dot_writer.py (11418:0aeca8f47eac) dot_writer.py (11431:871eaaa0ab24)
1# Copyright (c) 2012-2013 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Redistribution and use in source and binary forms, with or without
14# modification, are permitted provided that the following conditions are
15# met: redistributions of source code must retain the above copyright
16# notice, this list of conditions and the following disclaimer;
17# redistributions in binary form must reproduce the above copyright
18# notice, this list of conditions and the following disclaimer in the
19# documentation and/or other materials provided with the distribution;
20# neither the name of the copyright holders nor the names of its
21# contributors may be used to endorse or promote products derived from
22# this software without specific prior written permission.
23#
24# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35#
36# Authors: Andreas Hansson
37# Uri Wiener
38# Sascha Bischoff
39
40#####################################################################
41#
42# System visualization using DOT
43#
44# While config.ini and config.json provide an almost complete listing
45# of a system's components and connectivity, they lack a birds-eye
46# view. The output generated by do_dot() is a DOT-based figure (as a
47# pdf and an editable svg file) and its source dot code. Nodes are
48# components, and edges represent the memory hierarchy: the edges are
49# directed, from a master to slave. Initially all nodes are
50# generated, and then all edges are added. do_dot should be called
51# with the top-most SimObject (namely root but not necessarily), the
52# output folder and the output dot source filename. From the given
53# node, both processes (node and edge creation) is performed
54# recursivly, traversing all children of the given root.
55#
56# pydot is required. When missing, no output will be generated.
57#
58#####################################################################
59
60import m5, os, re
61from m5.SimObject import isRoot, isSimObjectVector
62from m5.params import PortRef
63from m5.util import warn
64try:
65 import pydot
66except:
67 pydot = False
68
69# need to create all nodes (components) before creating edges (memory channels)
70def dot_create_nodes(simNode, callgraph):
71 if isRoot(simNode):
72 label = "root"
73 else:
74 label = simNode._name
75 full_path = re.sub('\.', '_', simNode.path())
76 # add class name under the label
77 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
78
79 # each component is a sub-graph (cluster)
80 cluster = dot_create_cluster(simNode, full_path, label)
81
82 # create nodes per port
83 for port_name in simNode._ports.keys():
84 port = simNode._port_refs.get(port_name, None)
85 if port != None:
86 full_port_name = full_path + "_" + port_name
87 port_node = dot_create_node(simNode, full_port_name, port_name)
88 cluster.add_node(port_node)
89
90 # recurse to children
91 if simNode._children:
92 for c in simNode._children:
93 child = simNode._children[c]
94 if isSimObjectVector(child):
95 for obj in child:
96 dot_create_nodes(obj, cluster)
97 else:
98 dot_create_nodes(child, cluster)
99
100 callgraph.add_subgraph(cluster)
101
102# create all edges according to memory hierarchy
103def dot_create_edges(simNode, callgraph):
104 for port_name in simNode._ports.keys():
105 port = simNode._port_refs.get(port_name, None)
106 if port != None:
107 full_path = re.sub('\.', '_', simNode.path())
108 full_port_name = full_path + "_" + port_name
109 port_node = dot_create_node(simNode, full_port_name, port_name)
110 # create edges
111 if isinstance(port, PortRef):
112 dot_add_edge(simNode, callgraph, full_port_name, port)
113 else:
114 for p in port.elements:
115 dot_add_edge(simNode, callgraph, full_port_name, p)
116
117 # recurse to children
118 if simNode._children:
119 for c in simNode._children:
120 child = simNode._children[c]
121 if isSimObjectVector(child):
122 for obj in child:
123 dot_create_edges(obj, callgraph)
124 else:
125 dot_create_edges(child, callgraph)
126
127def dot_add_edge(simNode, callgraph, full_port_name, peerPort):
128 if peerPort.role == "MASTER":
129 peer_port_name = re.sub('\.', '_', peerPort.peer.simobj.path() \
130 + "." + peerPort.peer.name)
131 callgraph.add_edge(pydot.Edge(full_port_name, peer_port_name))
132
133def dot_create_cluster(simNode, full_path, label):
134 # get the parameter values of the node and use them as a tooltip
135 ini_strings = []
136 for param in sorted(simNode._params.keys()):
137 value = simNode._values.get(param)
138 if value != None:
139 # parameter name = value in HTML friendly format
140 ini_strings.append(str(param) + "=" +
141 simNode._values[param].ini_str())
142 # join all the parameters with an HTML newline
143 tooltip = "
".join(ini_strings)
144
145 return pydot.Cluster( \
146 full_path, \
147 shape = "Mrecord", \
148 label = label, \
149 tooltip = "\"" + tooltip + "\"", \
150 style = "\"rounded, filled\"", \
151 color = "#000000", \
152 fillcolor = dot_gen_colour(simNode), \
153 fontname = "Arial", \
154 fontsize = "14", \
155 fontcolor = "#000000" \
156 )
157
158def dot_create_node(simNode, full_path, label):
159 return pydot.Node( \
160 full_path, \
161 shape = "Mrecord", \
162 label = label, \
163 style = "\"rounded, filled\"", \
164 color = "#000000", \
165 fillcolor = dot_gen_colour(simNode, True), \
166 fontname = "Arial", \
167 fontsize = "14", \
168 fontcolor = "#000000" \
169 )
170
171# an enumerator for different kinds of node types, at the moment we
172# discern the majority of node types, with the caches being the
173# notable exception
174class NodeType:
175 SYS = 0
176 CPU = 1
177 XBAR = 2
178 MEM = 3
179 DEV = 4
180 OTHER = 5
181
182# based on the sim object, determine the node type
183def get_node_type(simNode):
184 if isinstance(simNode, m5.objects.System):
185 return NodeType.SYS
186 # NULL ISA has no BaseCPU or PioDevice, so check if these names
187 # exists before using them
188 elif 'BaseCPU' in dir(m5.objects) and \
189 isinstance(simNode, m5.objects.BaseCPU):
190 return NodeType.CPU
191 elif 'PioDevice' in dir(m5.objects) and \
192 isinstance(simNode, m5.objects.PioDevice):
193 return NodeType.DEV
194 elif isinstance(simNode, m5.objects.BaseXBar):
195 return NodeType.XBAR
196 elif isinstance(simNode, m5.objects.AbstractMemory):
197 return NodeType.MEM
198 else:
199 return NodeType.OTHER
200
201# based on the node type, determine the colour as an RGB tuple, the
202# palette is rather arbitrary at this point (some coherent natural
203# tones), and someone that feels artistic should probably have a look
204def get_type_colour(nodeType):
205 if nodeType == NodeType.SYS:
206 return (228, 231, 235)
207 elif nodeType == NodeType.CPU:
208 return (187, 198, 217)
209 elif nodeType == NodeType.XBAR:
210 return (111, 121, 140)
211 elif nodeType == NodeType.MEM:
212 return (94, 89, 88)
213 elif nodeType == NodeType.DEV:
214 return (199, 167, 147)
215 elif nodeType == NodeType.OTHER:
216 # use a relatively gray shade
217 return (186, 182, 174)
218
219# generate colour for a node, either corresponding to a sim object or a
220# port
221def dot_gen_colour(simNode, isPort = False):
222 # determine the type of the current node, and also its parent, if
223 # the node is not the same type as the parent then we use the base
224 # colour for its type
225 node_type = get_node_type(simNode)
226 if simNode._parent:
227 parent_type = get_node_type(simNode._parent)
228 else:
229 parent_type = NodeType.OTHER
230
231 # if this node is the same type as the parent, then scale the
232 # colour based on the depth such that the deeper levels in the
233 # hierarchy get darker colours
234 if node_type == parent_type:
235 # start out with a depth of zero
236 depth = 0
237 parent = simNode._parent
238 # find the closes parent that is not the same type
239 while parent and get_node_type(parent) == parent_type:
240 depth = depth + 1
241 parent = parent._parent
242 node_colour = get_type_colour(parent_type)
243 # slightly arbitrary, but assume that the depth is less than
244 # five levels
245 r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
246 else:
247 node_colour = get_type_colour(node_type)
248 r, g, b = node_colour
249
250 # if we are colouring a port, then make it a slightly darker shade
251 # than the node that encapsulates it, once again use a magic constant
252 if isPort:
253 r, g, b = map(lambda x: 0.8 * x, (r, g, b))
254
255 return dot_rgb_to_html(r, g, b)
256
257def dot_rgb_to_html(r, g, b):
258 return "#%.2x%.2x%.2x" % (r, g, b)
259
260# We need to create all of the clock domains. We abuse the alpha channel to get
261# the correct domain colouring.
262def dot_add_clk_domain(c_dom, v_dom):
263 label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
264 label = re.sub('\.', '_', str(label))
265 full_path = re.sub('\.', '_', str(c_dom))
266 return pydot.Cluster( \
267 full_path, \
268 shape = "Mrecord", \
269 label = label, \
270 style = "\"rounded, filled, dashed\"", \
271 color = "#000000", \
272 fillcolor = "#AFC8AF8F", \
273 fontname = "Arial", \
274 fontsize = "14", \
275 fontcolor = "#000000" \
276 )
277
278def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
279 if isRoot(simNode):
280 label = "root"
281 else:
282 label = simNode._name
283 full_path = re.sub('\.', '_', simNode.path())
284 # add class name under the label
285 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
286
287 # each component is a sub-graph (cluster)
288 cluster = dot_create_cluster(simNode, full_path, label)
289
290 # create nodes per port
291 for port_name in simNode._ports.keys():
292 port = simNode._port_refs.get(port_name, None)
293 if port != None:
294 full_port_name = full_path + "_" + port_name
295 port_node = dot_create_node(simNode, full_port_name, port_name)
296 cluster.add_node(port_node)
297
298 # Dictionary of DVFS domains
299 dvfs_domains = {}
300
301 # recurse to children
302 if simNode._children:
303 for c in simNode._children:
304 child = simNode._children[c]
305 if isSimObjectVector(child):
306 for obj in child:
307 try:
308 c_dom = obj.__getattr__('clk_domain')
309 v_dom = c_dom.__getattr__('voltage_domain')
310 except AttributeError:
311 # Just re-use the domain from above
312 c_dom = domain
1# Copyright (c) 2012-2013 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Redistribution and use in source and binary forms, with or without
14# modification, are permitted provided that the following conditions are
15# met: redistributions of source code must retain the above copyright
16# notice, this list of conditions and the following disclaimer;
17# redistributions in binary form must reproduce the above copyright
18# notice, this list of conditions and the following disclaimer in the
19# documentation and/or other materials provided with the distribution;
20# neither the name of the copyright holders nor the names of its
21# contributors may be used to endorse or promote products derived from
22# this software without specific prior written permission.
23#
24# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35#
36# Authors: Andreas Hansson
37# Uri Wiener
38# Sascha Bischoff
39
40#####################################################################
41#
42# System visualization using DOT
43#
44# While config.ini and config.json provide an almost complete listing
45# of a system's components and connectivity, they lack a birds-eye
46# view. The output generated by do_dot() is a DOT-based figure (as a
47# pdf and an editable svg file) and its source dot code. Nodes are
48# components, and edges represent the memory hierarchy: the edges are
49# directed, from a master to slave. Initially all nodes are
50# generated, and then all edges are added. do_dot should be called
51# with the top-most SimObject (namely root but not necessarily), the
52# output folder and the output dot source filename. From the given
53# node, both processes (node and edge creation) is performed
54# recursivly, traversing all children of the given root.
55#
56# pydot is required. When missing, no output will be generated.
57#
58#####################################################################
59
60import m5, os, re
61from m5.SimObject import isRoot, isSimObjectVector
62from m5.params import PortRef
63from m5.util import warn
64try:
65 import pydot
66except:
67 pydot = False
68
69# need to create all nodes (components) before creating edges (memory channels)
70def dot_create_nodes(simNode, callgraph):
71 if isRoot(simNode):
72 label = "root"
73 else:
74 label = simNode._name
75 full_path = re.sub('\.', '_', simNode.path())
76 # add class name under the label
77 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
78
79 # each component is a sub-graph (cluster)
80 cluster = dot_create_cluster(simNode, full_path, label)
81
82 # create nodes per port
83 for port_name in simNode._ports.keys():
84 port = simNode._port_refs.get(port_name, None)
85 if port != None:
86 full_port_name = full_path + "_" + port_name
87 port_node = dot_create_node(simNode, full_port_name, port_name)
88 cluster.add_node(port_node)
89
90 # recurse to children
91 if simNode._children:
92 for c in simNode._children:
93 child = simNode._children[c]
94 if isSimObjectVector(child):
95 for obj in child:
96 dot_create_nodes(obj, cluster)
97 else:
98 dot_create_nodes(child, cluster)
99
100 callgraph.add_subgraph(cluster)
101
102# create all edges according to memory hierarchy
103def dot_create_edges(simNode, callgraph):
104 for port_name in simNode._ports.keys():
105 port = simNode._port_refs.get(port_name, None)
106 if port != None:
107 full_path = re.sub('\.', '_', simNode.path())
108 full_port_name = full_path + "_" + port_name
109 port_node = dot_create_node(simNode, full_port_name, port_name)
110 # create edges
111 if isinstance(port, PortRef):
112 dot_add_edge(simNode, callgraph, full_port_name, port)
113 else:
114 for p in port.elements:
115 dot_add_edge(simNode, callgraph, full_port_name, p)
116
117 # recurse to children
118 if simNode._children:
119 for c in simNode._children:
120 child = simNode._children[c]
121 if isSimObjectVector(child):
122 for obj in child:
123 dot_create_edges(obj, callgraph)
124 else:
125 dot_create_edges(child, callgraph)
126
127def dot_add_edge(simNode, callgraph, full_port_name, peerPort):
128 if peerPort.role == "MASTER":
129 peer_port_name = re.sub('\.', '_', peerPort.peer.simobj.path() \
130 + "." + peerPort.peer.name)
131 callgraph.add_edge(pydot.Edge(full_port_name, peer_port_name))
132
133def dot_create_cluster(simNode, full_path, label):
134 # get the parameter values of the node and use them as a tooltip
135 ini_strings = []
136 for param in sorted(simNode._params.keys()):
137 value = simNode._values.get(param)
138 if value != None:
139 # parameter name = value in HTML friendly format
140 ini_strings.append(str(param) + "=" +
141 simNode._values[param].ini_str())
142 # join all the parameters with an HTML newline
143 tooltip = "
".join(ini_strings)
144
145 return pydot.Cluster( \
146 full_path, \
147 shape = "Mrecord", \
148 label = label, \
149 tooltip = "\"" + tooltip + "\"", \
150 style = "\"rounded, filled\"", \
151 color = "#000000", \
152 fillcolor = dot_gen_colour(simNode), \
153 fontname = "Arial", \
154 fontsize = "14", \
155 fontcolor = "#000000" \
156 )
157
158def dot_create_node(simNode, full_path, label):
159 return pydot.Node( \
160 full_path, \
161 shape = "Mrecord", \
162 label = label, \
163 style = "\"rounded, filled\"", \
164 color = "#000000", \
165 fillcolor = dot_gen_colour(simNode, True), \
166 fontname = "Arial", \
167 fontsize = "14", \
168 fontcolor = "#000000" \
169 )
170
171# an enumerator for different kinds of node types, at the moment we
172# discern the majority of node types, with the caches being the
173# notable exception
174class NodeType:
175 SYS = 0
176 CPU = 1
177 XBAR = 2
178 MEM = 3
179 DEV = 4
180 OTHER = 5
181
182# based on the sim object, determine the node type
183def get_node_type(simNode):
184 if isinstance(simNode, m5.objects.System):
185 return NodeType.SYS
186 # NULL ISA has no BaseCPU or PioDevice, so check if these names
187 # exists before using them
188 elif 'BaseCPU' in dir(m5.objects) and \
189 isinstance(simNode, m5.objects.BaseCPU):
190 return NodeType.CPU
191 elif 'PioDevice' in dir(m5.objects) and \
192 isinstance(simNode, m5.objects.PioDevice):
193 return NodeType.DEV
194 elif isinstance(simNode, m5.objects.BaseXBar):
195 return NodeType.XBAR
196 elif isinstance(simNode, m5.objects.AbstractMemory):
197 return NodeType.MEM
198 else:
199 return NodeType.OTHER
200
201# based on the node type, determine the colour as an RGB tuple, the
202# palette is rather arbitrary at this point (some coherent natural
203# tones), and someone that feels artistic should probably have a look
204def get_type_colour(nodeType):
205 if nodeType == NodeType.SYS:
206 return (228, 231, 235)
207 elif nodeType == NodeType.CPU:
208 return (187, 198, 217)
209 elif nodeType == NodeType.XBAR:
210 return (111, 121, 140)
211 elif nodeType == NodeType.MEM:
212 return (94, 89, 88)
213 elif nodeType == NodeType.DEV:
214 return (199, 167, 147)
215 elif nodeType == NodeType.OTHER:
216 # use a relatively gray shade
217 return (186, 182, 174)
218
219# generate colour for a node, either corresponding to a sim object or a
220# port
221def dot_gen_colour(simNode, isPort = False):
222 # determine the type of the current node, and also its parent, if
223 # the node is not the same type as the parent then we use the base
224 # colour for its type
225 node_type = get_node_type(simNode)
226 if simNode._parent:
227 parent_type = get_node_type(simNode._parent)
228 else:
229 parent_type = NodeType.OTHER
230
231 # if this node is the same type as the parent, then scale the
232 # colour based on the depth such that the deeper levels in the
233 # hierarchy get darker colours
234 if node_type == parent_type:
235 # start out with a depth of zero
236 depth = 0
237 parent = simNode._parent
238 # find the closes parent that is not the same type
239 while parent and get_node_type(parent) == parent_type:
240 depth = depth + 1
241 parent = parent._parent
242 node_colour = get_type_colour(parent_type)
243 # slightly arbitrary, but assume that the depth is less than
244 # five levels
245 r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
246 else:
247 node_colour = get_type_colour(node_type)
248 r, g, b = node_colour
249
250 # if we are colouring a port, then make it a slightly darker shade
251 # than the node that encapsulates it, once again use a magic constant
252 if isPort:
253 r, g, b = map(lambda x: 0.8 * x, (r, g, b))
254
255 return dot_rgb_to_html(r, g, b)
256
257def dot_rgb_to_html(r, g, b):
258 return "#%.2x%.2x%.2x" % (r, g, b)
259
260# We need to create all of the clock domains. We abuse the alpha channel to get
261# the correct domain colouring.
262def dot_add_clk_domain(c_dom, v_dom):
263 label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
264 label = re.sub('\.', '_', str(label))
265 full_path = re.sub('\.', '_', str(c_dom))
266 return pydot.Cluster( \
267 full_path, \
268 shape = "Mrecord", \
269 label = label, \
270 style = "\"rounded, filled, dashed\"", \
271 color = "#000000", \
272 fillcolor = "#AFC8AF8F", \
273 fontname = "Arial", \
274 fontsize = "14", \
275 fontcolor = "#000000" \
276 )
277
278def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
279 if isRoot(simNode):
280 label = "root"
281 else:
282 label = simNode._name
283 full_path = re.sub('\.', '_', simNode.path())
284 # add class name under the label
285 label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
286
287 # each component is a sub-graph (cluster)
288 cluster = dot_create_cluster(simNode, full_path, label)
289
290 # create nodes per port
291 for port_name in simNode._ports.keys():
292 port = simNode._port_refs.get(port_name, None)
293 if port != None:
294 full_port_name = full_path + "_" + port_name
295 port_node = dot_create_node(simNode, full_port_name, port_name)
296 cluster.add_node(port_node)
297
298 # Dictionary of DVFS domains
299 dvfs_domains = {}
300
301 # recurse to children
302 if simNode._children:
303 for c in simNode._children:
304 child = simNode._children[c]
305 if isSimObjectVector(child):
306 for obj in child:
307 try:
308 c_dom = obj.__getattr__('clk_domain')
309 v_dom = c_dom.__getattr__('voltage_domain')
310 except AttributeError:
311 # Just re-use the domain from above
312 c_dom = domain
313 c_dom.__getattr__('voltage_domain')
313 v_dom = c_dom.__getattr__('voltage_domain')
314 pass
315
316 if c_dom == domain or c_dom == None:
317 dot_create_dvfs_nodes(obj, cluster, domain)
318 else:
319 if c_dom not in dvfs_domains:
320 dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
321 dvfs_domains[c_dom] = dvfs_cluster
322 else:
323 dvfs_cluster = dvfs_domains[c_dom]
324 dot_create_dvfs_nodes(obj, dvfs_cluster, c_dom)
325 else:
326 try:
327 c_dom = child.__getattr__('clk_domain')
328 v_dom = c_dom.__getattr__('voltage_domain')
329 except AttributeError:
330 # Just re-use the domain from above
331 c_dom = domain
314 pass
315
316 if c_dom == domain or c_dom == None:
317 dot_create_dvfs_nodes(obj, cluster, domain)
318 else:
319 if c_dom not in dvfs_domains:
320 dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
321 dvfs_domains[c_dom] = dvfs_cluster
322 else:
323 dvfs_cluster = dvfs_domains[c_dom]
324 dot_create_dvfs_nodes(obj, dvfs_cluster, c_dom)
325 else:
326 try:
327 c_dom = child.__getattr__('clk_domain')
328 v_dom = c_dom.__getattr__('voltage_domain')
329 except AttributeError:
330 # Just re-use the domain from above
331 c_dom = domain
332 c_dom.__getattr__('voltage_domain')
332 v_dom = c_dom.__getattr__('voltage_domain')
333 pass
334
335 if c_dom == domain or c_dom == None:
336 dot_create_dvfs_nodes(child, cluster, domain)
337 else:
338 if c_dom not in dvfs_domains:
339 dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
340 dvfs_domains[c_dom] = dvfs_cluster
341 else:
342 dvfs_cluster = dvfs_domains[c_dom]
343 dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
344
345 for key in dvfs_domains:
346 cluster.add_subgraph(dvfs_domains[key])
347
348 callgraph.add_subgraph(cluster)
349
350def do_dot(root, outdir, dotFilename):
351 if not pydot:
352 return
353 # * use ranksep > 1.0 for for vertical separation between nodes
354 # especially useful if you need to annotate edges using e.g. visio
355 # which accepts svg format
356 # * no need for hoizontal separation as nothing moves horizonally
357 callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
358 dot_create_nodes(root, callgraph)
359 dot_create_edges(root, callgraph)
360 dot_filename = os.path.join(outdir, dotFilename)
361 callgraph.write(dot_filename)
362 try:
363 # dot crashes if the figure is extremely wide.
364 # So avoid terminating simulation unnecessarily
365 callgraph.write_svg(dot_filename + ".svg")
366 callgraph.write_pdf(dot_filename + ".pdf")
367 except:
368 warn("failed to generate dot output from %s", dot_filename)
369
370def do_dvfs_dot(root, outdir, dotFilename):
371 if not pydot:
372 return
333 pass
334
335 if c_dom == domain or c_dom == None:
336 dot_create_dvfs_nodes(child, cluster, domain)
337 else:
338 if c_dom not in dvfs_domains:
339 dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
340 dvfs_domains[c_dom] = dvfs_cluster
341 else:
342 dvfs_cluster = dvfs_domains[c_dom]
343 dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
344
345 for key in dvfs_domains:
346 cluster.add_subgraph(dvfs_domains[key])
347
348 callgraph.add_subgraph(cluster)
349
350def do_dot(root, outdir, dotFilename):
351 if not pydot:
352 return
353 # * use ranksep > 1.0 for for vertical separation between nodes
354 # especially useful if you need to annotate edges using e.g. visio
355 # which accepts svg format
356 # * no need for hoizontal separation as nothing moves horizonally
357 callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
358 dot_create_nodes(root, callgraph)
359 dot_create_edges(root, callgraph)
360 dot_filename = os.path.join(outdir, dotFilename)
361 callgraph.write(dot_filename)
362 try:
363 # dot crashes if the figure is extremely wide.
364 # So avoid terminating simulation unnecessarily
365 callgraph.write_svg(dot_filename + ".svg")
366 callgraph.write_pdf(dot_filename + ".pdf")
367 except:
368 warn("failed to generate dot output from %s", dot_filename)
369
370def do_dvfs_dot(root, outdir, dotFilename):
371 if not pydot:
372 return
373 dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
374 dot_create_dvfs_nodes(root, dvfsgraph)
375 dot_create_edges(root, dvfsgraph)
376 dot_filename = os.path.join(outdir, dotFilename)
377 dvfsgraph.write(dot_filename)
373
374 # There is a chance that we are unable to resolve the clock or
375 # voltage domains. If so, we fail silently.
378 try:
376 try:
377 dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
378 dot_create_dvfs_nodes(root, dvfsgraph)
379 dot_create_edges(root, dvfsgraph)
380 dot_filename = os.path.join(outdir, dotFilename)
381 dvfsgraph.write(dot_filename)
382 except:
383 warn("Failed to generate dot graph for DVFS domains")
384 return
385
386 try:
379 # dot crashes if the figure is extremely wide.
380 # So avoid terminating simulation unnecessarily
381 dvfsgraph.write_svg(dot_filename + ".svg")
382 dvfsgraph.write_pdf(dot_filename + ".pdf")
383 except:
384 warn("failed to generate dot output from %s", dot_filename)
387 # dot crashes if the figure is extremely wide.
388 # So avoid terminating simulation unnecessarily
389 dvfsgraph.write_svg(dot_filename + ".svg")
390 dvfsgraph.write_pdf(dot_filename + ".pdf")
391 except:
392 warn("failed to generate dot output from %s", dot_filename)