SimObject.py (9410:f329e7ec9786) SimObject.py (9528:d05714c2ab9c)
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41# Nathan Binkert
42# Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
47import m5
48from m5.util import *
49
50# Have to import params up top since Param is referenced on initial
51# load (when SimObject class references Param to create a class
52# variable, the 'name' param)...
53from m5.params import *
54# There are a few things we need that aren't in params.__all__ since
55# normal users don't need them
56from m5.params import ParamDesc, VectorParamDesc, \
57 isNullPointer, SimObjectVector, Port
58
59from m5.proxy import *
60from m5.proxy import isproxy
61
62#####################################################################
63#
64# M5 Python Configuration Utility
65#
66# The basic idea is to write simple Python programs that build Python
67# objects corresponding to M5 SimObjects for the desired simulation
68# configuration. For now, the Python emits a .ini file that can be
69# parsed by M5. In the future, some tighter integration between M5
70# and the Python interpreter may allow bypassing the .ini file.
71#
72# Each SimObject class in M5 is represented by a Python class with the
73# same name. The Python inheritance tree mirrors the M5 C++ tree
74# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75# SimObjects inherit from a single SimObject base class). To specify
76# an instance of an M5 SimObject in a configuration, the user simply
77# instantiates the corresponding Python object. The parameters for
78# that SimObject are given by assigning to attributes of the Python
79# object, either using keyword assignment in the constructor or in
80# separate assignment statements. For example:
81#
82# cache = BaseCache(size='64KB')
83# cache.hit_latency = 3
84# cache.assoc = 8
85#
86# The magic lies in the mapping of the Python attributes for SimObject
87# classes to the actual SimObject parameter specifications. This
88# allows parameter validity checking in the Python code. Continuing
89# the example above, the statements "cache.blurfl=3" or
90# "cache.assoc='hello'" would both result in runtime errors in Python,
91# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92# parameter requires an integer, respectively. This magic is done
93# primarily by overriding the special __setattr__ method that controls
94# assignment to object attributes.
95#
96# Once a set of Python objects have been instantiated in a hierarchy,
97# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98# will generate a .ini file.
99#
100#####################################################################
101
102# list of all SimObject classes
103allClasses = {}
104
105# dict to look up SimObjects based on path
106instanceDict = {}
107
108# Did any of the SimObjects lack a header file?
109noCxxHeader = False
110
111def public_value(key, value):
112 return key.startswith('_') or \
113 isinstance(value, (FunctionType, MethodType, ModuleType,
114 classmethod, type))
115
116# The metaclass for SimObject. This class controls how new classes
117# that derive from SimObject are instantiated, and provides inherited
118# class behavior (just like a class controls how instances of that
119# class are instantiated, and provides inherited instance behavior).
120class MetaSimObject(type):
121 # Attributes that can be set only at initialization time
122 init_keywords = { 'abstract' : bool,
123 'cxx_class' : str,
124 'cxx_type' : str,
125 'cxx_header' : str,
126 'type' : str,
127 'cxx_bases' : list }
128 # Attributes that can be set any time
129 keywords = { 'check' : FunctionType }
130
131 # __new__ is called before __init__, and is where the statements
132 # in the body of the class definition get loaded into the class's
133 # __dict__. We intercept this to filter out parameter & port assignments
134 # and only allow "private" attributes to be passed to the base
135 # __new__ (starting with underscore).
136 def __new__(mcls, name, bases, dict):
137 assert name not in allClasses, "SimObject %s already present" % name
138
139 # Copy "private" attributes, functions, and classes to the
140 # official dict. Everything else goes in _init_dict to be
141 # filtered in __init__.
142 cls_dict = {}
143 value_dict = {}
144 for key,val in dict.items():
145 if public_value(key, val):
146 cls_dict[key] = val
147 else:
148 # must be a param/port setting
149 value_dict[key] = val
150 if 'abstract' not in value_dict:
151 value_dict['abstract'] = False
152 if 'cxx_bases' not in value_dict:
153 value_dict['cxx_bases'] = []
154 cls_dict['_value_dict'] = value_dict
155 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
156 if 'type' in value_dict:
157 allClasses[name] = cls
158 return cls
159
160 # subclass initialization
161 def __init__(cls, name, bases, dict):
162 # calls type.__init__()... I think that's a no-op, but leave
163 # it here just in case it's not.
164 super(MetaSimObject, cls).__init__(name, bases, dict)
165
166 # initialize required attributes
167
168 # class-only attributes
169 cls._params = multidict() # param descriptions
170 cls._ports = multidict() # port descriptions
171
172 # class or instance attributes
173 cls._values = multidict() # param values
174 cls._children = multidict() # SimObject children
175 cls._port_refs = multidict() # port ref objects
176 cls._instantiated = False # really instantiated, cloned, or subclassed
177
178 # We don't support multiple inheritance of sim objects. If you want
179 # to, you must fix multidict to deal with it properly. Non sim-objects
180 # are ok, though
181 bTotal = 0
182 for c in bases:
183 if isinstance(c, MetaSimObject):
184 bTotal += 1
185 if bTotal > 1:
186 raise TypeError, "SimObjects do not support multiple inheritance"
187
188 base = bases[0]
189
190 # Set up general inheritance via multidicts. A subclass will
191 # inherit all its settings from the base class. The only time
192 # the following is not true is when we define the SimObject
193 # class itself (in which case the multidicts have no parent).
194 if isinstance(base, MetaSimObject):
195 cls._base = base
196 cls._params.parent = base._params
197 cls._ports.parent = base._ports
198 cls._values.parent = base._values
199 cls._children.parent = base._children
200 cls._port_refs.parent = base._port_refs
201 # mark base as having been subclassed
202 base._instantiated = True
203 else:
204 cls._base = None
205
206 # default keyword values
207 if 'type' in cls._value_dict:
208 if 'cxx_class' not in cls._value_dict:
209 cls._value_dict['cxx_class'] = cls._value_dict['type']
210
211 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
212
213 if 'cxx_header' not in cls._value_dict:
214 global noCxxHeader
215 noCxxHeader = True
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41# Nathan Binkert
42# Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
47import m5
48from m5.util import *
49
50# Have to import params up top since Param is referenced on initial
51# load (when SimObject class references Param to create a class
52# variable, the 'name' param)...
53from m5.params import *
54# There are a few things we need that aren't in params.__all__ since
55# normal users don't need them
56from m5.params import ParamDesc, VectorParamDesc, \
57 isNullPointer, SimObjectVector, Port
58
59from m5.proxy import *
60from m5.proxy import isproxy
61
62#####################################################################
63#
64# M5 Python Configuration Utility
65#
66# The basic idea is to write simple Python programs that build Python
67# objects corresponding to M5 SimObjects for the desired simulation
68# configuration. For now, the Python emits a .ini file that can be
69# parsed by M5. In the future, some tighter integration between M5
70# and the Python interpreter may allow bypassing the .ini file.
71#
72# Each SimObject class in M5 is represented by a Python class with the
73# same name. The Python inheritance tree mirrors the M5 C++ tree
74# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75# SimObjects inherit from a single SimObject base class). To specify
76# an instance of an M5 SimObject in a configuration, the user simply
77# instantiates the corresponding Python object. The parameters for
78# that SimObject are given by assigning to attributes of the Python
79# object, either using keyword assignment in the constructor or in
80# separate assignment statements. For example:
81#
82# cache = BaseCache(size='64KB')
83# cache.hit_latency = 3
84# cache.assoc = 8
85#
86# The magic lies in the mapping of the Python attributes for SimObject
87# classes to the actual SimObject parameter specifications. This
88# allows parameter validity checking in the Python code. Continuing
89# the example above, the statements "cache.blurfl=3" or
90# "cache.assoc='hello'" would both result in runtime errors in Python,
91# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92# parameter requires an integer, respectively. This magic is done
93# primarily by overriding the special __setattr__ method that controls
94# assignment to object attributes.
95#
96# Once a set of Python objects have been instantiated in a hierarchy,
97# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98# will generate a .ini file.
99#
100#####################################################################
101
102# list of all SimObject classes
103allClasses = {}
104
105# dict to look up SimObjects based on path
106instanceDict = {}
107
108# Did any of the SimObjects lack a header file?
109noCxxHeader = False
110
111def public_value(key, value):
112 return key.startswith('_') or \
113 isinstance(value, (FunctionType, MethodType, ModuleType,
114 classmethod, type))
115
116# The metaclass for SimObject. This class controls how new classes
117# that derive from SimObject are instantiated, and provides inherited
118# class behavior (just like a class controls how instances of that
119# class are instantiated, and provides inherited instance behavior).
120class MetaSimObject(type):
121 # Attributes that can be set only at initialization time
122 init_keywords = { 'abstract' : bool,
123 'cxx_class' : str,
124 'cxx_type' : str,
125 'cxx_header' : str,
126 'type' : str,
127 'cxx_bases' : list }
128 # Attributes that can be set any time
129 keywords = { 'check' : FunctionType }
130
131 # __new__ is called before __init__, and is where the statements
132 # in the body of the class definition get loaded into the class's
133 # __dict__. We intercept this to filter out parameter & port assignments
134 # and only allow "private" attributes to be passed to the base
135 # __new__ (starting with underscore).
136 def __new__(mcls, name, bases, dict):
137 assert name not in allClasses, "SimObject %s already present" % name
138
139 # Copy "private" attributes, functions, and classes to the
140 # official dict. Everything else goes in _init_dict to be
141 # filtered in __init__.
142 cls_dict = {}
143 value_dict = {}
144 for key,val in dict.items():
145 if public_value(key, val):
146 cls_dict[key] = val
147 else:
148 # must be a param/port setting
149 value_dict[key] = val
150 if 'abstract' not in value_dict:
151 value_dict['abstract'] = False
152 if 'cxx_bases' not in value_dict:
153 value_dict['cxx_bases'] = []
154 cls_dict['_value_dict'] = value_dict
155 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
156 if 'type' in value_dict:
157 allClasses[name] = cls
158 return cls
159
160 # subclass initialization
161 def __init__(cls, name, bases, dict):
162 # calls type.__init__()... I think that's a no-op, but leave
163 # it here just in case it's not.
164 super(MetaSimObject, cls).__init__(name, bases, dict)
165
166 # initialize required attributes
167
168 # class-only attributes
169 cls._params = multidict() # param descriptions
170 cls._ports = multidict() # port descriptions
171
172 # class or instance attributes
173 cls._values = multidict() # param values
174 cls._children = multidict() # SimObject children
175 cls._port_refs = multidict() # port ref objects
176 cls._instantiated = False # really instantiated, cloned, or subclassed
177
178 # We don't support multiple inheritance of sim objects. If you want
179 # to, you must fix multidict to deal with it properly. Non sim-objects
180 # are ok, though
181 bTotal = 0
182 for c in bases:
183 if isinstance(c, MetaSimObject):
184 bTotal += 1
185 if bTotal > 1:
186 raise TypeError, "SimObjects do not support multiple inheritance"
187
188 base = bases[0]
189
190 # Set up general inheritance via multidicts. A subclass will
191 # inherit all its settings from the base class. The only time
192 # the following is not true is when we define the SimObject
193 # class itself (in which case the multidicts have no parent).
194 if isinstance(base, MetaSimObject):
195 cls._base = base
196 cls._params.parent = base._params
197 cls._ports.parent = base._ports
198 cls._values.parent = base._values
199 cls._children.parent = base._children
200 cls._port_refs.parent = base._port_refs
201 # mark base as having been subclassed
202 base._instantiated = True
203 else:
204 cls._base = None
205
206 # default keyword values
207 if 'type' in cls._value_dict:
208 if 'cxx_class' not in cls._value_dict:
209 cls._value_dict['cxx_class'] = cls._value_dict['type']
210
211 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
212
213 if 'cxx_header' not in cls._value_dict:
214 global noCxxHeader
215 noCxxHeader = True
216 print >> sys.stderr, \
217 "warning: No header file specified for SimObject: %s" % name
216 warn("No header file specified for SimObject: %s", name)
218
219 # Export methods are automatically inherited via C++, so we
220 # don't want the method declarations to get inherited on the
221 # python side (and thus end up getting repeated in the wrapped
222 # versions of derived classes). The code below basicallly
223 # suppresses inheritance by substituting in the base (null)
224 # versions of these methods unless a different version is
225 # explicitly supplied.
226 for method_name in ('export_methods', 'export_method_cxx_predecls',
227 'export_method_swig_predecls'):
228 if method_name not in cls.__dict__:
229 base_method = getattr(MetaSimObject, method_name)
230 m = MethodType(base_method, cls, MetaSimObject)
231 setattr(cls, method_name, m)
232
233 # Now process the _value_dict items. They could be defining
234 # new (or overriding existing) parameters or ports, setting
235 # class keywords (e.g., 'abstract'), or setting parameter
236 # values or port bindings. The first 3 can only be set when
237 # the class is defined, so we handle them here. The others
238 # can be set later too, so just emulate that by calling
239 # setattr().
240 for key,val in cls._value_dict.items():
241 # param descriptions
242 if isinstance(val, ParamDesc):
243 cls._new_param(key, val)
244
245 # port objects
246 elif isinstance(val, Port):
247 cls._new_port(key, val)
248
249 # init-time-only keywords
250 elif cls.init_keywords.has_key(key):
251 cls._set_keyword(key, val, cls.init_keywords[key])
252
253 # default: use normal path (ends up in __setattr__)
254 else:
255 setattr(cls, key, val)
256
257 def _set_keyword(cls, keyword, val, kwtype):
258 if not isinstance(val, kwtype):
259 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
260 (keyword, type(val), kwtype)
261 if isinstance(val, FunctionType):
262 val = classmethod(val)
263 type.__setattr__(cls, keyword, val)
264
265 def _new_param(cls, name, pdesc):
266 # each param desc should be uniquely assigned to one variable
267 assert(not hasattr(pdesc, 'name'))
268 pdesc.name = name
269 cls._params[name] = pdesc
270 if hasattr(pdesc, 'default'):
271 cls._set_param(name, pdesc.default, pdesc)
272
273 def _set_param(cls, name, value, param):
274 assert(param.name == name)
275 try:
276 value = param.convert(value)
277 except Exception, e:
278 msg = "%s\nError setting param %s.%s to %s\n" % \
279 (e, cls.__name__, name, value)
280 e.args = (msg, )
281 raise
282 cls._values[name] = value
283 # if param value is a SimObject, make it a child too, so that
284 # it gets cloned properly when the class is instantiated
285 if isSimObjectOrVector(value) and not value.has_parent():
286 cls._add_cls_child(name, value)
287
288 def _add_cls_child(cls, name, child):
289 # It's a little funky to have a class as a parent, but these
290 # objects should never be instantiated (only cloned, which
291 # clears the parent pointer), and this makes it clear that the
292 # object is not an orphan and can provide better error
293 # messages.
294 child.set_parent(cls, name)
295 cls._children[name] = child
296
297 def _new_port(cls, name, port):
298 # each port should be uniquely assigned to one variable
299 assert(not hasattr(port, 'name'))
300 port.name = name
301 cls._ports[name] = port
302
303 # same as _get_port_ref, effectively, but for classes
304 def _cls_get_port_ref(cls, attr):
305 # Return reference that can be assigned to another port
306 # via __setattr__. There is only ever one reference
307 # object per port, but we create them lazily here.
308 ref = cls._port_refs.get(attr)
309 if not ref:
310 ref = cls._ports[attr].makeRef(cls)
311 cls._port_refs[attr] = ref
312 return ref
313
314 # Set attribute (called on foo.attr = value when foo is an
315 # instance of class cls).
316 def __setattr__(cls, attr, value):
317 # normal processing for private attributes
318 if public_value(attr, value):
319 type.__setattr__(cls, attr, value)
320 return
321
322 if cls.keywords.has_key(attr):
323 cls._set_keyword(attr, value, cls.keywords[attr])
324 return
325
326 if cls._ports.has_key(attr):
327 cls._cls_get_port_ref(attr).connect(value)
328 return
329
330 if isSimObjectOrSequence(value) and cls._instantiated:
331 raise RuntimeError, \
332 "cannot set SimObject parameter '%s' after\n" \
333 " class %s has been instantiated or subclassed" \
334 % (attr, cls.__name__)
335
336 # check for param
337 param = cls._params.get(attr)
338 if param:
339 cls._set_param(attr, value, param)
340 return
341
342 if isSimObjectOrSequence(value):
343 # If RHS is a SimObject, it's an implicit child assignment.
344 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
345 return
346
347 # no valid assignment... raise exception
348 raise AttributeError, \
349 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
350
351 def __getattr__(cls, attr):
352 if attr == 'cxx_class_path':
353 return cls.cxx_class.split('::')
354
355 if attr == 'cxx_class_name':
356 return cls.cxx_class_path[-1]
357
358 if attr == 'cxx_namespaces':
359 return cls.cxx_class_path[:-1]
360
361 if cls._values.has_key(attr):
362 return cls._values[attr]
363
364 if cls._children.has_key(attr):
365 return cls._children[attr]
366
367 raise AttributeError, \
368 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
369
370 def __str__(cls):
371 return cls.__name__
372
373 # See ParamValue.cxx_predecls for description.
374 def cxx_predecls(cls, code):
375 code('#include "params/$cls.hh"')
376
377 # See ParamValue.swig_predecls for description.
378 def swig_predecls(cls, code):
379 code('%import "python/m5/internal/param_$cls.i"')
380
381 # Hook for exporting additional C++ methods to Python via SWIG.
382 # Default is none, override using @classmethod in class definition.
383 def export_methods(cls, code):
384 pass
385
386 # Generate the code needed as a prerequisite for the C++ methods
387 # exported via export_methods() to be compiled in the _wrap.cc
388 # file. Typically generates one or more #include statements. If
389 # any methods are exported, typically at least the C++ header
390 # declaring the relevant SimObject class must be included.
391 def export_method_cxx_predecls(cls, code):
392 pass
393
394 # Generate the code needed as a prerequisite for the C++ methods
395 # exported via export_methods() to be processed by SWIG.
396 # Typically generates one or more %include or %import statements.
397 # If any methods are exported, typically at least the C++ header
398 # declaring the relevant SimObject class must be included.
399 def export_method_swig_predecls(cls, code):
400 pass
401
402 # Generate the declaration for this object for wrapping with SWIG.
403 # Generates code that goes into a SWIG .i file. Called from
404 # src/SConscript.
405 def swig_decl(cls, code):
406 class_path = cls.cxx_class.split('::')
407 classname = class_path[-1]
408 namespaces = class_path[:-1]
409
410 # The 'local' attribute restricts us to the params declared in
411 # the object itself, not including inherited params (which
412 # will also be inherited from the base class's param struct
413 # here).
414 params = cls._params.local.values()
415 ports = cls._ports.local
416
417 code('%module(package="m5.internal") param_$cls')
418 code()
419 code('%{')
420 code('#include "sim/sim_object.hh"')
421 code('#include "params/$cls.hh"')
422 for param in params:
423 param.cxx_predecls(code)
424 code('#include "${{cls.cxx_header}}"')
425 cls.export_method_cxx_predecls(code)
426 code('''\
427/**
428 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
429 * headers like vector, string, etc. used to automatically pull in
430 * the cstddef header but starting with gcc 4.6.1 they no longer do.
431 * This leads to swig generated a file that does not compile so we
432 * explicitly include cstddef. Additionally, including version 2.0.4,
433 * swig uses ptrdiff_t without the std:: namespace prefix which is
434 * required with gcc 4.6.1. We explicitly provide access to it.
435 */
436#include <cstddef>
437using std::ptrdiff_t;
438''')
439 code('%}')
440 code()
441
442 for param in params:
443 param.swig_predecls(code)
444 cls.export_method_swig_predecls(code)
445
446 code()
447 if cls._base:
448 code('%import "python/m5/internal/param_${{cls._base}}.i"')
449 code()
450
451 for ns in namespaces:
452 code('namespace $ns {')
453
454 if namespaces:
455 code('// avoid name conflicts')
456 sep_string = '_COLONS_'
457 flat_name = sep_string.join(class_path)
458 code('%rename($flat_name) $classname;')
459
460 code()
461 code('// stop swig from creating/wrapping default ctor/dtor')
462 code('%nodefault $classname;')
463 code('class $classname')
464 if cls._base:
465 bases = [ cls._base.cxx_class ] + cls.cxx_bases
466 else:
467 bases = cls.cxx_bases
468 base_first = True
469 for base in bases:
470 if base_first:
471 code(' : public ${{base}}')
472 base_first = False
473 else:
474 code(' , public ${{base}}')
475
476 code('{')
477 code(' public:')
478 cls.export_methods(code)
479 code('};')
480
481 for ns in reversed(namespaces):
482 code('} // namespace $ns')
483
484 code()
485 code('%include "params/$cls.hh"')
486
487
488 # Generate the C++ declaration (.hh file) for this SimObject's
489 # param struct. Called from src/SConscript.
490 def cxx_param_decl(cls, code):
491 # The 'local' attribute restricts us to the params declared in
492 # the object itself, not including inherited params (which
493 # will also be inherited from the base class's param struct
494 # here).
495 params = cls._params.local.values()
496 ports = cls._ports.local
497 try:
498 ptypes = [p.ptype for p in params]
499 except:
500 print cls, p, p.ptype_str
501 print params
502 raise
503
504 class_path = cls._value_dict['cxx_class'].split('::')
505
506 code('''\
507#ifndef __PARAMS__${cls}__
508#define __PARAMS__${cls}__
509
510''')
511
512 # A forward class declaration is sufficient since we are just
513 # declaring a pointer.
514 for ns in class_path[:-1]:
515 code('namespace $ns {')
516 code('class $0;', class_path[-1])
517 for ns in reversed(class_path[:-1]):
518 code('} // namespace $ns')
519 code()
520
521 # The base SimObject has a couple of params that get
522 # automatically set from Python without being declared through
523 # the normal Param mechanism; we slip them in here (needed
524 # predecls now, actual declarations below)
525 if cls == SimObject:
526 code('''
527#ifndef PY_VERSION
528struct PyObject;
529#endif
530
531#include <string>
532
533class EventQueue;
534''')
535 for param in params:
536 param.cxx_predecls(code)
537 for port in ports.itervalues():
538 port.cxx_predecls(code)
539 code()
540
541 if cls._base:
542 code('#include "params/${{cls._base.type}}.hh"')
543 code()
544
545 for ptype in ptypes:
546 if issubclass(ptype, Enum):
547 code('#include "enums/${{ptype.__name__}}.hh"')
548 code()
549
550 # now generate the actual param struct
551 code("struct ${cls}Params")
552 if cls._base:
553 code(" : public ${{cls._base.type}}Params")
554 code("{")
555 if not hasattr(cls, 'abstract') or not cls.abstract:
556 if 'type' in cls.__dict__:
557 code(" ${{cls.cxx_type}} create();")
558
559 code.indent()
560 if cls == SimObject:
561 code('''
562 SimObjectParams()
563 {
564 extern EventQueue mainEventQueue;
565 eventq = &mainEventQueue;
566 }
567 virtual ~SimObjectParams() {}
568
569 std::string name;
570 PyObject *pyobj;
571 EventQueue *eventq;
572 ''')
573 for param in params:
574 param.cxx_decl(code)
575 for port in ports.itervalues():
576 port.cxx_decl(code)
577
578 code.dedent()
579 code('};')
580
581 code()
582 code('#endif // __PARAMS__${cls}__')
583 return code
584
585
586
587# The SimObject class is the root of the special hierarchy. Most of
588# the code in this class deals with the configuration hierarchy itself
589# (parent/child node relationships).
590class SimObject(object):
591 # Specify metaclass. Any class inheriting from SimObject will
592 # get this metaclass.
593 __metaclass__ = MetaSimObject
594 type = 'SimObject'
595 abstract = True
596 cxx_header = "sim/sim_object.hh"
597
598 cxx_bases = [ "Drainable", "Serializable" ]
599
600 @classmethod
601 def export_method_swig_predecls(cls, code):
602 code('''
603%include <std_string.i>
604
605%import "python/swig/drain.i"
606%import "python/swig/serialize.i"
607''')
608
609 @classmethod
610 def export_methods(cls, code):
611 code('''
612 void init();
613 void loadState(Checkpoint *cp);
614 void initState();
615 void regStats();
616 void resetStats();
617 void startup();
618''')
619
620 # Initialize new instance. For objects with SimObject-valued
621 # children, we need to recursively clone the classes represented
622 # by those param values as well in a consistent "deep copy"-style
623 # fashion. That is, we want to make sure that each instance is
624 # cloned only once, and that if there are multiple references to
625 # the same original object, we end up with the corresponding
626 # cloned references all pointing to the same cloned instance.
627 def __init__(self, **kwargs):
628 ancestor = kwargs.get('_ancestor')
629 memo_dict = kwargs.get('_memo')
630 if memo_dict is None:
631 # prepare to memoize any recursively instantiated objects
632 memo_dict = {}
633 elif ancestor:
634 # memoize me now to avoid problems with recursive calls
635 memo_dict[ancestor] = self
636
637 if not ancestor:
638 ancestor = self.__class__
639 ancestor._instantiated = True
640
641 # initialize required attributes
642 self._parent = None
643 self._name = None
644 self._ccObject = None # pointer to C++ object
645 self._ccParams = None
646 self._instantiated = False # really "cloned"
647
648 # Clone children specified at class level. No need for a
649 # multidict here since we will be cloning everything.
650 # Do children before parameter values so that children that
651 # are also param values get cloned properly.
652 self._children = {}
653 for key,val in ancestor._children.iteritems():
654 self.add_child(key, val(_memo=memo_dict))
655
656 # Inherit parameter values from class using multidict so
657 # individual value settings can be overridden but we still
658 # inherit late changes to non-overridden class values.
659 self._values = multidict(ancestor._values)
660 # clone SimObject-valued parameters
661 for key,val in ancestor._values.iteritems():
662 val = tryAsSimObjectOrVector(val)
663 if val is not None:
664 self._values[key] = val(_memo=memo_dict)
665
666 # clone port references. no need to use a multidict here
667 # since we will be creating new references for all ports.
668 self._port_refs = {}
669 for key,val in ancestor._port_refs.iteritems():
670 self._port_refs[key] = val.clone(self, memo_dict)
671 # apply attribute assignments from keyword args, if any
672 for key,val in kwargs.iteritems():
673 setattr(self, key, val)
674
675 # "Clone" the current instance by creating another instance of
676 # this instance's class, but that inherits its parameter values
677 # and port mappings from the current instance. If we're in a
678 # "deep copy" recursive clone, check the _memo dict to see if
679 # we've already cloned this instance.
680 def __call__(self, **kwargs):
681 memo_dict = kwargs.get('_memo')
682 if memo_dict is None:
683 # no memo_dict: must be top-level clone operation.
684 # this is only allowed at the root of a hierarchy
685 if self._parent:
686 raise RuntimeError, "attempt to clone object %s " \
687 "not at the root of a tree (parent = %s)" \
688 % (self, self._parent)
689 # create a new dict and use that.
690 memo_dict = {}
691 kwargs['_memo'] = memo_dict
692 elif memo_dict.has_key(self):
693 # clone already done & memoized
694 return memo_dict[self]
695 return self.__class__(_ancestor = self, **kwargs)
696
697 def _get_port_ref(self, attr):
698 # Return reference that can be assigned to another port
699 # via __setattr__. There is only ever one reference
700 # object per port, but we create them lazily here.
701 ref = self._port_refs.get(attr)
702 if not ref:
703 ref = self._ports[attr].makeRef(self)
704 self._port_refs[attr] = ref
705 return ref
706
707 def __getattr__(self, attr):
708 if self._ports.has_key(attr):
709 return self._get_port_ref(attr)
710
711 if self._values.has_key(attr):
712 return self._values[attr]
713
714 if self._children.has_key(attr):
715 return self._children[attr]
716
717 # If the attribute exists on the C++ object, transparently
718 # forward the reference there. This is typically used for
719 # SWIG-wrapped methods such as init(), regStats(),
720 # resetStats(), startup(), drain(), and
721 # resume().
722 if self._ccObject and hasattr(self._ccObject, attr):
723 return getattr(self._ccObject, attr)
724
725 raise AttributeError, "object '%s' has no attribute '%s'" \
726 % (self.__class__.__name__, attr)
727
728 # Set attribute (called on foo.attr = value when foo is an
729 # instance of class cls).
730 def __setattr__(self, attr, value):
731 # normal processing for private attributes
732 if attr.startswith('_'):
733 object.__setattr__(self, attr, value)
734 return
735
736 if self._ports.has_key(attr):
737 # set up port connection
738 self._get_port_ref(attr).connect(value)
739 return
740
741 if isSimObjectOrSequence(value) and self._instantiated:
742 raise RuntimeError, \
743 "cannot set SimObject parameter '%s' after\n" \
744 " instance been cloned %s" % (attr, `self`)
745
746 param = self._params.get(attr)
747 if param:
748 try:
749 value = param.convert(value)
750 except Exception, e:
751 msg = "%s\nError setting param %s.%s to %s\n" % \
752 (e, self.__class__.__name__, attr, value)
753 e.args = (msg, )
754 raise
755 self._values[attr] = value
756 # implicitly parent unparented objects assigned as params
757 if isSimObjectOrVector(value) and not value.has_parent():
758 self.add_child(attr, value)
759 return
760
761 # if RHS is a SimObject, it's an implicit child assignment
762 if isSimObjectOrSequence(value):
763 self.add_child(attr, value)
764 return
765
766 # no valid assignment... raise exception
767 raise AttributeError, "Class %s has no parameter %s" \
768 % (self.__class__.__name__, attr)
769
770
771 # this hack allows tacking a '[0]' onto parameters that may or may
772 # not be vectors, and always getting the first element (e.g. cpus)
773 def __getitem__(self, key):
774 if key == 0:
775 return self
776 raise TypeError, "Non-zero index '%s' to SimObject" % key
777
778 # Also implemented by SimObjectVector
779 def clear_parent(self, old_parent):
780 assert self._parent is old_parent
781 self._parent = None
782
783 # Also implemented by SimObjectVector
784 def set_parent(self, parent, name):
785 self._parent = parent
786 self._name = name
787
788 # Also implemented by SimObjectVector
789 def get_name(self):
790 return self._name
791
792 # Also implemented by SimObjectVector
793 def has_parent(self):
794 return self._parent is not None
795
796 # clear out child with given name. This code is not likely to be exercised.
797 # See comment in add_child.
798 def clear_child(self, name):
799 child = self._children[name]
800 child.clear_parent(self)
801 del self._children[name]
802
803 # Add a new child to this object.
804 def add_child(self, name, child):
805 child = coerceSimObjectOrVector(child)
806 if child.has_parent():
217
218 # Export methods are automatically inherited via C++, so we
219 # don't want the method declarations to get inherited on the
220 # python side (and thus end up getting repeated in the wrapped
221 # versions of derived classes). The code below basicallly
222 # suppresses inheritance by substituting in the base (null)
223 # versions of these methods unless a different version is
224 # explicitly supplied.
225 for method_name in ('export_methods', 'export_method_cxx_predecls',
226 'export_method_swig_predecls'):
227 if method_name not in cls.__dict__:
228 base_method = getattr(MetaSimObject, method_name)
229 m = MethodType(base_method, cls, MetaSimObject)
230 setattr(cls, method_name, m)
231
232 # Now process the _value_dict items. They could be defining
233 # new (or overriding existing) parameters or ports, setting
234 # class keywords (e.g., 'abstract'), or setting parameter
235 # values or port bindings. The first 3 can only be set when
236 # the class is defined, so we handle them here. The others
237 # can be set later too, so just emulate that by calling
238 # setattr().
239 for key,val in cls._value_dict.items():
240 # param descriptions
241 if isinstance(val, ParamDesc):
242 cls._new_param(key, val)
243
244 # port objects
245 elif isinstance(val, Port):
246 cls._new_port(key, val)
247
248 # init-time-only keywords
249 elif cls.init_keywords.has_key(key):
250 cls._set_keyword(key, val, cls.init_keywords[key])
251
252 # default: use normal path (ends up in __setattr__)
253 else:
254 setattr(cls, key, val)
255
256 def _set_keyword(cls, keyword, val, kwtype):
257 if not isinstance(val, kwtype):
258 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
259 (keyword, type(val), kwtype)
260 if isinstance(val, FunctionType):
261 val = classmethod(val)
262 type.__setattr__(cls, keyword, val)
263
264 def _new_param(cls, name, pdesc):
265 # each param desc should be uniquely assigned to one variable
266 assert(not hasattr(pdesc, 'name'))
267 pdesc.name = name
268 cls._params[name] = pdesc
269 if hasattr(pdesc, 'default'):
270 cls._set_param(name, pdesc.default, pdesc)
271
272 def _set_param(cls, name, value, param):
273 assert(param.name == name)
274 try:
275 value = param.convert(value)
276 except Exception, e:
277 msg = "%s\nError setting param %s.%s to %s\n" % \
278 (e, cls.__name__, name, value)
279 e.args = (msg, )
280 raise
281 cls._values[name] = value
282 # if param value is a SimObject, make it a child too, so that
283 # it gets cloned properly when the class is instantiated
284 if isSimObjectOrVector(value) and not value.has_parent():
285 cls._add_cls_child(name, value)
286
287 def _add_cls_child(cls, name, child):
288 # It's a little funky to have a class as a parent, but these
289 # objects should never be instantiated (only cloned, which
290 # clears the parent pointer), and this makes it clear that the
291 # object is not an orphan and can provide better error
292 # messages.
293 child.set_parent(cls, name)
294 cls._children[name] = child
295
296 def _new_port(cls, name, port):
297 # each port should be uniquely assigned to one variable
298 assert(not hasattr(port, 'name'))
299 port.name = name
300 cls._ports[name] = port
301
302 # same as _get_port_ref, effectively, but for classes
303 def _cls_get_port_ref(cls, attr):
304 # Return reference that can be assigned to another port
305 # via __setattr__. There is only ever one reference
306 # object per port, but we create them lazily here.
307 ref = cls._port_refs.get(attr)
308 if not ref:
309 ref = cls._ports[attr].makeRef(cls)
310 cls._port_refs[attr] = ref
311 return ref
312
313 # Set attribute (called on foo.attr = value when foo is an
314 # instance of class cls).
315 def __setattr__(cls, attr, value):
316 # normal processing for private attributes
317 if public_value(attr, value):
318 type.__setattr__(cls, attr, value)
319 return
320
321 if cls.keywords.has_key(attr):
322 cls._set_keyword(attr, value, cls.keywords[attr])
323 return
324
325 if cls._ports.has_key(attr):
326 cls._cls_get_port_ref(attr).connect(value)
327 return
328
329 if isSimObjectOrSequence(value) and cls._instantiated:
330 raise RuntimeError, \
331 "cannot set SimObject parameter '%s' after\n" \
332 " class %s has been instantiated or subclassed" \
333 % (attr, cls.__name__)
334
335 # check for param
336 param = cls._params.get(attr)
337 if param:
338 cls._set_param(attr, value, param)
339 return
340
341 if isSimObjectOrSequence(value):
342 # If RHS is a SimObject, it's an implicit child assignment.
343 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
344 return
345
346 # no valid assignment... raise exception
347 raise AttributeError, \
348 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
349
350 def __getattr__(cls, attr):
351 if attr == 'cxx_class_path':
352 return cls.cxx_class.split('::')
353
354 if attr == 'cxx_class_name':
355 return cls.cxx_class_path[-1]
356
357 if attr == 'cxx_namespaces':
358 return cls.cxx_class_path[:-1]
359
360 if cls._values.has_key(attr):
361 return cls._values[attr]
362
363 if cls._children.has_key(attr):
364 return cls._children[attr]
365
366 raise AttributeError, \
367 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
368
369 def __str__(cls):
370 return cls.__name__
371
372 # See ParamValue.cxx_predecls for description.
373 def cxx_predecls(cls, code):
374 code('#include "params/$cls.hh"')
375
376 # See ParamValue.swig_predecls for description.
377 def swig_predecls(cls, code):
378 code('%import "python/m5/internal/param_$cls.i"')
379
380 # Hook for exporting additional C++ methods to Python via SWIG.
381 # Default is none, override using @classmethod in class definition.
382 def export_methods(cls, code):
383 pass
384
385 # Generate the code needed as a prerequisite for the C++ methods
386 # exported via export_methods() to be compiled in the _wrap.cc
387 # file. Typically generates one or more #include statements. If
388 # any methods are exported, typically at least the C++ header
389 # declaring the relevant SimObject class must be included.
390 def export_method_cxx_predecls(cls, code):
391 pass
392
393 # Generate the code needed as a prerequisite for the C++ methods
394 # exported via export_methods() to be processed by SWIG.
395 # Typically generates one or more %include or %import statements.
396 # If any methods are exported, typically at least the C++ header
397 # declaring the relevant SimObject class must be included.
398 def export_method_swig_predecls(cls, code):
399 pass
400
401 # Generate the declaration for this object for wrapping with SWIG.
402 # Generates code that goes into a SWIG .i file. Called from
403 # src/SConscript.
404 def swig_decl(cls, code):
405 class_path = cls.cxx_class.split('::')
406 classname = class_path[-1]
407 namespaces = class_path[:-1]
408
409 # The 'local' attribute restricts us to the params declared in
410 # the object itself, not including inherited params (which
411 # will also be inherited from the base class's param struct
412 # here).
413 params = cls._params.local.values()
414 ports = cls._ports.local
415
416 code('%module(package="m5.internal") param_$cls')
417 code()
418 code('%{')
419 code('#include "sim/sim_object.hh"')
420 code('#include "params/$cls.hh"')
421 for param in params:
422 param.cxx_predecls(code)
423 code('#include "${{cls.cxx_header}}"')
424 cls.export_method_cxx_predecls(code)
425 code('''\
426/**
427 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
428 * headers like vector, string, etc. used to automatically pull in
429 * the cstddef header but starting with gcc 4.6.1 they no longer do.
430 * This leads to swig generated a file that does not compile so we
431 * explicitly include cstddef. Additionally, including version 2.0.4,
432 * swig uses ptrdiff_t without the std:: namespace prefix which is
433 * required with gcc 4.6.1. We explicitly provide access to it.
434 */
435#include <cstddef>
436using std::ptrdiff_t;
437''')
438 code('%}')
439 code()
440
441 for param in params:
442 param.swig_predecls(code)
443 cls.export_method_swig_predecls(code)
444
445 code()
446 if cls._base:
447 code('%import "python/m5/internal/param_${{cls._base}}.i"')
448 code()
449
450 for ns in namespaces:
451 code('namespace $ns {')
452
453 if namespaces:
454 code('// avoid name conflicts')
455 sep_string = '_COLONS_'
456 flat_name = sep_string.join(class_path)
457 code('%rename($flat_name) $classname;')
458
459 code()
460 code('// stop swig from creating/wrapping default ctor/dtor')
461 code('%nodefault $classname;')
462 code('class $classname')
463 if cls._base:
464 bases = [ cls._base.cxx_class ] + cls.cxx_bases
465 else:
466 bases = cls.cxx_bases
467 base_first = True
468 for base in bases:
469 if base_first:
470 code(' : public ${{base}}')
471 base_first = False
472 else:
473 code(' , public ${{base}}')
474
475 code('{')
476 code(' public:')
477 cls.export_methods(code)
478 code('};')
479
480 for ns in reversed(namespaces):
481 code('} // namespace $ns')
482
483 code()
484 code('%include "params/$cls.hh"')
485
486
487 # Generate the C++ declaration (.hh file) for this SimObject's
488 # param struct. Called from src/SConscript.
489 def cxx_param_decl(cls, code):
490 # The 'local' attribute restricts us to the params declared in
491 # the object itself, not including inherited params (which
492 # will also be inherited from the base class's param struct
493 # here).
494 params = cls._params.local.values()
495 ports = cls._ports.local
496 try:
497 ptypes = [p.ptype for p in params]
498 except:
499 print cls, p, p.ptype_str
500 print params
501 raise
502
503 class_path = cls._value_dict['cxx_class'].split('::')
504
505 code('''\
506#ifndef __PARAMS__${cls}__
507#define __PARAMS__${cls}__
508
509''')
510
511 # A forward class declaration is sufficient since we are just
512 # declaring a pointer.
513 for ns in class_path[:-1]:
514 code('namespace $ns {')
515 code('class $0;', class_path[-1])
516 for ns in reversed(class_path[:-1]):
517 code('} // namespace $ns')
518 code()
519
520 # The base SimObject has a couple of params that get
521 # automatically set from Python without being declared through
522 # the normal Param mechanism; we slip them in here (needed
523 # predecls now, actual declarations below)
524 if cls == SimObject:
525 code('''
526#ifndef PY_VERSION
527struct PyObject;
528#endif
529
530#include <string>
531
532class EventQueue;
533''')
534 for param in params:
535 param.cxx_predecls(code)
536 for port in ports.itervalues():
537 port.cxx_predecls(code)
538 code()
539
540 if cls._base:
541 code('#include "params/${{cls._base.type}}.hh"')
542 code()
543
544 for ptype in ptypes:
545 if issubclass(ptype, Enum):
546 code('#include "enums/${{ptype.__name__}}.hh"')
547 code()
548
549 # now generate the actual param struct
550 code("struct ${cls}Params")
551 if cls._base:
552 code(" : public ${{cls._base.type}}Params")
553 code("{")
554 if not hasattr(cls, 'abstract') or not cls.abstract:
555 if 'type' in cls.__dict__:
556 code(" ${{cls.cxx_type}} create();")
557
558 code.indent()
559 if cls == SimObject:
560 code('''
561 SimObjectParams()
562 {
563 extern EventQueue mainEventQueue;
564 eventq = &mainEventQueue;
565 }
566 virtual ~SimObjectParams() {}
567
568 std::string name;
569 PyObject *pyobj;
570 EventQueue *eventq;
571 ''')
572 for param in params:
573 param.cxx_decl(code)
574 for port in ports.itervalues():
575 port.cxx_decl(code)
576
577 code.dedent()
578 code('};')
579
580 code()
581 code('#endif // __PARAMS__${cls}__')
582 return code
583
584
585
586# The SimObject class is the root of the special hierarchy. Most of
587# the code in this class deals with the configuration hierarchy itself
588# (parent/child node relationships).
589class SimObject(object):
590 # Specify metaclass. Any class inheriting from SimObject will
591 # get this metaclass.
592 __metaclass__ = MetaSimObject
593 type = 'SimObject'
594 abstract = True
595 cxx_header = "sim/sim_object.hh"
596
597 cxx_bases = [ "Drainable", "Serializable" ]
598
599 @classmethod
600 def export_method_swig_predecls(cls, code):
601 code('''
602%include <std_string.i>
603
604%import "python/swig/drain.i"
605%import "python/swig/serialize.i"
606''')
607
608 @classmethod
609 def export_methods(cls, code):
610 code('''
611 void init();
612 void loadState(Checkpoint *cp);
613 void initState();
614 void regStats();
615 void resetStats();
616 void startup();
617''')
618
619 # Initialize new instance. For objects with SimObject-valued
620 # children, we need to recursively clone the classes represented
621 # by those param values as well in a consistent "deep copy"-style
622 # fashion. That is, we want to make sure that each instance is
623 # cloned only once, and that if there are multiple references to
624 # the same original object, we end up with the corresponding
625 # cloned references all pointing to the same cloned instance.
626 def __init__(self, **kwargs):
627 ancestor = kwargs.get('_ancestor')
628 memo_dict = kwargs.get('_memo')
629 if memo_dict is None:
630 # prepare to memoize any recursively instantiated objects
631 memo_dict = {}
632 elif ancestor:
633 # memoize me now to avoid problems with recursive calls
634 memo_dict[ancestor] = self
635
636 if not ancestor:
637 ancestor = self.__class__
638 ancestor._instantiated = True
639
640 # initialize required attributes
641 self._parent = None
642 self._name = None
643 self._ccObject = None # pointer to C++ object
644 self._ccParams = None
645 self._instantiated = False # really "cloned"
646
647 # Clone children specified at class level. No need for a
648 # multidict here since we will be cloning everything.
649 # Do children before parameter values so that children that
650 # are also param values get cloned properly.
651 self._children = {}
652 for key,val in ancestor._children.iteritems():
653 self.add_child(key, val(_memo=memo_dict))
654
655 # Inherit parameter values from class using multidict so
656 # individual value settings can be overridden but we still
657 # inherit late changes to non-overridden class values.
658 self._values = multidict(ancestor._values)
659 # clone SimObject-valued parameters
660 for key,val in ancestor._values.iteritems():
661 val = tryAsSimObjectOrVector(val)
662 if val is not None:
663 self._values[key] = val(_memo=memo_dict)
664
665 # clone port references. no need to use a multidict here
666 # since we will be creating new references for all ports.
667 self._port_refs = {}
668 for key,val in ancestor._port_refs.iteritems():
669 self._port_refs[key] = val.clone(self, memo_dict)
670 # apply attribute assignments from keyword args, if any
671 for key,val in kwargs.iteritems():
672 setattr(self, key, val)
673
674 # "Clone" the current instance by creating another instance of
675 # this instance's class, but that inherits its parameter values
676 # and port mappings from the current instance. If we're in a
677 # "deep copy" recursive clone, check the _memo dict to see if
678 # we've already cloned this instance.
679 def __call__(self, **kwargs):
680 memo_dict = kwargs.get('_memo')
681 if memo_dict is None:
682 # no memo_dict: must be top-level clone operation.
683 # this is only allowed at the root of a hierarchy
684 if self._parent:
685 raise RuntimeError, "attempt to clone object %s " \
686 "not at the root of a tree (parent = %s)" \
687 % (self, self._parent)
688 # create a new dict and use that.
689 memo_dict = {}
690 kwargs['_memo'] = memo_dict
691 elif memo_dict.has_key(self):
692 # clone already done & memoized
693 return memo_dict[self]
694 return self.__class__(_ancestor = self, **kwargs)
695
696 def _get_port_ref(self, attr):
697 # Return reference that can be assigned to another port
698 # via __setattr__. There is only ever one reference
699 # object per port, but we create them lazily here.
700 ref = self._port_refs.get(attr)
701 if not ref:
702 ref = self._ports[attr].makeRef(self)
703 self._port_refs[attr] = ref
704 return ref
705
706 def __getattr__(self, attr):
707 if self._ports.has_key(attr):
708 return self._get_port_ref(attr)
709
710 if self._values.has_key(attr):
711 return self._values[attr]
712
713 if self._children.has_key(attr):
714 return self._children[attr]
715
716 # If the attribute exists on the C++ object, transparently
717 # forward the reference there. This is typically used for
718 # SWIG-wrapped methods such as init(), regStats(),
719 # resetStats(), startup(), drain(), and
720 # resume().
721 if self._ccObject and hasattr(self._ccObject, attr):
722 return getattr(self._ccObject, attr)
723
724 raise AttributeError, "object '%s' has no attribute '%s'" \
725 % (self.__class__.__name__, attr)
726
727 # Set attribute (called on foo.attr = value when foo is an
728 # instance of class cls).
729 def __setattr__(self, attr, value):
730 # normal processing for private attributes
731 if attr.startswith('_'):
732 object.__setattr__(self, attr, value)
733 return
734
735 if self._ports.has_key(attr):
736 # set up port connection
737 self._get_port_ref(attr).connect(value)
738 return
739
740 if isSimObjectOrSequence(value) and self._instantiated:
741 raise RuntimeError, \
742 "cannot set SimObject parameter '%s' after\n" \
743 " instance been cloned %s" % (attr, `self`)
744
745 param = self._params.get(attr)
746 if param:
747 try:
748 value = param.convert(value)
749 except Exception, e:
750 msg = "%s\nError setting param %s.%s to %s\n" % \
751 (e, self.__class__.__name__, attr, value)
752 e.args = (msg, )
753 raise
754 self._values[attr] = value
755 # implicitly parent unparented objects assigned as params
756 if isSimObjectOrVector(value) and not value.has_parent():
757 self.add_child(attr, value)
758 return
759
760 # if RHS is a SimObject, it's an implicit child assignment
761 if isSimObjectOrSequence(value):
762 self.add_child(attr, value)
763 return
764
765 # no valid assignment... raise exception
766 raise AttributeError, "Class %s has no parameter %s" \
767 % (self.__class__.__name__, attr)
768
769
770 # this hack allows tacking a '[0]' onto parameters that may or may
771 # not be vectors, and always getting the first element (e.g. cpus)
772 def __getitem__(self, key):
773 if key == 0:
774 return self
775 raise TypeError, "Non-zero index '%s' to SimObject" % key
776
777 # Also implemented by SimObjectVector
778 def clear_parent(self, old_parent):
779 assert self._parent is old_parent
780 self._parent = None
781
782 # Also implemented by SimObjectVector
783 def set_parent(self, parent, name):
784 self._parent = parent
785 self._name = name
786
787 # Also implemented by SimObjectVector
788 def get_name(self):
789 return self._name
790
791 # Also implemented by SimObjectVector
792 def has_parent(self):
793 return self._parent is not None
794
795 # clear out child with given name. This code is not likely to be exercised.
796 # See comment in add_child.
797 def clear_child(self, name):
798 child = self._children[name]
799 child.clear_parent(self)
800 del self._children[name]
801
802 # Add a new child to this object.
803 def add_child(self, name, child):
804 child = coerceSimObjectOrVector(child)
805 if child.has_parent():
807 print "warning: add_child('%s'): child '%s' already has parent" % \
808 (name, child.get_name())
806 warn("add_child('%s'): child '%s' already has parent", name,
807 child.get_name())
809 if self._children.has_key(name):
810 # This code path had an undiscovered bug that would make it fail
811 # at runtime. It had been here for a long time and was only
812 # exposed by a buggy script. Changes here will probably not be
813 # exercised without specialized testing.
814 self.clear_child(name)
815 child.set_parent(self, name)
816 self._children[name] = child
817
818 # Take SimObject-valued parameters that haven't been explicitly
819 # assigned as children and make them children of the object that
820 # they were assigned to as a parameter value. This guarantees
821 # that when we instantiate all the parameter objects we're still
822 # inside the configuration hierarchy.
823 def adoptOrphanParams(self):
824 for key,val in self._values.iteritems():
825 if not isSimObjectVector(val) and isSimObjectSequence(val):
826 # need to convert raw SimObject sequences to
827 # SimObjectVector class so we can call has_parent()
828 val = SimObjectVector(val)
829 self._values[key] = val
830 if isSimObjectOrVector(val) and not val.has_parent():
808 if self._children.has_key(name):
809 # This code path had an undiscovered bug that would make it fail
810 # at runtime. It had been here for a long time and was only
811 # exposed by a buggy script. Changes here will probably not be
812 # exercised without specialized testing.
813 self.clear_child(name)
814 child.set_parent(self, name)
815 self._children[name] = child
816
817 # Take SimObject-valued parameters that haven't been explicitly
818 # assigned as children and make them children of the object that
819 # they were assigned to as a parameter value. This guarantees
820 # that when we instantiate all the parameter objects we're still
821 # inside the configuration hierarchy.
822 def adoptOrphanParams(self):
823 for key,val in self._values.iteritems():
824 if not isSimObjectVector(val) and isSimObjectSequence(val):
825 # need to convert raw SimObject sequences to
826 # SimObjectVector class so we can call has_parent()
827 val = SimObjectVector(val)
828 self._values[key] = val
829 if isSimObjectOrVector(val) and not val.has_parent():
831 print "warning: %s adopting orphan SimObject param '%s'" \
832 % (self, key)
830 warn("%s adopting orphan SimObject param '%s'", self, key)
833 self.add_child(key, val)
834
835 def path(self):
836 if not self._parent:
837 return '<orphan %s>' % self.__class__
838 ppath = self._parent.path()
839 if ppath == 'root':
840 return self._name
841 return ppath + "." + self._name
842
843 def __str__(self):
844 return self.path()
845
846 def ini_str(self):
847 return self.path()
848
849 def find_any(self, ptype):
850 if isinstance(self, ptype):
851 return self, True
852
853 found_obj = None
854 for child in self._children.itervalues():
855 if isinstance(child, ptype):
856 if found_obj != None and child != found_obj:
857 raise AttributeError, \
858 'parent.any matched more than one: %s %s' % \
859 (found_obj.path, child.path)
860 found_obj = child
861 # search param space
862 for pname,pdesc in self._params.iteritems():
863 if issubclass(pdesc.ptype, ptype):
864 match_obj = self._values[pname]
865 if found_obj != None and found_obj != match_obj:
866 raise AttributeError, \
867 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
868 found_obj = match_obj
869 return found_obj, found_obj != None
870
871 def find_all(self, ptype):
872 all = {}
873 # search children
874 for child in self._children.itervalues():
875 # a child could be a list, so ensure we visit each item
876 if isinstance(child, list):
877 children = child
878 else:
879 children = [child]
880
881 for child in children:
882 if isinstance(child, ptype) and not isproxy(child) and \
883 not isNullPointer(child):
884 all[child] = True
885 if isSimObject(child):
886 # also add results from the child itself
887 child_all, done = child.find_all(ptype)
888 all.update(dict(zip(child_all, [done] * len(child_all))))
889 # search param space
890 for pname,pdesc in self._params.iteritems():
891 if issubclass(pdesc.ptype, ptype):
892 match_obj = self._values[pname]
893 if not isproxy(match_obj) and not isNullPointer(match_obj):
894 all[match_obj] = True
895 return all.keys(), True
896
897 def unproxy(self, base):
898 return self
899
900 def unproxyParams(self):
901 for param in self._params.iterkeys():
902 value = self._values.get(param)
903 if value != None and isproxy(value):
904 try:
905 value = value.unproxy(self)
906 except:
907 print "Error in unproxying param '%s' of %s" % \
908 (param, self.path())
909 raise
910 setattr(self, param, value)
911
912 # Unproxy ports in sorted order so that 'append' operations on
913 # vector ports are done in a deterministic fashion.
914 port_names = self._ports.keys()
915 port_names.sort()
916 for port_name in port_names:
917 port = self._port_refs.get(port_name)
918 if port != None:
919 port.unproxy(self)
920
921 def print_ini(self, ini_file):
922 print >>ini_file, '[' + self.path() + ']' # .ini section header
923
924 instanceDict[self.path()] = self
925
926 if hasattr(self, 'type'):
927 print >>ini_file, 'type=%s' % self.type
928
929 if len(self._children.keys()):
930 print >>ini_file, 'children=%s' % \
931 ' '.join(self._children[n].get_name() \
932 for n in sorted(self._children.keys()))
933
934 for param in sorted(self._params.keys()):
935 value = self._values.get(param)
936 if value != None:
937 print >>ini_file, '%s=%s' % (param,
938 self._values[param].ini_str())
939
940 for port_name in sorted(self._ports.keys()):
941 port = self._port_refs.get(port_name, None)
942 if port != None:
943 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
944
945 print >>ini_file # blank line between objects
946
947 # generate a tree of dictionaries expressing all the parameters in the
948 # instantiated system for use by scripts that want to do power, thermal
949 # visualization, and other similar tasks
950 def get_config_as_dict(self):
951 d = attrdict()
952 if hasattr(self, 'type'):
953 d.type = self.type
954 if hasattr(self, 'cxx_class'):
955 d.cxx_class = self.cxx_class
956 # Add the name and path of this object to be able to link to
957 # the stats
958 d.name = self.get_name()
959 d.path = self.path()
960
961 for param in sorted(self._params.keys()):
962 value = self._values.get(param)
963 if value != None:
964 try:
965 # Use native type for those supported by JSON and
966 # strings for everything else. skipkeys=True seems
967 # to not work as well as one would hope
968 if type(self._values[param].value) in \
969 [str, unicode, int, long, float, bool, None]:
970 d[param] = self._values[param].value
971 else:
972 d[param] = str(self._values[param])
973
974 except AttributeError:
975 pass
976
977 for n in sorted(self._children.keys()):
978 child = self._children[n]
979 # Use the name of the attribute (and not get_name()) as
980 # the key in the JSON dictionary to capture the hierarchy
981 # in the Python code that assembled this system
982 d[n] = child.get_config_as_dict()
983
984 for port_name in sorted(self._ports.keys()):
985 port = self._port_refs.get(port_name, None)
986 if port != None:
987 # Represent each port with a dictionary containing the
988 # prominent attributes
989 d[port_name] = port.get_config_as_dict()
990
991 return d
992
993 def getCCParams(self):
994 if self._ccParams:
995 return self._ccParams
996
997 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
998 cc_params = cc_params_struct()
999 cc_params.pyobj = self
1000 cc_params.name = str(self)
1001
1002 param_names = self._params.keys()
1003 param_names.sort()
1004 for param in param_names:
1005 value = self._values.get(param)
1006 if value is None:
1007 fatal("%s.%s without default or user set value",
1008 self.path(), param)
1009
1010 value = value.getValue()
1011 if isinstance(self._params[param], VectorParamDesc):
1012 assert isinstance(value, list)
1013 vec = getattr(cc_params, param)
1014 assert not len(vec)
1015 for v in value:
1016 vec.append(v)
1017 else:
1018 setattr(cc_params, param, value)
1019
1020 port_names = self._ports.keys()
1021 port_names.sort()
1022 for port_name in port_names:
1023 port = self._port_refs.get(port_name, None)
1024 if port != None:
1025 port_count = len(port)
1026 else:
1027 port_count = 0
1028 setattr(cc_params, 'port_' + port_name + '_connection_count',
1029 port_count)
1030 self._ccParams = cc_params
1031 return self._ccParams
1032
1033 # Get C++ object corresponding to this object, calling C++ if
1034 # necessary to construct it. Does *not* recursively create
1035 # children.
1036 def getCCObject(self):
1037 if not self._ccObject:
1038 # Make sure this object is in the configuration hierarchy
1039 if not self._parent and not isRoot(self):
1040 raise RuntimeError, "Attempt to instantiate orphan node"
1041 # Cycles in the configuration hierarchy are not supported. This
1042 # will catch the resulting recursion and stop.
1043 self._ccObject = -1
1044 params = self.getCCParams()
1045 self._ccObject = params.create()
1046 elif self._ccObject == -1:
1047 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1048 % self.path()
1049 return self._ccObject
1050
1051 def descendants(self):
1052 yield self
1053 for child in self._children.itervalues():
1054 for obj in child.descendants():
1055 yield obj
1056
1057 # Call C++ to create C++ object corresponding to this object
1058 def createCCObject(self):
1059 self.getCCParams()
1060 self.getCCObject() # force creation
1061
1062 def getValue(self):
1063 return self.getCCObject()
1064
1065 # Create C++ port connections corresponding to the connections in
1066 # _port_refs
1067 def connectPorts(self):
1068 for portRef in self._port_refs.itervalues():
1069 portRef.ccConnect()
1070
1071# Function to provide to C++ so it can look up instances based on paths
1072def resolveSimObject(name):
1073 obj = instanceDict[name]
1074 return obj.getCCObject()
1075
1076def isSimObject(value):
1077 return isinstance(value, SimObject)
1078
1079def isSimObjectClass(value):
1080 return issubclass(value, SimObject)
1081
1082def isSimObjectVector(value):
1083 return isinstance(value, SimObjectVector)
1084
1085def isSimObjectSequence(value):
1086 if not isinstance(value, (list, tuple)) or len(value) == 0:
1087 return False
1088
1089 for val in value:
1090 if not isNullPointer(val) and not isSimObject(val):
1091 return False
1092
1093 return True
1094
1095def isSimObjectOrSequence(value):
1096 return isSimObject(value) or isSimObjectSequence(value)
1097
1098def isRoot(obj):
1099 from m5.objects import Root
1100 return obj and obj is Root.getInstance()
1101
1102def isSimObjectOrVector(value):
1103 return isSimObject(value) or isSimObjectVector(value)
1104
1105def tryAsSimObjectOrVector(value):
1106 if isSimObjectOrVector(value):
1107 return value
1108 if isSimObjectSequence(value):
1109 return SimObjectVector(value)
1110 return None
1111
1112def coerceSimObjectOrVector(value):
1113 value = tryAsSimObjectOrVector(value)
1114 if value is None:
1115 raise TypeError, "SimObject or SimObjectVector expected"
1116 return value
1117
1118baseClasses = allClasses.copy()
1119baseInstances = instanceDict.copy()
1120
1121def clear():
1122 global allClasses, instanceDict, noCxxHeader
1123
1124 allClasses = baseClasses.copy()
1125 instanceDict = baseInstances.copy()
1126 noCxxHeader = False
1127
1128# __all__ defines the list of symbols that get exported when
1129# 'from config import *' is invoked. Try to keep this reasonably
1130# short to avoid polluting other namespaces.
1131__all__ = [ 'SimObject' ]
831 self.add_child(key, val)
832
833 def path(self):
834 if not self._parent:
835 return '<orphan %s>' % self.__class__
836 ppath = self._parent.path()
837 if ppath == 'root':
838 return self._name
839 return ppath + "." + self._name
840
841 def __str__(self):
842 return self.path()
843
844 def ini_str(self):
845 return self.path()
846
847 def find_any(self, ptype):
848 if isinstance(self, ptype):
849 return self, True
850
851 found_obj = None
852 for child in self._children.itervalues():
853 if isinstance(child, ptype):
854 if found_obj != None and child != found_obj:
855 raise AttributeError, \
856 'parent.any matched more than one: %s %s' % \
857 (found_obj.path, child.path)
858 found_obj = child
859 # search param space
860 for pname,pdesc in self._params.iteritems():
861 if issubclass(pdesc.ptype, ptype):
862 match_obj = self._values[pname]
863 if found_obj != None and found_obj != match_obj:
864 raise AttributeError, \
865 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
866 found_obj = match_obj
867 return found_obj, found_obj != None
868
869 def find_all(self, ptype):
870 all = {}
871 # search children
872 for child in self._children.itervalues():
873 # a child could be a list, so ensure we visit each item
874 if isinstance(child, list):
875 children = child
876 else:
877 children = [child]
878
879 for child in children:
880 if isinstance(child, ptype) and not isproxy(child) and \
881 not isNullPointer(child):
882 all[child] = True
883 if isSimObject(child):
884 # also add results from the child itself
885 child_all, done = child.find_all(ptype)
886 all.update(dict(zip(child_all, [done] * len(child_all))))
887 # search param space
888 for pname,pdesc in self._params.iteritems():
889 if issubclass(pdesc.ptype, ptype):
890 match_obj = self._values[pname]
891 if not isproxy(match_obj) and not isNullPointer(match_obj):
892 all[match_obj] = True
893 return all.keys(), True
894
895 def unproxy(self, base):
896 return self
897
898 def unproxyParams(self):
899 for param in self._params.iterkeys():
900 value = self._values.get(param)
901 if value != None and isproxy(value):
902 try:
903 value = value.unproxy(self)
904 except:
905 print "Error in unproxying param '%s' of %s" % \
906 (param, self.path())
907 raise
908 setattr(self, param, value)
909
910 # Unproxy ports in sorted order so that 'append' operations on
911 # vector ports are done in a deterministic fashion.
912 port_names = self._ports.keys()
913 port_names.sort()
914 for port_name in port_names:
915 port = self._port_refs.get(port_name)
916 if port != None:
917 port.unproxy(self)
918
919 def print_ini(self, ini_file):
920 print >>ini_file, '[' + self.path() + ']' # .ini section header
921
922 instanceDict[self.path()] = self
923
924 if hasattr(self, 'type'):
925 print >>ini_file, 'type=%s' % self.type
926
927 if len(self._children.keys()):
928 print >>ini_file, 'children=%s' % \
929 ' '.join(self._children[n].get_name() \
930 for n in sorted(self._children.keys()))
931
932 for param in sorted(self._params.keys()):
933 value = self._values.get(param)
934 if value != None:
935 print >>ini_file, '%s=%s' % (param,
936 self._values[param].ini_str())
937
938 for port_name in sorted(self._ports.keys()):
939 port = self._port_refs.get(port_name, None)
940 if port != None:
941 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
942
943 print >>ini_file # blank line between objects
944
945 # generate a tree of dictionaries expressing all the parameters in the
946 # instantiated system for use by scripts that want to do power, thermal
947 # visualization, and other similar tasks
948 def get_config_as_dict(self):
949 d = attrdict()
950 if hasattr(self, 'type'):
951 d.type = self.type
952 if hasattr(self, 'cxx_class'):
953 d.cxx_class = self.cxx_class
954 # Add the name and path of this object to be able to link to
955 # the stats
956 d.name = self.get_name()
957 d.path = self.path()
958
959 for param in sorted(self._params.keys()):
960 value = self._values.get(param)
961 if value != None:
962 try:
963 # Use native type for those supported by JSON and
964 # strings for everything else. skipkeys=True seems
965 # to not work as well as one would hope
966 if type(self._values[param].value) in \
967 [str, unicode, int, long, float, bool, None]:
968 d[param] = self._values[param].value
969 else:
970 d[param] = str(self._values[param])
971
972 except AttributeError:
973 pass
974
975 for n in sorted(self._children.keys()):
976 child = self._children[n]
977 # Use the name of the attribute (and not get_name()) as
978 # the key in the JSON dictionary to capture the hierarchy
979 # in the Python code that assembled this system
980 d[n] = child.get_config_as_dict()
981
982 for port_name in sorted(self._ports.keys()):
983 port = self._port_refs.get(port_name, None)
984 if port != None:
985 # Represent each port with a dictionary containing the
986 # prominent attributes
987 d[port_name] = port.get_config_as_dict()
988
989 return d
990
991 def getCCParams(self):
992 if self._ccParams:
993 return self._ccParams
994
995 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
996 cc_params = cc_params_struct()
997 cc_params.pyobj = self
998 cc_params.name = str(self)
999
1000 param_names = self._params.keys()
1001 param_names.sort()
1002 for param in param_names:
1003 value = self._values.get(param)
1004 if value is None:
1005 fatal("%s.%s without default or user set value",
1006 self.path(), param)
1007
1008 value = value.getValue()
1009 if isinstance(self._params[param], VectorParamDesc):
1010 assert isinstance(value, list)
1011 vec = getattr(cc_params, param)
1012 assert not len(vec)
1013 for v in value:
1014 vec.append(v)
1015 else:
1016 setattr(cc_params, param, value)
1017
1018 port_names = self._ports.keys()
1019 port_names.sort()
1020 for port_name in port_names:
1021 port = self._port_refs.get(port_name, None)
1022 if port != None:
1023 port_count = len(port)
1024 else:
1025 port_count = 0
1026 setattr(cc_params, 'port_' + port_name + '_connection_count',
1027 port_count)
1028 self._ccParams = cc_params
1029 return self._ccParams
1030
1031 # Get C++ object corresponding to this object, calling C++ if
1032 # necessary to construct it. Does *not* recursively create
1033 # children.
1034 def getCCObject(self):
1035 if not self._ccObject:
1036 # Make sure this object is in the configuration hierarchy
1037 if not self._parent and not isRoot(self):
1038 raise RuntimeError, "Attempt to instantiate orphan node"
1039 # Cycles in the configuration hierarchy are not supported. This
1040 # will catch the resulting recursion and stop.
1041 self._ccObject = -1
1042 params = self.getCCParams()
1043 self._ccObject = params.create()
1044 elif self._ccObject == -1:
1045 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1046 % self.path()
1047 return self._ccObject
1048
1049 def descendants(self):
1050 yield self
1051 for child in self._children.itervalues():
1052 for obj in child.descendants():
1053 yield obj
1054
1055 # Call C++ to create C++ object corresponding to this object
1056 def createCCObject(self):
1057 self.getCCParams()
1058 self.getCCObject() # force creation
1059
1060 def getValue(self):
1061 return self.getCCObject()
1062
1063 # Create C++ port connections corresponding to the connections in
1064 # _port_refs
1065 def connectPorts(self):
1066 for portRef in self._port_refs.itervalues():
1067 portRef.ccConnect()
1068
1069# Function to provide to C++ so it can look up instances based on paths
1070def resolveSimObject(name):
1071 obj = instanceDict[name]
1072 return obj.getCCObject()
1073
1074def isSimObject(value):
1075 return isinstance(value, SimObject)
1076
1077def isSimObjectClass(value):
1078 return issubclass(value, SimObject)
1079
1080def isSimObjectVector(value):
1081 return isinstance(value, SimObjectVector)
1082
1083def isSimObjectSequence(value):
1084 if not isinstance(value, (list, tuple)) or len(value) == 0:
1085 return False
1086
1087 for val in value:
1088 if not isNullPointer(val) and not isSimObject(val):
1089 return False
1090
1091 return True
1092
1093def isSimObjectOrSequence(value):
1094 return isSimObject(value) or isSimObjectSequence(value)
1095
1096def isRoot(obj):
1097 from m5.objects import Root
1098 return obj and obj is Root.getInstance()
1099
1100def isSimObjectOrVector(value):
1101 return isSimObject(value) or isSimObjectVector(value)
1102
1103def tryAsSimObjectOrVector(value):
1104 if isSimObjectOrVector(value):
1105 return value
1106 if isSimObjectSequence(value):
1107 return SimObjectVector(value)
1108 return None
1109
1110def coerceSimObjectOrVector(value):
1111 value = tryAsSimObjectOrVector(value)
1112 if value is None:
1113 raise TypeError, "SimObject or SimObjectVector expected"
1114 return value
1115
1116baseClasses = allClasses.copy()
1117baseInstances = instanceDict.copy()
1118
1119def clear():
1120 global allClasses, instanceDict, noCxxHeader
1121
1122 allClasses = baseClasses.copy()
1123 instanceDict = baseInstances.copy()
1124 noCxxHeader = False
1125
1126# __all__ defines the list of symbols that get exported when
1127# 'from config import *' is invoked. Try to keep this reasonably
1128# short to avoid polluting other namespaces.
1129__all__ = [ 'SimObject' ]