-eye
46# view. The output generated by do_dot() is a DOT-based figure (as a
47# pdf and an editable svg file) and its source dot code. Nodes are
48# components, and edges represent the memory hierarchy: the edges are
49# directed, from a master to slave. Initially all nodes are
50# generated, and then all edges are added. do_dot should be called
51# with the top-most SimObject (namely root but not necessarily), the
52# output folder and the output dot source filename. From the given
53# node, both processes (node and edge creation) is performed
54# recursivly, traversing all children of the given root.
55#
56# pydot is required. When missing, no output will be generated.
57#
58#####################################################################
59
60from __future__ import print_function
61from __future__ import absolute_import
62
63import m5, os, re
64from m5.SimObject import isRoot, isSimObjectVector
65from m5.params import PortRef, isNullPointer
66from m5.util import warn
67try:
68 import pydot
69except:
70 pydot = False
71
72def simnode_children(simNode):
73 for child in simNode._children.values():
74 if isNullPointer(child):
75 continue
76 if isSimObjectVector(child):
77 for obj in child:
78 if not isNullPointer(obj):
79 yield obj
80 else:
81 yield child
82
83# need to create all nodes (components) before creating edges (memory channels)
84def dot_create_nodes(simNode, callgraph):
85 if isRoot(simNode):
86 label = "root"
87 else:
88 label = simNode._name
89 full_path = re.sub('\.', '_', simNode.path())
90 # add class name under the label
91 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
92
93 # each component is a sub-graph (cluster)
94 cluster = dot_create_cluster(simNode, full_path, label)
95
96 # create nodes per port
97 for port_name in simNode._ports.keys():
98 port = simNode._port_refs.get(port_name, None)
99 if port != None:
100 full_port_name = full_path + "_" + port_name
101 port_node = dot_create_node(simNode, full_port_name, port_name)
102 cluster.add_node(port_node)
103
104 # recurse to children
105 for child in simnode_children(simNode):
106 dot_create_nodes(child, cluster)
107
108 callgraph.add_subgraph(cluster)
109
110# create all edges according to memory hierarchy
111def dot_create_edges(simNode, callgraph):
112 for port_name in simNode._ports.keys():
113 port = simNode._port_refs.get(port_name, None)
114 if port != None:
115 full_path = re.sub('\.', '_', simNode.path())
116 full_port_name = full_path + "_" + port_name
117 port_node = dot_create_node(simNode, full_port_name, port_name)
118 # create edges
119 if isinstance(port, PortRef):
120 dot_add_edge(simNode, callgraph, full_port_name, port)
121 else:
122 for p in port.elements:
123 dot_add_edge(simNode, callgraph, full_port_name, p)
124
125 # recurse to children
126 for child in simnode_children(simNode):
127 dot_create_edges(child, callgraph)
128
129def dot_add_edge(simNode, callgraph, full_port_name, port):
130 peer = port.peer
131 full_peer_path = re.sub('\.', '_', peer.simobj.path())
132 full_peer_port_name = full_peer_path + "_" + peer.name
133
134 # Each edge is encountered twice, once for each peer. We only want one
135 # edge, so we'll arbitrarily chose which peer "wins" based on their names.
136 if full_peer_port_name < full_port_name:
137 dir_type = {
138 (False, False) : 'both',
139 (True, False) : 'forward',
140 (False, True) : 'back',
141 (True, True) : 'none'
142 }[ (port.is_source,
143 peer.is_source) ]
144 edge = pydot.Edge(full_port_name, full_peer_port_name, dir=dir_type)
145 callgraph.add_edge(edge)
146
147def dot_create_cluster(simNode, full_path, label):
148 # get the parameter values of the node and use them as a tooltip
149 ini_strings = []
150 for param in sorted(simNode._params.keys()):
151 value = simNode._values.get(param)
152 if value != None:
153 # parameter name = value in HTML friendly format
154 ini_strings.append(str(param) + "&#61;" +
155 simNode._values[param].ini_str())
156 # join all the parameters with an HTML newline
157 tooltip = " ".join(ini_strings)
157 tooltip = "&#10;\\".join(ini_strings)
158
159 return pydot.Cluster( \
160 full_path, \
161 shape = "Mrecord", \
162 label = label, \
163 tooltip = "\"" + tooltip + "\"", \
164 style = "\"rounded, filled\"", \
165 color = "#000000", \
166 fillcolor = dot_gen_colour(simNode), \
167 fontname = "Arial", \
168 fontsize = "14", \
169 fontcolor = "#000000" \
170 )
171
172def dot_create_node(simNode, full_path, label):
173 return pydot.Node( \
174 full_path, \
175 shape = "Mrecord", \
176 label = label, \
177 style = "\"rounded, filled\"", \
178 color = "#000000", \
179 fillcolor = dot_gen_colour(simNode, True), \
180 fontname = "Arial", \
181 fontsize = "14", \
182 fontcolor = "#000000" \
183 )
184
185# an enumerator for different kinds of node types, at the moment we
186# discern the majority of node types, with the caches being the
187# notable exception
188class NodeType:
189 SYS = 0
190 CPU = 1
191 XBAR = 2
192 MEM = 3
193 DEV = 4
194 OTHER = 5
195
196# based on the sim object, determine the node type
197def get_node_type(simNode):
198 if isinstance(simNode, m5.objects.System):
199 return NodeType.SYS
200 # NULL ISA has no BaseCPU or PioDevice, so check if these names
201 # exists before using them
202 elif 'BaseCPU' in dir(m5.objects) and \
203 isinstance(simNode, m5.objects.BaseCPU):
204 return NodeType.CPU
205 elif 'PioDevice' in dir(m5.objects) and \
206 isinstance(simNode, m5.objects.PioDevice):
207 return NodeType.DEV
208 elif isinstance(simNode, m5.objects.BaseXBar):
209 return NodeType.XBAR
210 elif isinstance(simNode, m5.objects.AbstractMemory):
211 return NodeType.MEM
212 else:
213 return NodeType.OTHER
214
215# based on the node type, determine the colour as an RGB tuple, the
216# palette is rather arbitrary at this point (some coherent natural
217# tones), and someone that feels artistic should probably have a look
218def get_type_colour(nodeType):
219 if nodeType == NodeType.SYS:
220 return (228, 231, 235)
221 elif nodeType == NodeType.CPU:
222 return (187, 198, 217)
223 elif nodeType == NodeType.XBAR:
224 return (111, 121, 140)
225 elif nodeType == NodeType.MEM:
226 return (94, 89, 88)
227 elif nodeType == NodeType.DEV:
228 return (199, 167, 147)
229 elif nodeType == NodeType.OTHER:
230 # use a relatively gray shade
231 return (186, 182, 174)
232
233# generate colour for a node, either corresponding to a sim object or a
234# port
235def dot_gen_colour(simNode, isPort = False):
236 # determine the type of the current node, and also its parent, if
237 # the node is not the same type as the parent then we use the base
238 # colour for its type
239 node_type = get_node_type(simNode)
240 if simNode._parent:
241 parent_type = get_node_type(simNode._parent)
242 else:
243 parent_type = NodeType.OTHER
244
245 # if this node is the same type as the parent, then scale the
246 # colour based on the depth such that the deeper levels in the
247 # hierarchy get darker colours
248 if node_type == parent_type:
249 # start out with a depth of zero
250 depth = 0
251 parent = simNode._parent
252 # find the closes parent that is not the same type
253 while parent and get_node_type(parent) == parent_type:
254 depth = depth + 1
255 parent = parent._parent
256 node_colour = get_type_colour(parent_type)
257 # slightly arbitrary, but assume that the depth is less than
258 # five levels
259 r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
260 else:
261 node_colour = get_type_colour(node_type)
262 r, g, b = node_colour
263
264 # if we are colouring a port, then make it a slightly darker shade
265 # than the node that encapsulates it, once again use a magic constant
266 if isPort:
267 r, g, b = map(lambda x: 0.8 * x, (r, g, b))
268
269 return dot_rgb_to_html(r, g, b)
270
271def dot_rgb_to_html(r, g, b):
272 return "#%.2x%.2x%.2x" % (r, g, b)
273
274# We need to create all of the clock domains. We abuse the alpha channel to get
275# the correct domain colouring.
276def dot_add_clk_domain(c_dom, v_dom):
277 label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
278 label = re.sub('\.', '_', str(label))
279 full_path = re.sub('\.', '_', str(c_dom))
280 return pydot.Cluster( \
281 full_path, \
282 shape = "Mrecord", \
283 label = label, \
284 style = "\"rounded, filled, dashed\"", \
285 color = "#000000", \
286 fillcolor = "#AFC8AF8F", \
287 fontname = "Arial", \
288 fontsize = "14", \
289 fontcolor = "#000000" \
290 )
291
292def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
293 if isRoot(simNode):
294 label = "root"
295 else:
296 label = simNode._name
297 full_path = re.sub('\.', '_', simNode.path())
298 # add class name under the label
299 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
300
301 # each component is a sub-graph (cluster)
302 cluster = dot_create_cluster(simNode, full_path, label)
303
304 # create nodes per port
305 for port_name in simNode._ports.keys():
306 port = simNode._port_refs.get(port_name, None)
307 if port != None:
308 full_port_name = full_path + "_" + port_name
309 port_node = dot_create_node(simNode, full_port_name, port_name)
310 cluster.add_node(port_node)
311
312 # Dictionary of DVFS domains
313 dvfs_domains = {}
314
315 # recurse to children
316 for child in simnode_children(simNode):
317 try:
318 c_dom = child.__getattr__('clk_domain')
319 v_dom = c_dom.__getattr__('voltage_domain')
320 except AttributeError:
321 # Just re-use the domain from above
322 c_dom = domain
323 v_dom = c_dom.__getattr__('voltage_domain')
324 pass
325
326 if c_dom == domain or c_dom == None:
327 dot_create_dvfs_nodes(child, cluster, domain)
328 else:
329 if c_dom not in dvfs_domains:
330 dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
331 dvfs_domains[c_dom] = dvfs_cluster
332 else:
333 dvfs_cluster = dvfs_domains[c_dom]
334 dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
335
336 for key in dvfs_domains:
337 cluster.add_subgraph(dvfs_domains[key])
338
339 callgraph.add_subgraph(cluster)
340
341def do_dot(root, outdir, dotFilename):
342 if not pydot:
343 return
344 # * use ranksep > 1.0 for for vertical separation between nodes
345 # especially useful if you need to annotate edges using e.g. visio
346 # which accepts svg format
347 # * no need for hoizontal separation as nothing moves horizonally
348 callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
349 dot_create_nodes(root, callgraph)
350 dot_create_edges(root, callgraph)
351 dot_filename = os.path.join(outdir, dotFilename)
352 callgraph.write(dot_filename)
353 try:
354 # dot crashes if the figure is extremely wide.
355 # So avoid terminating simulation unnecessarily
356 callgraph.write_svg(dot_filename + ".svg")
357 callgraph.write_pdf(dot_filename + ".pdf")
358 except:
359 warn("failed to generate dot output from %s", dot_filename)
360
361def do_dvfs_dot(root, outdir, dotFilename):
362 if not pydot:
363 return
364
365 # There is a chance that we are unable to resolve the clock or
366 # voltage domains. If so, we fail silently.
367 try:
368 dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
369 dot_create_dvfs_nodes(root, dvfsgraph)
370 dot_create_edges(root, dvfsgraph)
371 dot_filename = os.path.join(outdir, dotFilename)
372 dvfsgraph.write(dot_filename)
373 except:
374 warn("Failed to generate dot graph for DVFS domains")
375 return
376
377 try:
378 # dot crashes if the figure is extremely wide.
379 # So avoid terminating simulation unnecessarily
380 dvfsgraph.write_svg(dot_filename + ".svg")
381 dvfsgraph.write_pdf(dot_filename + ".pdf")
382 except:
383 warn("failed to generate dot output from %s", dot_filename)
158
159 return pydot.Cluster( \
160 full_path, \
161 shape = "Mrecord", \
162 label = label, \
163 tooltip = "\"" + tooltip + "\"", \
164 style = "\"rounded, filled\"", \
165 color = "#000000", \
166 fillcolor = dot_gen_colour(simNode), \
167 fontname = "Arial", \
168 fontsize = "14", \
169 fontcolor = "#000000" \
170 )
171
172def dot_create_node(simNode, full_path, label):
173 return pydot.Node( \
174 full_path, \
175 shape = "Mrecord", \
176 label = label, \
177 style = "\"rounded, filled\"", \
178 color = "#000000", \
179 fillcolor = dot_gen_colour(simNode, True), \
180 fontname = "Arial", \
181 fontsize = "14", \
182 fontcolor = "#000000" \
183 )
184
185# an enumerator for different kinds of node types, at the moment we
186# discern the majority of node types, with the caches being the
187# notable exception
188class NodeType:
189 SYS = 0
190 CPU = 1
191 XBAR = 2
192 MEM = 3
193 DEV = 4
194 OTHER = 5
195
196# based on the sim object, determine the node type
197def get_node_type(simNode):
198 if isinstance(simNode, m5.objects.System):
199 return NodeType.SYS
200 # NULL ISA has no BaseCPU or PioDevice, so check if these names
201 # exists before using them
202 elif 'BaseCPU' in dir(m5.objects) and \
203 isinstance(simNode, m5.objects.BaseCPU):
204 return NodeType.CPU
205 elif 'PioDevice' in dir(m5.objects) and \
206 isinstance(simNode, m5.objects.PioDevice):
207 return NodeType.DEV
208 elif isinstance(simNode, m5.objects.BaseXBar):
209 return NodeType.XBAR
210 elif isinstance(simNode, m5.objects.AbstractMemory):
211 return NodeType.MEM
212 else:
213 return NodeType.OTHER
214
215# based on the node type, determine the colour as an RGB tuple, the
216# palette is rather arbitrary at this point (some coherent natural
217# tones), and someone that feels artistic should probably have a look
218def get_type_colour(nodeType):
219 if nodeType == NodeType.SYS:
220 return (228, 231, 235)
221 elif nodeType == NodeType.CPU:
222 return (187, 198, 217)
223 elif nodeType == NodeType.XBAR:
224 return (111, 121, 140)
225 elif nodeType == NodeType.MEM:
226 return (94, 89, 88)
227 elif nodeType == NodeType.DEV:
228 return (199, 167, 147)
229 elif nodeType == NodeType.OTHER:
230 # use a relatively gray shade
231 return (186, 182, 174)
232
233# generate colour for a node, either corresponding to a sim object or a
234# port
235def dot_gen_colour(simNode, isPort = False):
236 # determine the type of the current node, and also its parent, if
237 # the node is not the same type as the parent then we use the base
238 # colour for its type
239 node_type = get_node_type(simNode)
240 if simNode._parent:
241 parent_type = get_node_type(simNode._parent)
242 else:
243 parent_type = NodeType.OTHER
244
245 # if this node is the same type as the parent, then scale the
246 # colour based on the depth such that the deeper levels in the
247 # hierarchy get darker colours
248 if node_type == parent_type:
249 # start out with a depth of zero
250 depth = 0
251 parent = simNode._parent
252 # find the closes parent that is not the same type
253 while parent and get_node_type(parent) == parent_type:
254 depth = depth + 1
255 parent = parent._parent
256 node_colour = get_type_colour(parent_type)
257 # slightly arbitrary, but assume that the depth is less than
258 # five levels
259 r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
260 else:
261 node_colour = get_type_colour(node_type)
262 r, g, b = node_colour
263
264 # if we are colouring a port, then make it a slightly darker shade
265 # than the node that encapsulates it, once again use a magic constant
266 if isPort:
267 r, g, b = map(lambda x: 0.8 * x, (r, g, b))
268
269 return dot_rgb_to_html(r, g, b)
270
271def dot_rgb_to_html(r, g, b):
272 return "#%.2x%.2x%.2x" % (r, g, b)
273
274# We need to create all of the clock domains. We abuse the alpha channel to get
275# the correct domain colouring.
276def dot_add_clk_domain(c_dom, v_dom):
277 label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
278 label = re.sub('\.', '_', str(label))
279 full_path = re.sub('\.', '_', str(c_dom))
280 return pydot.Cluster( \
281 full_path, \
282 shape = "Mrecord", \
283 label = label, \
284 style = "\"rounded, filled, dashed\"", \
285 color = "#000000", \
286 fillcolor = "#AFC8AF8F", \
287 fontname = "Arial", \
288 fontsize = "14", \
289 fontcolor = "#000000" \
290 )
291
292def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
293 if isRoot(simNode):
294 label = "root"
295 else:
296 label = simNode._name
297 full_path = re.sub('\.', '_', simNode.path())
298 # add class name under the label
299 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
300
301 # each component is a sub-graph (cluster)
302 cluster = dot_create_cluster(simNode, full_path, label)
303
304 # create nodes per port
305 for port_name in simNode._ports.keys():
306 port = simNode._port_refs.get(port_name, None)
307 if port != None:
308 full_port_name = full_path + "_" + port_name
309 port_node = dot_create_node(simNode, full_port_name, port_name)
310 cluster.add_node(port_node)
311
312 # Dictionary of DVFS domains
313 dvfs_domains = {}
314
315 # recurse to children
316 for child in simnode_children(simNode):
317 try:
318 c_dom = child.__getattr__('clk_domain')
319 v_dom = c_dom.__getattr__('voltage_domain')
320 except AttributeError:
321 # Just re-use the domain from above
322 c_dom = domain
323 v_dom = c_dom.__getattr__('voltage_domain')
324 pass
325
326 if c_dom == domain or c_dom == None:
327 dot_create_dvfs_nodes(child, cluster, domain)
328 else:
329 if c_dom not in dvfs_domains:
330 dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
331 dvfs_domains[c_dom] = dvfs_cluster
332 else:
333 dvfs_cluster = dvfs_domains[c_dom]
334 dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
335
336 for key in dvfs_domains:
337 cluster.add_subgraph(dvfs_domains[key])
338
339 callgraph.add_subgraph(cluster)
340
341def do_dot(root, outdir, dotFilename):
342 if not pydot:
343 return
344 # * use ranksep > 1.0 for for vertical separation between nodes
345 # especially useful if you need to annotate edges using e.g. visio
346 # which accepts svg format
347 # * no need for hoizontal separation as nothing moves horizonally
348 callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
349 dot_create_nodes(root, callgraph)
350 dot_create_edges(root, callgraph)
351 dot_filename = os.path.join(outdir, dotFilename)
352 callgraph.write(dot_filename)
353 try:
354 # dot crashes if the figure is extremely wide.
355 # So avoid terminating simulation unnecessarily
356 callgraph.write_svg(dot_filename + ".svg")
357 callgraph.write_pdf(dot_filename + ".pdf")
358 except:
359 warn("failed to generate dot output from %s", dot_filename)
360
361def do_dvfs_dot(root, outdir, dotFilename):
362 if not pydot:
363 return
364
365 # There is a chance that we are unable to resolve the clock or
366 # voltage domains. If so, we fail silently.
367 try:
368 dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
369 dot_create_dvfs_nodes(root, dvfsgraph)
370 dot_create_edges(root, dvfsgraph)
371 dot_filename = os.path.join(outdir, dotFilename)
372 dvfsgraph.write(dot_filename)
373 except:
374 warn("Failed to generate dot graph for DVFS domains")
375 return
376
377 try:
378 # dot crashes if the figure is extremely wide.
379 # So avoid terminating simulation unnecessarily
380 dvfsgraph.write_svg(dot_filename + ".svg")
381 dvfsgraph.write_pdf(dot_filename + ".pdf")
382 except:
383 warn("failed to generate dot output from %s", dot_filename)