SimObject.py (8999:6f306dd5cee0) SimObject.py (9017:a20f46ccb9ce)
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41# Nathan Binkert
42# Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
47import m5
48from m5.util import *
49
50# Have to import params up top since Param is referenced on initial
51# load (when SimObject class references Param to create a class
52# variable, the 'name' param)...
53from m5.params import *
54# There are a few things we need that aren't in params.__all__ since
55# normal users don't need them
56from m5.params import ParamDesc, VectorParamDesc, \
57 isNullPointer, SimObjectVector, Port
58
59from m5.proxy import *
60from m5.proxy import isproxy
61
62#####################################################################
63#
64# M5 Python Configuration Utility
65#
66# The basic idea is to write simple Python programs that build Python
67# objects corresponding to M5 SimObjects for the desired simulation
68# configuration. For now, the Python emits a .ini file that can be
69# parsed by M5. In the future, some tighter integration between M5
70# and the Python interpreter may allow bypassing the .ini file.
71#
72# Each SimObject class in M5 is represented by a Python class with the
73# same name. The Python inheritance tree mirrors the M5 C++ tree
74# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75# SimObjects inherit from a single SimObject base class). To specify
76# an instance of an M5 SimObject in a configuration, the user simply
77# instantiates the corresponding Python object. The parameters for
78# that SimObject are given by assigning to attributes of the Python
79# object, either using keyword assignment in the constructor or in
80# separate assignment statements. For example:
81#
82# cache = BaseCache(size='64KB')
83# cache.hit_latency = 3
84# cache.assoc = 8
85#
86# The magic lies in the mapping of the Python attributes for SimObject
87# classes to the actual SimObject parameter specifications. This
88# allows parameter validity checking in the Python code. Continuing
89# the example above, the statements "cache.blurfl=3" or
90# "cache.assoc='hello'" would both result in runtime errors in Python,
91# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92# parameter requires an integer, respectively. This magic is done
93# primarily by overriding the special __setattr__ method that controls
94# assignment to object attributes.
95#
96# Once a set of Python objects have been instantiated in a hierarchy,
97# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98# will generate a .ini file.
99#
100#####################################################################
101
102# list of all SimObject classes
103allClasses = {}
104
105# dict to look up SimObjects based on path
106instanceDict = {}
107
108def public_value(key, value):
109 return key.startswith('_') or \
110 isinstance(value, (FunctionType, MethodType, ModuleType,
111 classmethod, type))
112
113# The metaclass for SimObject. This class controls how new classes
114# that derive from SimObject are instantiated, and provides inherited
115# class behavior (just like a class controls how instances of that
116# class are instantiated, and provides inherited instance behavior).
117class MetaSimObject(type):
118 # Attributes that can be set only at initialization time
119 init_keywords = { 'abstract' : bool,
120 'cxx_class' : str,
121 'cxx_type' : str,
122 'type' : str }
123 # Attributes that can be set any time
124 keywords = { 'check' : FunctionType }
125
126 # __new__ is called before __init__, and is where the statements
127 # in the body of the class definition get loaded into the class's
128 # __dict__. We intercept this to filter out parameter & port assignments
129 # and only allow "private" attributes to be passed to the base
130 # __new__ (starting with underscore).
131 def __new__(mcls, name, bases, dict):
132 assert name not in allClasses, "SimObject %s already present" % name
133
134 # Copy "private" attributes, functions, and classes to the
135 # official dict. Everything else goes in _init_dict to be
136 # filtered in __init__.
137 cls_dict = {}
138 value_dict = {}
139 for key,val in dict.items():
140 if public_value(key, val):
141 cls_dict[key] = val
142 else:
143 # must be a param/port setting
144 value_dict[key] = val
145 if 'abstract' not in value_dict:
146 value_dict['abstract'] = False
147 cls_dict['_value_dict'] = value_dict
148 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
149 if 'type' in value_dict:
150 allClasses[name] = cls
151 return cls
152
153 # subclass initialization
154 def __init__(cls, name, bases, dict):
155 # calls type.__init__()... I think that's a no-op, but leave
156 # it here just in case it's not.
157 super(MetaSimObject, cls).__init__(name, bases, dict)
158
159 # initialize required attributes
160
161 # class-only attributes
162 cls._params = multidict() # param descriptions
163 cls._ports = multidict() # port descriptions
164
165 # class or instance attributes
166 cls._values = multidict() # param values
167 cls._children = multidict() # SimObject children
168 cls._port_refs = multidict() # port ref objects
169 cls._instantiated = False # really instantiated, cloned, or subclassed
170
171 # We don't support multiple inheritance. If you want to, you
172 # must fix multidict to deal with it properly.
173 if len(bases) > 1:
174 raise TypeError, "SimObjects do not support multiple inheritance"
175
176 base = bases[0]
177
178 # Set up general inheritance via multidicts. A subclass will
179 # inherit all its settings from the base class. The only time
180 # the following is not true is when we define the SimObject
181 # class itself (in which case the multidicts have no parent).
182 if isinstance(base, MetaSimObject):
183 cls._base = base
184 cls._params.parent = base._params
185 cls._ports.parent = base._ports
186 cls._values.parent = base._values
187 cls._children.parent = base._children
188 cls._port_refs.parent = base._port_refs
189 # mark base as having been subclassed
190 base._instantiated = True
191 else:
192 cls._base = None
193
194 # default keyword values
195 if 'type' in cls._value_dict:
196 if 'cxx_class' not in cls._value_dict:
197 cls._value_dict['cxx_class'] = cls._value_dict['type']
198
199 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
200
201 # Export methods are automatically inherited via C++, so we
202 # don't want the method declarations to get inherited on the
203 # python side (and thus end up getting repeated in the wrapped
204 # versions of derived classes). The code below basicallly
205 # suppresses inheritance by substituting in the base (null)
206 # versions of these methods unless a different version is
207 # explicitly supplied.
208 for method_name in ('export_methods', 'export_method_cxx_predecls',
209 'export_method_swig_predecls'):
210 if method_name not in cls.__dict__:
211 base_method = getattr(MetaSimObject, method_name)
212 m = MethodType(base_method, cls, MetaSimObject)
213 setattr(cls, method_name, m)
214
215 # Now process the _value_dict items. They could be defining
216 # new (or overriding existing) parameters or ports, setting
217 # class keywords (e.g., 'abstract'), or setting parameter
218 # values or port bindings. The first 3 can only be set when
219 # the class is defined, so we handle them here. The others
220 # can be set later too, so just emulate that by calling
221 # setattr().
222 for key,val in cls._value_dict.items():
223 # param descriptions
224 if isinstance(val, ParamDesc):
225 cls._new_param(key, val)
226
227 # port objects
228 elif isinstance(val, Port):
229 cls._new_port(key, val)
230
231 # init-time-only keywords
232 elif cls.init_keywords.has_key(key):
233 cls._set_keyword(key, val, cls.init_keywords[key])
234
235 # default: use normal path (ends up in __setattr__)
236 else:
237 setattr(cls, key, val)
238
239 def _set_keyword(cls, keyword, val, kwtype):
240 if not isinstance(val, kwtype):
241 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
242 (keyword, type(val), kwtype)
243 if isinstance(val, FunctionType):
244 val = classmethod(val)
245 type.__setattr__(cls, keyword, val)
246
247 def _new_param(cls, name, pdesc):
248 # each param desc should be uniquely assigned to one variable
249 assert(not hasattr(pdesc, 'name'))
250 pdesc.name = name
251 cls._params[name] = pdesc
252 if hasattr(pdesc, 'default'):
253 cls._set_param(name, pdesc.default, pdesc)
254
255 def _set_param(cls, name, value, param):
256 assert(param.name == name)
257 try:
258 value = param.convert(value)
259 except Exception, e:
260 msg = "%s\nError setting param %s.%s to %s\n" % \
261 (e, cls.__name__, name, value)
262 e.args = (msg, )
263 raise
264 cls._values[name] = value
265 # if param value is a SimObject, make it a child too, so that
266 # it gets cloned properly when the class is instantiated
267 if isSimObjectOrVector(value) and not value.has_parent():
268 cls._add_cls_child(name, value)
269
270 def _add_cls_child(cls, name, child):
271 # It's a little funky to have a class as a parent, but these
272 # objects should never be instantiated (only cloned, which
273 # clears the parent pointer), and this makes it clear that the
274 # object is not an orphan and can provide better error
275 # messages.
276 child.set_parent(cls, name)
277 cls._children[name] = child
278
279 def _new_port(cls, name, port):
280 # each port should be uniquely assigned to one variable
281 assert(not hasattr(port, 'name'))
282 port.name = name
283 cls._ports[name] = port
284
285 # same as _get_port_ref, effectively, but for classes
286 def _cls_get_port_ref(cls, attr):
287 # Return reference that can be assigned to another port
288 # via __setattr__. There is only ever one reference
289 # object per port, but we create them lazily here.
290 ref = cls._port_refs.get(attr)
291 if not ref:
292 ref = cls._ports[attr].makeRef(cls)
293 cls._port_refs[attr] = ref
294 return ref
295
296 # Set attribute (called on foo.attr = value when foo is an
297 # instance of class cls).
298 def __setattr__(cls, attr, value):
299 # normal processing for private attributes
300 if public_value(attr, value):
301 type.__setattr__(cls, attr, value)
302 return
303
304 if cls.keywords.has_key(attr):
305 cls._set_keyword(attr, value, cls.keywords[attr])
306 return
307
308 if cls._ports.has_key(attr):
309 cls._cls_get_port_ref(attr).connect(value)
310 return
311
312 if isSimObjectOrSequence(value) and cls._instantiated:
313 raise RuntimeError, \
314 "cannot set SimObject parameter '%s' after\n" \
315 " class %s has been instantiated or subclassed" \
316 % (attr, cls.__name__)
317
318 # check for param
319 param = cls._params.get(attr)
320 if param:
321 cls._set_param(attr, value, param)
322 return
323
324 if isSimObjectOrSequence(value):
325 # If RHS is a SimObject, it's an implicit child assignment.
326 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
327 return
328
329 # no valid assignment... raise exception
330 raise AttributeError, \
331 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
332
333 def __getattr__(cls, attr):
334 if attr == 'cxx_class_path':
335 return cls.cxx_class.split('::')
336
337 if attr == 'cxx_class_name':
338 return cls.cxx_class_path[-1]
339
340 if attr == 'cxx_namespaces':
341 return cls.cxx_class_path[:-1]
342
343 if cls._values.has_key(attr):
344 return cls._values[attr]
345
346 if cls._children.has_key(attr):
347 return cls._children[attr]
348
349 raise AttributeError, \
350 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
351
352 def __str__(cls):
353 return cls.__name__
354
355 # See ParamValue.cxx_predecls for description.
356 def cxx_predecls(cls, code):
357 code('#include "params/$cls.hh"')
358
359 # See ParamValue.swig_predecls for description.
360 def swig_predecls(cls, code):
361 code('%import "python/m5/internal/param_$cls.i"')
362
363 # Hook for exporting additional C++ methods to Python via SWIG.
364 # Default is none, override using @classmethod in class definition.
365 def export_methods(cls, code):
366 pass
367
368 # Generate the code needed as a prerequisite for the C++ methods
369 # exported via export_methods() to be compiled in the _wrap.cc
370 # file. Typically generates one or more #include statements. If
371 # any methods are exported, typically at least the C++ header
372 # declaring the relevant SimObject class must be included.
373 def export_method_cxx_predecls(cls, code):
374 pass
375
376 # Generate the code needed as a prerequisite for the C++ methods
377 # exported via export_methods() to be processed by SWIG.
378 # Typically generates one or more %include or %import statements.
379 # If any methods are exported, typically at least the C++ header
380 # declaring the relevant SimObject class must be included.
381 def export_method_swig_predecls(cls, code):
382 pass
383
384 # Generate the declaration for this object for wrapping with SWIG.
385 # Generates code that goes into a SWIG .i file. Called from
386 # src/SConscript.
387 def swig_decl(cls, code):
388 class_path = cls.cxx_class.split('::')
389 classname = class_path[-1]
390 namespaces = class_path[:-1]
391
392 # The 'local' attribute restricts us to the params declared in
393 # the object itself, not including inherited params (which
394 # will also be inherited from the base class's param struct
395 # here).
396 params = cls._params.local.values()
397 ports = cls._ports.local
398
399 code('%module(package="m5.internal") param_$cls')
400 code()
401 code('%{')
402 code('#include "params/$cls.hh"')
403 for param in params:
404 param.cxx_predecls(code)
405 cls.export_method_cxx_predecls(code)
406 code('''\
407/**
408 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
409 * headers like vector, string, etc. used to automatically pull in
410 * the cstddef header but starting with gcc 4.6.1 they no longer do.
411 * This leads to swig generated a file that does not compile so we
412 * explicitly include cstddef. Additionally, including version 2.0.4,
413 * swig uses ptrdiff_t without the std:: namespace prefix which is
414 * required with gcc 4.6.1. We explicitly provide access to it.
415 */
416#include <cstddef>
417using std::ptrdiff_t;
418''')
419 code('%}')
420 code()
421
422 for param in params:
423 param.swig_predecls(code)
424 cls.export_method_swig_predecls(code)
425
426 code()
427 if cls._base:
428 code('%import "python/m5/internal/param_${{cls._base}}.i"')
429 code()
430
431 for ns in namespaces:
432 code('namespace $ns {')
433
434 if namespaces:
435 code('// avoid name conflicts')
436 sep_string = '_COLONS_'
437 flat_name = sep_string.join(class_path)
438 code('%rename($flat_name) $classname;')
439
440 code()
441 code('// stop swig from creating/wrapping default ctor/dtor')
442 code('%nodefault $classname;')
443 code('class $classname')
444 if cls._base:
445 code(' : public ${{cls._base.cxx_class}}')
446 code('{')
447 code(' public:')
448 cls.export_methods(code)
449 code('};')
450
451 for ns in reversed(namespaces):
452 code('} // namespace $ns')
453
454 code()
455 code('%include "params/$cls.hh"')
456
457
458 # Generate the C++ declaration (.hh file) for this SimObject's
459 # param struct. Called from src/SConscript.
460 def cxx_param_decl(cls, code):
461 # The 'local' attribute restricts us to the params declared in
462 # the object itself, not including inherited params (which
463 # will also be inherited from the base class's param struct
464 # here).
465 params = cls._params.local.values()
466 ports = cls._ports.local
467 try:
468 ptypes = [p.ptype for p in params]
469 except:
470 print cls, p, p.ptype_str
471 print params
472 raise
473
474 class_path = cls._value_dict['cxx_class'].split('::')
475
476 code('''\
477#ifndef __PARAMS__${cls}__
478#define __PARAMS__${cls}__
479
480''')
481
482 # A forward class declaration is sufficient since we are just
483 # declaring a pointer.
484 for ns in class_path[:-1]:
485 code('namespace $ns {')
486 code('class $0;', class_path[-1])
487 for ns in reversed(class_path[:-1]):
488 code('} // namespace $ns')
489 code()
490
491 # The base SimObject has a couple of params that get
492 # automatically set from Python without being declared through
493 # the normal Param mechanism; we slip them in here (needed
494 # predecls now, actual declarations below)
495 if cls == SimObject:
496 code('''
497#ifndef PY_VERSION
498struct PyObject;
499#endif
500
501#include <string>
502
503class EventQueue;
504''')
505 for param in params:
506 param.cxx_predecls(code)
507 for port in ports.itervalues():
508 port.cxx_predecls(code)
509 code()
510
511 if cls._base:
512 code('#include "params/${{cls._base.type}}.hh"')
513 code()
514
515 for ptype in ptypes:
516 if issubclass(ptype, Enum):
517 code('#include "enums/${{ptype.__name__}}.hh"')
518 code()
519
520 # now generate the actual param struct
521 code("struct ${cls}Params")
522 if cls._base:
523 code(" : public ${{cls._base.type}}Params")
524 code("{")
525 if not hasattr(cls, 'abstract') or not cls.abstract:
526 if 'type' in cls.__dict__:
527 code(" ${{cls.cxx_type}} create();")
528
529 code.indent()
530 if cls == SimObject:
531 code('''
532 SimObjectParams()
533 {
534 extern EventQueue mainEventQueue;
535 eventq = &mainEventQueue;
536 }
537 virtual ~SimObjectParams() {}
538
539 std::string name;
540 PyObject *pyobj;
541 EventQueue *eventq;
542 ''')
543 for param in params:
544 param.cxx_decl(code)
545 for port in ports.itervalues():
546 port.cxx_decl(code)
547
548 code.dedent()
549 code('};')
550
551 code()
552 code('#endif // __PARAMS__${cls}__')
553 return code
554
555
556
557# The SimObject class is the root of the special hierarchy. Most of
558# the code in this class deals with the configuration hierarchy itself
559# (parent/child node relationships).
560class SimObject(object):
561 # Specify metaclass. Any class inheriting from SimObject will
562 # get this metaclass.
563 __metaclass__ = MetaSimObject
564 type = 'SimObject'
565 abstract = True
566
567 @classmethod
568 def export_method_cxx_predecls(cls, code):
569 code('''
570#include <Python.h>
571
572#include "sim/serialize.hh"
573#include "sim/sim_object.hh"
574''')
575
576 @classmethod
577 def export_method_swig_predecls(cls, code):
578 code('''
579%include <std_string.i>
580''')
581
582 @classmethod
583 def export_methods(cls, code):
584 code('''
585 enum State {
586 Running,
587 Draining,
588 Drained
589 };
590
591 void init();
592 void loadState(Checkpoint *cp);
593 void initState();
594 void regStats();
595 void regFormulas();
596 void resetStats();
597 void startup();
598
599 unsigned int drain(Event *drain_event);
600 void resume();
601 void switchOut();
602 void takeOverFrom(BaseCPU *cpu);
603''')
604
605 # Initialize new instance. For objects with SimObject-valued
606 # children, we need to recursively clone the classes represented
607 # by those param values as well in a consistent "deep copy"-style
608 # fashion. That is, we want to make sure that each instance is
609 # cloned only once, and that if there are multiple references to
610 # the same original object, we end up with the corresponding
611 # cloned references all pointing to the same cloned instance.
612 def __init__(self, **kwargs):
613 ancestor = kwargs.get('_ancestor')
614 memo_dict = kwargs.get('_memo')
615 if memo_dict is None:
616 # prepare to memoize any recursively instantiated objects
617 memo_dict = {}
618 elif ancestor:
619 # memoize me now to avoid problems with recursive calls
620 memo_dict[ancestor] = self
621
622 if not ancestor:
623 ancestor = self.__class__
624 ancestor._instantiated = True
625
626 # initialize required attributes
627 self._parent = None
628 self._name = None
629 self._ccObject = None # pointer to C++ object
630 self._ccParams = None
631 self._instantiated = False # really "cloned"
632
633 # Clone children specified at class level. No need for a
634 # multidict here since we will be cloning everything.
635 # Do children before parameter values so that children that
636 # are also param values get cloned properly.
637 self._children = {}
638 for key,val in ancestor._children.iteritems():
639 self.add_child(key, val(_memo=memo_dict))
640
641 # Inherit parameter values from class using multidict so
642 # individual value settings can be overridden but we still
643 # inherit late changes to non-overridden class values.
644 self._values = multidict(ancestor._values)
645 # clone SimObject-valued parameters
646 for key,val in ancestor._values.iteritems():
647 val = tryAsSimObjectOrVector(val)
648 if val is not None:
649 self._values[key] = val(_memo=memo_dict)
650
651 # clone port references. no need to use a multidict here
652 # since we will be creating new references for all ports.
653 self._port_refs = {}
654 for key,val in ancestor._port_refs.iteritems():
655 self._port_refs[key] = val.clone(self, memo_dict)
656 # apply attribute assignments from keyword args, if any
657 for key,val in kwargs.iteritems():
658 setattr(self, key, val)
659
660 # "Clone" the current instance by creating another instance of
661 # this instance's class, but that inherits its parameter values
662 # and port mappings from the current instance. If we're in a
663 # "deep copy" recursive clone, check the _memo dict to see if
664 # we've already cloned this instance.
665 def __call__(self, **kwargs):
666 memo_dict = kwargs.get('_memo')
667 if memo_dict is None:
668 # no memo_dict: must be top-level clone operation.
669 # this is only allowed at the root of a hierarchy
670 if self._parent:
671 raise RuntimeError, "attempt to clone object %s " \
672 "not at the root of a tree (parent = %s)" \
673 % (self, self._parent)
674 # create a new dict and use that.
675 memo_dict = {}
676 kwargs['_memo'] = memo_dict
677 elif memo_dict.has_key(self):
678 # clone already done & memoized
679 return memo_dict[self]
680 return self.__class__(_ancestor = self, **kwargs)
681
682 def _get_port_ref(self, attr):
683 # Return reference that can be assigned to another port
684 # via __setattr__. There is only ever one reference
685 # object per port, but we create them lazily here.
686 ref = self._port_refs.get(attr)
687 if not ref:
688 ref = self._ports[attr].makeRef(self)
689 self._port_refs[attr] = ref
690 return ref
691
692 def __getattr__(self, attr):
693 if self._ports.has_key(attr):
694 return self._get_port_ref(attr)
695
696 if self._values.has_key(attr):
697 return self._values[attr]
698
699 if self._children.has_key(attr):
700 return self._children[attr]
701
702 # If the attribute exists on the C++ object, transparently
703 # forward the reference there. This is typically used for
704 # SWIG-wrapped methods such as init(), regStats(),
705 # regFormulas(), resetStats(), startup(), drain(), and
706 # resume().
707 if self._ccObject and hasattr(self._ccObject, attr):
708 return getattr(self._ccObject, attr)
709
710 raise AttributeError, "object '%s' has no attribute '%s'" \
711 % (self.__class__.__name__, attr)
712
713 # Set attribute (called on foo.attr = value when foo is an
714 # instance of class cls).
715 def __setattr__(self, attr, value):
716 # normal processing for private attributes
717 if attr.startswith('_'):
718 object.__setattr__(self, attr, value)
719 return
720
721 if self._ports.has_key(attr):
722 # set up port connection
723 self._get_port_ref(attr).connect(value)
724 return
725
726 if isSimObjectOrSequence(value) and self._instantiated:
727 raise RuntimeError, \
728 "cannot set SimObject parameter '%s' after\n" \
729 " instance been cloned %s" % (attr, `self`)
730
731 param = self._params.get(attr)
732 if param:
733 try:
734 value = param.convert(value)
735 except Exception, e:
736 msg = "%s\nError setting param %s.%s to %s\n" % \
737 (e, self.__class__.__name__, attr, value)
738 e.args = (msg, )
739 raise
740 self._values[attr] = value
741 # implicitly parent unparented objects assigned as params
742 if isSimObjectOrVector(value) and not value.has_parent():
743 self.add_child(attr, value)
744 return
745
746 # if RHS is a SimObject, it's an implicit child assignment
747 if isSimObjectOrSequence(value):
748 self.add_child(attr, value)
749 return
750
751 # no valid assignment... raise exception
752 raise AttributeError, "Class %s has no parameter %s" \
753 % (self.__class__.__name__, attr)
754
755
756 # this hack allows tacking a '[0]' onto parameters that may or may
757 # not be vectors, and always getting the first element (e.g. cpus)
758 def __getitem__(self, key):
759 if key == 0:
760 return self
761 raise TypeError, "Non-zero index '%s' to SimObject" % key
762
763 # Also implemented by SimObjectVector
764 def clear_parent(self, old_parent):
765 assert self._parent is old_parent
766 self._parent = None
767
768 # Also implemented by SimObjectVector
769 def set_parent(self, parent, name):
770 self._parent = parent
771 self._name = name
772
773 # Also implemented by SimObjectVector
774 def get_name(self):
775 return self._name
776
777 # Also implemented by SimObjectVector
778 def has_parent(self):
779 return self._parent is not None
780
781 # clear out child with given name. This code is not likely to be exercised.
782 # See comment in add_child.
783 def clear_child(self, name):
784 child = self._children[name]
785 child.clear_parent(self)
786 del self._children[name]
787
788 # Add a new child to this object.
789 def add_child(self, name, child):
790 child = coerceSimObjectOrVector(child)
791 if child.has_parent():
792 print "warning: add_child('%s'): child '%s' already has parent" % \
793 (name, child.get_name())
794 if self._children.has_key(name):
795 # This code path had an undiscovered bug that would make it fail
796 # at runtime. It had been here for a long time and was only
797 # exposed by a buggy script. Changes here will probably not be
798 # exercised without specialized testing.
799 self.clear_child(name)
800 child.set_parent(self, name)
801 self._children[name] = child
802
803 # Take SimObject-valued parameters that haven't been explicitly
804 # assigned as children and make them children of the object that
805 # they were assigned to as a parameter value. This guarantees
806 # that when we instantiate all the parameter objects we're still
807 # inside the configuration hierarchy.
808 def adoptOrphanParams(self):
809 for key,val in self._values.iteritems():
810 if not isSimObjectVector(val) and isSimObjectSequence(val):
811 # need to convert raw SimObject sequences to
812 # SimObjectVector class so we can call has_parent()
813 val = SimObjectVector(val)
814 self._values[key] = val
815 if isSimObjectOrVector(val) and not val.has_parent():
816 print "warning: %s adopting orphan SimObject param '%s'" \
817 % (self, key)
818 self.add_child(key, val)
819
820 def path(self):
821 if not self._parent:
822 return '<orphan %s>' % self.__class__
823 ppath = self._parent.path()
824 if ppath == 'root':
825 return self._name
826 return ppath + "." + self._name
827
828 def __str__(self):
829 return self.path()
830
831 def ini_str(self):
832 return self.path()
833
834 def find_any(self, ptype):
835 if isinstance(self, ptype):
836 return self, True
837
838 found_obj = None
839 for child in self._children.itervalues():
840 if isinstance(child, ptype):
841 if found_obj != None and child != found_obj:
842 raise AttributeError, \
843 'parent.any matched more than one: %s %s' % \
844 (found_obj.path, child.path)
845 found_obj = child
846 # search param space
847 for pname,pdesc in self._params.iteritems():
848 if issubclass(pdesc.ptype, ptype):
849 match_obj = self._values[pname]
850 if found_obj != None and found_obj != match_obj:
851 raise AttributeError, \
852 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
853 found_obj = match_obj
854 return found_obj, found_obj != None
855
856 def find_all(self, ptype):
857 all = {}
858 # search children
859 for child in self._children.itervalues():
860 if isinstance(child, ptype) and not isproxy(child) and \
861 not isNullPointer(child):
862 all[child] = True
863 if isSimObject(child):
864 # also add results from the child itself
865 child_all, done = child.find_all(ptype)
866 all.update(dict(zip(child_all, [done] * len(child_all))))
867 # search param space
868 for pname,pdesc in self._params.iteritems():
869 if issubclass(pdesc.ptype, ptype):
870 match_obj = self._values[pname]
871 if not isproxy(match_obj) and not isNullPointer(match_obj):
872 all[match_obj] = True
873 return all.keys(), True
874
875 def unproxy(self, base):
876 return self
877
878 def unproxyParams(self):
879 for param in self._params.iterkeys():
880 value = self._values.get(param)
881 if value != None and isproxy(value):
882 try:
883 value = value.unproxy(self)
884 except:
885 print "Error in unproxying param '%s' of %s" % \
886 (param, self.path())
887 raise
888 setattr(self, param, value)
889
890 # Unproxy ports in sorted order so that 'append' operations on
891 # vector ports are done in a deterministic fashion.
892 port_names = self._ports.keys()
893 port_names.sort()
894 for port_name in port_names:
895 port = self._port_refs.get(port_name)
896 if port != None:
897 port.unproxy(self)
898
899 def print_ini(self, ini_file):
900 print >>ini_file, '[' + self.path() + ']' # .ini section header
901
902 instanceDict[self.path()] = self
903
904 if hasattr(self, 'type'):
905 print >>ini_file, 'type=%s' % self.type
906
907 if len(self._children.keys()):
908 print >>ini_file, 'children=%s' % \
909 ' '.join(self._children[n].get_name() \
910 for n in sorted(self._children.keys()))
911
912 for param in sorted(self._params.keys()):
913 value = self._values.get(param)
914 if value != None:
915 print >>ini_file, '%s=%s' % (param,
916 self._values[param].ini_str())
917
918 for port_name in sorted(self._ports.keys()):
919 port = self._port_refs.get(port_name, None)
920 if port != None:
921 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
922
923 print >>ini_file # blank line between objects
924
925 # generate a tree of dictionaries expressing all the parameters in the
926 # instantiated system for use by scripts that want to do power, thermal
927 # visualization, and other similar tasks
928 def get_config_as_dict(self):
929 d = attrdict()
930 if hasattr(self, 'type'):
931 d.type = self.type
932 if hasattr(self, 'cxx_class'):
933 d.cxx_class = self.cxx_class
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41# Nathan Binkert
42# Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
47import m5
48from m5.util import *
49
50# Have to import params up top since Param is referenced on initial
51# load (when SimObject class references Param to create a class
52# variable, the 'name' param)...
53from m5.params import *
54# There are a few things we need that aren't in params.__all__ since
55# normal users don't need them
56from m5.params import ParamDesc, VectorParamDesc, \
57 isNullPointer, SimObjectVector, Port
58
59from m5.proxy import *
60from m5.proxy import isproxy
61
62#####################################################################
63#
64# M5 Python Configuration Utility
65#
66# The basic idea is to write simple Python programs that build Python
67# objects corresponding to M5 SimObjects for the desired simulation
68# configuration. For now, the Python emits a .ini file that can be
69# parsed by M5. In the future, some tighter integration between M5
70# and the Python interpreter may allow bypassing the .ini file.
71#
72# Each SimObject class in M5 is represented by a Python class with the
73# same name. The Python inheritance tree mirrors the M5 C++ tree
74# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75# SimObjects inherit from a single SimObject base class). To specify
76# an instance of an M5 SimObject in a configuration, the user simply
77# instantiates the corresponding Python object. The parameters for
78# that SimObject are given by assigning to attributes of the Python
79# object, either using keyword assignment in the constructor or in
80# separate assignment statements. For example:
81#
82# cache = BaseCache(size='64KB')
83# cache.hit_latency = 3
84# cache.assoc = 8
85#
86# The magic lies in the mapping of the Python attributes for SimObject
87# classes to the actual SimObject parameter specifications. This
88# allows parameter validity checking in the Python code. Continuing
89# the example above, the statements "cache.blurfl=3" or
90# "cache.assoc='hello'" would both result in runtime errors in Python,
91# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92# parameter requires an integer, respectively. This magic is done
93# primarily by overriding the special __setattr__ method that controls
94# assignment to object attributes.
95#
96# Once a set of Python objects have been instantiated in a hierarchy,
97# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98# will generate a .ini file.
99#
100#####################################################################
101
102# list of all SimObject classes
103allClasses = {}
104
105# dict to look up SimObjects based on path
106instanceDict = {}
107
108def public_value(key, value):
109 return key.startswith('_') or \
110 isinstance(value, (FunctionType, MethodType, ModuleType,
111 classmethod, type))
112
113# The metaclass for SimObject. This class controls how new classes
114# that derive from SimObject are instantiated, and provides inherited
115# class behavior (just like a class controls how instances of that
116# class are instantiated, and provides inherited instance behavior).
117class MetaSimObject(type):
118 # Attributes that can be set only at initialization time
119 init_keywords = { 'abstract' : bool,
120 'cxx_class' : str,
121 'cxx_type' : str,
122 'type' : str }
123 # Attributes that can be set any time
124 keywords = { 'check' : FunctionType }
125
126 # __new__ is called before __init__, and is where the statements
127 # in the body of the class definition get loaded into the class's
128 # __dict__. We intercept this to filter out parameter & port assignments
129 # and only allow "private" attributes to be passed to the base
130 # __new__ (starting with underscore).
131 def __new__(mcls, name, bases, dict):
132 assert name not in allClasses, "SimObject %s already present" % name
133
134 # Copy "private" attributes, functions, and classes to the
135 # official dict. Everything else goes in _init_dict to be
136 # filtered in __init__.
137 cls_dict = {}
138 value_dict = {}
139 for key,val in dict.items():
140 if public_value(key, val):
141 cls_dict[key] = val
142 else:
143 # must be a param/port setting
144 value_dict[key] = val
145 if 'abstract' not in value_dict:
146 value_dict['abstract'] = False
147 cls_dict['_value_dict'] = value_dict
148 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
149 if 'type' in value_dict:
150 allClasses[name] = cls
151 return cls
152
153 # subclass initialization
154 def __init__(cls, name, bases, dict):
155 # calls type.__init__()... I think that's a no-op, but leave
156 # it here just in case it's not.
157 super(MetaSimObject, cls).__init__(name, bases, dict)
158
159 # initialize required attributes
160
161 # class-only attributes
162 cls._params = multidict() # param descriptions
163 cls._ports = multidict() # port descriptions
164
165 # class or instance attributes
166 cls._values = multidict() # param values
167 cls._children = multidict() # SimObject children
168 cls._port_refs = multidict() # port ref objects
169 cls._instantiated = False # really instantiated, cloned, or subclassed
170
171 # We don't support multiple inheritance. If you want to, you
172 # must fix multidict to deal with it properly.
173 if len(bases) > 1:
174 raise TypeError, "SimObjects do not support multiple inheritance"
175
176 base = bases[0]
177
178 # Set up general inheritance via multidicts. A subclass will
179 # inherit all its settings from the base class. The only time
180 # the following is not true is when we define the SimObject
181 # class itself (in which case the multidicts have no parent).
182 if isinstance(base, MetaSimObject):
183 cls._base = base
184 cls._params.parent = base._params
185 cls._ports.parent = base._ports
186 cls._values.parent = base._values
187 cls._children.parent = base._children
188 cls._port_refs.parent = base._port_refs
189 # mark base as having been subclassed
190 base._instantiated = True
191 else:
192 cls._base = None
193
194 # default keyword values
195 if 'type' in cls._value_dict:
196 if 'cxx_class' not in cls._value_dict:
197 cls._value_dict['cxx_class'] = cls._value_dict['type']
198
199 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
200
201 # Export methods are automatically inherited via C++, so we
202 # don't want the method declarations to get inherited on the
203 # python side (and thus end up getting repeated in the wrapped
204 # versions of derived classes). The code below basicallly
205 # suppresses inheritance by substituting in the base (null)
206 # versions of these methods unless a different version is
207 # explicitly supplied.
208 for method_name in ('export_methods', 'export_method_cxx_predecls',
209 'export_method_swig_predecls'):
210 if method_name not in cls.__dict__:
211 base_method = getattr(MetaSimObject, method_name)
212 m = MethodType(base_method, cls, MetaSimObject)
213 setattr(cls, method_name, m)
214
215 # Now process the _value_dict items. They could be defining
216 # new (or overriding existing) parameters or ports, setting
217 # class keywords (e.g., 'abstract'), or setting parameter
218 # values or port bindings. The first 3 can only be set when
219 # the class is defined, so we handle them here. The others
220 # can be set later too, so just emulate that by calling
221 # setattr().
222 for key,val in cls._value_dict.items():
223 # param descriptions
224 if isinstance(val, ParamDesc):
225 cls._new_param(key, val)
226
227 # port objects
228 elif isinstance(val, Port):
229 cls._new_port(key, val)
230
231 # init-time-only keywords
232 elif cls.init_keywords.has_key(key):
233 cls._set_keyword(key, val, cls.init_keywords[key])
234
235 # default: use normal path (ends up in __setattr__)
236 else:
237 setattr(cls, key, val)
238
239 def _set_keyword(cls, keyword, val, kwtype):
240 if not isinstance(val, kwtype):
241 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
242 (keyword, type(val), kwtype)
243 if isinstance(val, FunctionType):
244 val = classmethod(val)
245 type.__setattr__(cls, keyword, val)
246
247 def _new_param(cls, name, pdesc):
248 # each param desc should be uniquely assigned to one variable
249 assert(not hasattr(pdesc, 'name'))
250 pdesc.name = name
251 cls._params[name] = pdesc
252 if hasattr(pdesc, 'default'):
253 cls._set_param(name, pdesc.default, pdesc)
254
255 def _set_param(cls, name, value, param):
256 assert(param.name == name)
257 try:
258 value = param.convert(value)
259 except Exception, e:
260 msg = "%s\nError setting param %s.%s to %s\n" % \
261 (e, cls.__name__, name, value)
262 e.args = (msg, )
263 raise
264 cls._values[name] = value
265 # if param value is a SimObject, make it a child too, so that
266 # it gets cloned properly when the class is instantiated
267 if isSimObjectOrVector(value) and not value.has_parent():
268 cls._add_cls_child(name, value)
269
270 def _add_cls_child(cls, name, child):
271 # It's a little funky to have a class as a parent, but these
272 # objects should never be instantiated (only cloned, which
273 # clears the parent pointer), and this makes it clear that the
274 # object is not an orphan and can provide better error
275 # messages.
276 child.set_parent(cls, name)
277 cls._children[name] = child
278
279 def _new_port(cls, name, port):
280 # each port should be uniquely assigned to one variable
281 assert(not hasattr(port, 'name'))
282 port.name = name
283 cls._ports[name] = port
284
285 # same as _get_port_ref, effectively, but for classes
286 def _cls_get_port_ref(cls, attr):
287 # Return reference that can be assigned to another port
288 # via __setattr__. There is only ever one reference
289 # object per port, but we create them lazily here.
290 ref = cls._port_refs.get(attr)
291 if not ref:
292 ref = cls._ports[attr].makeRef(cls)
293 cls._port_refs[attr] = ref
294 return ref
295
296 # Set attribute (called on foo.attr = value when foo is an
297 # instance of class cls).
298 def __setattr__(cls, attr, value):
299 # normal processing for private attributes
300 if public_value(attr, value):
301 type.__setattr__(cls, attr, value)
302 return
303
304 if cls.keywords.has_key(attr):
305 cls._set_keyword(attr, value, cls.keywords[attr])
306 return
307
308 if cls._ports.has_key(attr):
309 cls._cls_get_port_ref(attr).connect(value)
310 return
311
312 if isSimObjectOrSequence(value) and cls._instantiated:
313 raise RuntimeError, \
314 "cannot set SimObject parameter '%s' after\n" \
315 " class %s has been instantiated or subclassed" \
316 % (attr, cls.__name__)
317
318 # check for param
319 param = cls._params.get(attr)
320 if param:
321 cls._set_param(attr, value, param)
322 return
323
324 if isSimObjectOrSequence(value):
325 # If RHS is a SimObject, it's an implicit child assignment.
326 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
327 return
328
329 # no valid assignment... raise exception
330 raise AttributeError, \
331 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
332
333 def __getattr__(cls, attr):
334 if attr == 'cxx_class_path':
335 return cls.cxx_class.split('::')
336
337 if attr == 'cxx_class_name':
338 return cls.cxx_class_path[-1]
339
340 if attr == 'cxx_namespaces':
341 return cls.cxx_class_path[:-1]
342
343 if cls._values.has_key(attr):
344 return cls._values[attr]
345
346 if cls._children.has_key(attr):
347 return cls._children[attr]
348
349 raise AttributeError, \
350 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
351
352 def __str__(cls):
353 return cls.__name__
354
355 # See ParamValue.cxx_predecls for description.
356 def cxx_predecls(cls, code):
357 code('#include "params/$cls.hh"')
358
359 # See ParamValue.swig_predecls for description.
360 def swig_predecls(cls, code):
361 code('%import "python/m5/internal/param_$cls.i"')
362
363 # Hook for exporting additional C++ methods to Python via SWIG.
364 # Default is none, override using @classmethod in class definition.
365 def export_methods(cls, code):
366 pass
367
368 # Generate the code needed as a prerequisite for the C++ methods
369 # exported via export_methods() to be compiled in the _wrap.cc
370 # file. Typically generates one or more #include statements. If
371 # any methods are exported, typically at least the C++ header
372 # declaring the relevant SimObject class must be included.
373 def export_method_cxx_predecls(cls, code):
374 pass
375
376 # Generate the code needed as a prerequisite for the C++ methods
377 # exported via export_methods() to be processed by SWIG.
378 # Typically generates one or more %include or %import statements.
379 # If any methods are exported, typically at least the C++ header
380 # declaring the relevant SimObject class must be included.
381 def export_method_swig_predecls(cls, code):
382 pass
383
384 # Generate the declaration for this object for wrapping with SWIG.
385 # Generates code that goes into a SWIG .i file. Called from
386 # src/SConscript.
387 def swig_decl(cls, code):
388 class_path = cls.cxx_class.split('::')
389 classname = class_path[-1]
390 namespaces = class_path[:-1]
391
392 # The 'local' attribute restricts us to the params declared in
393 # the object itself, not including inherited params (which
394 # will also be inherited from the base class's param struct
395 # here).
396 params = cls._params.local.values()
397 ports = cls._ports.local
398
399 code('%module(package="m5.internal") param_$cls')
400 code()
401 code('%{')
402 code('#include "params/$cls.hh"')
403 for param in params:
404 param.cxx_predecls(code)
405 cls.export_method_cxx_predecls(code)
406 code('''\
407/**
408 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
409 * headers like vector, string, etc. used to automatically pull in
410 * the cstddef header but starting with gcc 4.6.1 they no longer do.
411 * This leads to swig generated a file that does not compile so we
412 * explicitly include cstddef. Additionally, including version 2.0.4,
413 * swig uses ptrdiff_t without the std:: namespace prefix which is
414 * required with gcc 4.6.1. We explicitly provide access to it.
415 */
416#include <cstddef>
417using std::ptrdiff_t;
418''')
419 code('%}')
420 code()
421
422 for param in params:
423 param.swig_predecls(code)
424 cls.export_method_swig_predecls(code)
425
426 code()
427 if cls._base:
428 code('%import "python/m5/internal/param_${{cls._base}}.i"')
429 code()
430
431 for ns in namespaces:
432 code('namespace $ns {')
433
434 if namespaces:
435 code('// avoid name conflicts')
436 sep_string = '_COLONS_'
437 flat_name = sep_string.join(class_path)
438 code('%rename($flat_name) $classname;')
439
440 code()
441 code('// stop swig from creating/wrapping default ctor/dtor')
442 code('%nodefault $classname;')
443 code('class $classname')
444 if cls._base:
445 code(' : public ${{cls._base.cxx_class}}')
446 code('{')
447 code(' public:')
448 cls.export_methods(code)
449 code('};')
450
451 for ns in reversed(namespaces):
452 code('} // namespace $ns')
453
454 code()
455 code('%include "params/$cls.hh"')
456
457
458 # Generate the C++ declaration (.hh file) for this SimObject's
459 # param struct. Called from src/SConscript.
460 def cxx_param_decl(cls, code):
461 # The 'local' attribute restricts us to the params declared in
462 # the object itself, not including inherited params (which
463 # will also be inherited from the base class's param struct
464 # here).
465 params = cls._params.local.values()
466 ports = cls._ports.local
467 try:
468 ptypes = [p.ptype for p in params]
469 except:
470 print cls, p, p.ptype_str
471 print params
472 raise
473
474 class_path = cls._value_dict['cxx_class'].split('::')
475
476 code('''\
477#ifndef __PARAMS__${cls}__
478#define __PARAMS__${cls}__
479
480''')
481
482 # A forward class declaration is sufficient since we are just
483 # declaring a pointer.
484 for ns in class_path[:-1]:
485 code('namespace $ns {')
486 code('class $0;', class_path[-1])
487 for ns in reversed(class_path[:-1]):
488 code('} // namespace $ns')
489 code()
490
491 # The base SimObject has a couple of params that get
492 # automatically set from Python without being declared through
493 # the normal Param mechanism; we slip them in here (needed
494 # predecls now, actual declarations below)
495 if cls == SimObject:
496 code('''
497#ifndef PY_VERSION
498struct PyObject;
499#endif
500
501#include <string>
502
503class EventQueue;
504''')
505 for param in params:
506 param.cxx_predecls(code)
507 for port in ports.itervalues():
508 port.cxx_predecls(code)
509 code()
510
511 if cls._base:
512 code('#include "params/${{cls._base.type}}.hh"')
513 code()
514
515 for ptype in ptypes:
516 if issubclass(ptype, Enum):
517 code('#include "enums/${{ptype.__name__}}.hh"')
518 code()
519
520 # now generate the actual param struct
521 code("struct ${cls}Params")
522 if cls._base:
523 code(" : public ${{cls._base.type}}Params")
524 code("{")
525 if not hasattr(cls, 'abstract') or not cls.abstract:
526 if 'type' in cls.__dict__:
527 code(" ${{cls.cxx_type}} create();")
528
529 code.indent()
530 if cls == SimObject:
531 code('''
532 SimObjectParams()
533 {
534 extern EventQueue mainEventQueue;
535 eventq = &mainEventQueue;
536 }
537 virtual ~SimObjectParams() {}
538
539 std::string name;
540 PyObject *pyobj;
541 EventQueue *eventq;
542 ''')
543 for param in params:
544 param.cxx_decl(code)
545 for port in ports.itervalues():
546 port.cxx_decl(code)
547
548 code.dedent()
549 code('};')
550
551 code()
552 code('#endif // __PARAMS__${cls}__')
553 return code
554
555
556
557# The SimObject class is the root of the special hierarchy. Most of
558# the code in this class deals with the configuration hierarchy itself
559# (parent/child node relationships).
560class SimObject(object):
561 # Specify metaclass. Any class inheriting from SimObject will
562 # get this metaclass.
563 __metaclass__ = MetaSimObject
564 type = 'SimObject'
565 abstract = True
566
567 @classmethod
568 def export_method_cxx_predecls(cls, code):
569 code('''
570#include <Python.h>
571
572#include "sim/serialize.hh"
573#include "sim/sim_object.hh"
574''')
575
576 @classmethod
577 def export_method_swig_predecls(cls, code):
578 code('''
579%include <std_string.i>
580''')
581
582 @classmethod
583 def export_methods(cls, code):
584 code('''
585 enum State {
586 Running,
587 Draining,
588 Drained
589 };
590
591 void init();
592 void loadState(Checkpoint *cp);
593 void initState();
594 void regStats();
595 void regFormulas();
596 void resetStats();
597 void startup();
598
599 unsigned int drain(Event *drain_event);
600 void resume();
601 void switchOut();
602 void takeOverFrom(BaseCPU *cpu);
603''')
604
605 # Initialize new instance. For objects with SimObject-valued
606 # children, we need to recursively clone the classes represented
607 # by those param values as well in a consistent "deep copy"-style
608 # fashion. That is, we want to make sure that each instance is
609 # cloned only once, and that if there are multiple references to
610 # the same original object, we end up with the corresponding
611 # cloned references all pointing to the same cloned instance.
612 def __init__(self, **kwargs):
613 ancestor = kwargs.get('_ancestor')
614 memo_dict = kwargs.get('_memo')
615 if memo_dict is None:
616 # prepare to memoize any recursively instantiated objects
617 memo_dict = {}
618 elif ancestor:
619 # memoize me now to avoid problems with recursive calls
620 memo_dict[ancestor] = self
621
622 if not ancestor:
623 ancestor = self.__class__
624 ancestor._instantiated = True
625
626 # initialize required attributes
627 self._parent = None
628 self._name = None
629 self._ccObject = None # pointer to C++ object
630 self._ccParams = None
631 self._instantiated = False # really "cloned"
632
633 # Clone children specified at class level. No need for a
634 # multidict here since we will be cloning everything.
635 # Do children before parameter values so that children that
636 # are also param values get cloned properly.
637 self._children = {}
638 for key,val in ancestor._children.iteritems():
639 self.add_child(key, val(_memo=memo_dict))
640
641 # Inherit parameter values from class using multidict so
642 # individual value settings can be overridden but we still
643 # inherit late changes to non-overridden class values.
644 self._values = multidict(ancestor._values)
645 # clone SimObject-valued parameters
646 for key,val in ancestor._values.iteritems():
647 val = tryAsSimObjectOrVector(val)
648 if val is not None:
649 self._values[key] = val(_memo=memo_dict)
650
651 # clone port references. no need to use a multidict here
652 # since we will be creating new references for all ports.
653 self._port_refs = {}
654 for key,val in ancestor._port_refs.iteritems():
655 self._port_refs[key] = val.clone(self, memo_dict)
656 # apply attribute assignments from keyword args, if any
657 for key,val in kwargs.iteritems():
658 setattr(self, key, val)
659
660 # "Clone" the current instance by creating another instance of
661 # this instance's class, but that inherits its parameter values
662 # and port mappings from the current instance. If we're in a
663 # "deep copy" recursive clone, check the _memo dict to see if
664 # we've already cloned this instance.
665 def __call__(self, **kwargs):
666 memo_dict = kwargs.get('_memo')
667 if memo_dict is None:
668 # no memo_dict: must be top-level clone operation.
669 # this is only allowed at the root of a hierarchy
670 if self._parent:
671 raise RuntimeError, "attempt to clone object %s " \
672 "not at the root of a tree (parent = %s)" \
673 % (self, self._parent)
674 # create a new dict and use that.
675 memo_dict = {}
676 kwargs['_memo'] = memo_dict
677 elif memo_dict.has_key(self):
678 # clone already done & memoized
679 return memo_dict[self]
680 return self.__class__(_ancestor = self, **kwargs)
681
682 def _get_port_ref(self, attr):
683 # Return reference that can be assigned to another port
684 # via __setattr__. There is only ever one reference
685 # object per port, but we create them lazily here.
686 ref = self._port_refs.get(attr)
687 if not ref:
688 ref = self._ports[attr].makeRef(self)
689 self._port_refs[attr] = ref
690 return ref
691
692 def __getattr__(self, attr):
693 if self._ports.has_key(attr):
694 return self._get_port_ref(attr)
695
696 if self._values.has_key(attr):
697 return self._values[attr]
698
699 if self._children.has_key(attr):
700 return self._children[attr]
701
702 # If the attribute exists on the C++ object, transparently
703 # forward the reference there. This is typically used for
704 # SWIG-wrapped methods such as init(), regStats(),
705 # regFormulas(), resetStats(), startup(), drain(), and
706 # resume().
707 if self._ccObject and hasattr(self._ccObject, attr):
708 return getattr(self._ccObject, attr)
709
710 raise AttributeError, "object '%s' has no attribute '%s'" \
711 % (self.__class__.__name__, attr)
712
713 # Set attribute (called on foo.attr = value when foo is an
714 # instance of class cls).
715 def __setattr__(self, attr, value):
716 # normal processing for private attributes
717 if attr.startswith('_'):
718 object.__setattr__(self, attr, value)
719 return
720
721 if self._ports.has_key(attr):
722 # set up port connection
723 self._get_port_ref(attr).connect(value)
724 return
725
726 if isSimObjectOrSequence(value) and self._instantiated:
727 raise RuntimeError, \
728 "cannot set SimObject parameter '%s' after\n" \
729 " instance been cloned %s" % (attr, `self`)
730
731 param = self._params.get(attr)
732 if param:
733 try:
734 value = param.convert(value)
735 except Exception, e:
736 msg = "%s\nError setting param %s.%s to %s\n" % \
737 (e, self.__class__.__name__, attr, value)
738 e.args = (msg, )
739 raise
740 self._values[attr] = value
741 # implicitly parent unparented objects assigned as params
742 if isSimObjectOrVector(value) and not value.has_parent():
743 self.add_child(attr, value)
744 return
745
746 # if RHS is a SimObject, it's an implicit child assignment
747 if isSimObjectOrSequence(value):
748 self.add_child(attr, value)
749 return
750
751 # no valid assignment... raise exception
752 raise AttributeError, "Class %s has no parameter %s" \
753 % (self.__class__.__name__, attr)
754
755
756 # this hack allows tacking a '[0]' onto parameters that may or may
757 # not be vectors, and always getting the first element (e.g. cpus)
758 def __getitem__(self, key):
759 if key == 0:
760 return self
761 raise TypeError, "Non-zero index '%s' to SimObject" % key
762
763 # Also implemented by SimObjectVector
764 def clear_parent(self, old_parent):
765 assert self._parent is old_parent
766 self._parent = None
767
768 # Also implemented by SimObjectVector
769 def set_parent(self, parent, name):
770 self._parent = parent
771 self._name = name
772
773 # Also implemented by SimObjectVector
774 def get_name(self):
775 return self._name
776
777 # Also implemented by SimObjectVector
778 def has_parent(self):
779 return self._parent is not None
780
781 # clear out child with given name. This code is not likely to be exercised.
782 # See comment in add_child.
783 def clear_child(self, name):
784 child = self._children[name]
785 child.clear_parent(self)
786 del self._children[name]
787
788 # Add a new child to this object.
789 def add_child(self, name, child):
790 child = coerceSimObjectOrVector(child)
791 if child.has_parent():
792 print "warning: add_child('%s'): child '%s' already has parent" % \
793 (name, child.get_name())
794 if self._children.has_key(name):
795 # This code path had an undiscovered bug that would make it fail
796 # at runtime. It had been here for a long time and was only
797 # exposed by a buggy script. Changes here will probably not be
798 # exercised without specialized testing.
799 self.clear_child(name)
800 child.set_parent(self, name)
801 self._children[name] = child
802
803 # Take SimObject-valued parameters that haven't been explicitly
804 # assigned as children and make them children of the object that
805 # they were assigned to as a parameter value. This guarantees
806 # that when we instantiate all the parameter objects we're still
807 # inside the configuration hierarchy.
808 def adoptOrphanParams(self):
809 for key,val in self._values.iteritems():
810 if not isSimObjectVector(val) and isSimObjectSequence(val):
811 # need to convert raw SimObject sequences to
812 # SimObjectVector class so we can call has_parent()
813 val = SimObjectVector(val)
814 self._values[key] = val
815 if isSimObjectOrVector(val) and not val.has_parent():
816 print "warning: %s adopting orphan SimObject param '%s'" \
817 % (self, key)
818 self.add_child(key, val)
819
820 def path(self):
821 if not self._parent:
822 return '<orphan %s>' % self.__class__
823 ppath = self._parent.path()
824 if ppath == 'root':
825 return self._name
826 return ppath + "." + self._name
827
828 def __str__(self):
829 return self.path()
830
831 def ini_str(self):
832 return self.path()
833
834 def find_any(self, ptype):
835 if isinstance(self, ptype):
836 return self, True
837
838 found_obj = None
839 for child in self._children.itervalues():
840 if isinstance(child, ptype):
841 if found_obj != None and child != found_obj:
842 raise AttributeError, \
843 'parent.any matched more than one: %s %s' % \
844 (found_obj.path, child.path)
845 found_obj = child
846 # search param space
847 for pname,pdesc in self._params.iteritems():
848 if issubclass(pdesc.ptype, ptype):
849 match_obj = self._values[pname]
850 if found_obj != None and found_obj != match_obj:
851 raise AttributeError, \
852 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
853 found_obj = match_obj
854 return found_obj, found_obj != None
855
856 def find_all(self, ptype):
857 all = {}
858 # search children
859 for child in self._children.itervalues():
860 if isinstance(child, ptype) and not isproxy(child) and \
861 not isNullPointer(child):
862 all[child] = True
863 if isSimObject(child):
864 # also add results from the child itself
865 child_all, done = child.find_all(ptype)
866 all.update(dict(zip(child_all, [done] * len(child_all))))
867 # search param space
868 for pname,pdesc in self._params.iteritems():
869 if issubclass(pdesc.ptype, ptype):
870 match_obj = self._values[pname]
871 if not isproxy(match_obj) and not isNullPointer(match_obj):
872 all[match_obj] = True
873 return all.keys(), True
874
875 def unproxy(self, base):
876 return self
877
878 def unproxyParams(self):
879 for param in self._params.iterkeys():
880 value = self._values.get(param)
881 if value != None and isproxy(value):
882 try:
883 value = value.unproxy(self)
884 except:
885 print "Error in unproxying param '%s' of %s" % \
886 (param, self.path())
887 raise
888 setattr(self, param, value)
889
890 # Unproxy ports in sorted order so that 'append' operations on
891 # vector ports are done in a deterministic fashion.
892 port_names = self._ports.keys()
893 port_names.sort()
894 for port_name in port_names:
895 port = self._port_refs.get(port_name)
896 if port != None:
897 port.unproxy(self)
898
899 def print_ini(self, ini_file):
900 print >>ini_file, '[' + self.path() + ']' # .ini section header
901
902 instanceDict[self.path()] = self
903
904 if hasattr(self, 'type'):
905 print >>ini_file, 'type=%s' % self.type
906
907 if len(self._children.keys()):
908 print >>ini_file, 'children=%s' % \
909 ' '.join(self._children[n].get_name() \
910 for n in sorted(self._children.keys()))
911
912 for param in sorted(self._params.keys()):
913 value = self._values.get(param)
914 if value != None:
915 print >>ini_file, '%s=%s' % (param,
916 self._values[param].ini_str())
917
918 for port_name in sorted(self._ports.keys()):
919 port = self._port_refs.get(port_name, None)
920 if port != None:
921 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
922
923 print >>ini_file # blank line between objects
924
925 # generate a tree of dictionaries expressing all the parameters in the
926 # instantiated system for use by scripts that want to do power, thermal
927 # visualization, and other similar tasks
928 def get_config_as_dict(self):
929 d = attrdict()
930 if hasattr(self, 'type'):
931 d.type = self.type
932 if hasattr(self, 'cxx_class'):
933 d.cxx_class = self.cxx_class
934 # Add the name and path of this object to be able to link to
935 # the stats
936 d.name = self.get_name()
937 d.path = self.path()
934
935 for param in sorted(self._params.keys()):
936 value = self._values.get(param)
937 if value != None:
938 try:
939 # Use native type for those supported by JSON and
940 # strings for everything else. skipkeys=True seems
941 # to not work as well as one would hope
942 if type(self._values[param].value) in \
943 [str, unicode, int, long, float, bool, None]:
944 d[param] = self._values[param].value
945 else:
946 d[param] = str(self._values[param])
947
948 except AttributeError:
949 pass
950
951 for n in sorted(self._children.keys()):
938
939 for param in sorted(self._params.keys()):
940 value = self._values.get(param)
941 if value != None:
942 try:
943 # Use native type for those supported by JSON and
944 # strings for everything else. skipkeys=True seems
945 # to not work as well as one would hope
946 if type(self._values[param].value) in \
947 [str, unicode, int, long, float, bool, None]:
948 d[param] = self._values[param].value
949 else:
950 d[param] = str(self._values[param])
951
952 except AttributeError:
953 pass
954
955 for n in sorted(self._children.keys()):
952 d[self._children[n].get_name()] = self._children[n].get_config_as_dict()
956 child = self._children[n]
957 # Use the name of the attribute (and not get_name()) as
958 # the key in the JSON dictionary to capture the hierarchy
959 # in the Python code that assembled this system
960 d[n] = child.get_config_as_dict()
953
954 for port_name in sorted(self._ports.keys()):
955 port = self._port_refs.get(port_name, None)
956 if port != None:
961
962 for port_name in sorted(self._ports.keys()):
963 port = self._port_refs.get(port_name, None)
964 if port != None:
957 # Might want to actually make this reference the object
958 # in the future, although execing the string problem would
959 # get some of the way there
960 d[port_name] = port.ini_str()
965 # Represent each port with a dictionary containing the
966 # prominent attributes
967 d[port_name] = port.get_config_as_dict()
961
962 return d
963
964 def getCCParams(self):
965 if self._ccParams:
966 return self._ccParams
967
968 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
969 cc_params = cc_params_struct()
970 cc_params.pyobj = self
971 cc_params.name = str(self)
972
973 param_names = self._params.keys()
974 param_names.sort()
975 for param in param_names:
976 value = self._values.get(param)
977 if value is None:
978 fatal("%s.%s without default or user set value",
979 self.path(), param)
980
981 value = value.getValue()
982 if isinstance(self._params[param], VectorParamDesc):
983 assert isinstance(value, list)
984 vec = getattr(cc_params, param)
985 assert not len(vec)
986 for v in value:
987 vec.append(v)
988 else:
989 setattr(cc_params, param, value)
990
991 port_names = self._ports.keys()
992 port_names.sort()
993 for port_name in port_names:
994 port = self._port_refs.get(port_name, None)
995 if port != None:
996 port_count = len(port)
997 else:
998 port_count = 0
999 setattr(cc_params, 'port_' + port_name + '_connection_count',
1000 port_count)
1001 self._ccParams = cc_params
1002 return self._ccParams
1003
1004 # Get C++ object corresponding to this object, calling C++ if
1005 # necessary to construct it. Does *not* recursively create
1006 # children.
1007 def getCCObject(self):
1008 if not self._ccObject:
1009 # Make sure this object is in the configuration hierarchy
1010 if not self._parent and not isRoot(self):
1011 raise RuntimeError, "Attempt to instantiate orphan node"
1012 # Cycles in the configuration hierarchy are not supported. This
1013 # will catch the resulting recursion and stop.
1014 self._ccObject = -1
1015 params = self.getCCParams()
1016 self._ccObject = params.create()
1017 elif self._ccObject == -1:
1018 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1019 % self.path()
1020 return self._ccObject
1021
1022 def descendants(self):
1023 yield self
1024 for child in self._children.itervalues():
1025 for obj in child.descendants():
1026 yield obj
1027
1028 # Call C++ to create C++ object corresponding to this object
1029 def createCCObject(self):
1030 self.getCCParams()
1031 self.getCCObject() # force creation
1032
1033 def getValue(self):
1034 return self.getCCObject()
1035
1036 # Create C++ port connections corresponding to the connections in
1037 # _port_refs
1038 def connectPorts(self):
1039 for portRef in self._port_refs.itervalues():
1040 portRef.ccConnect()
1041
1042 def getMemoryMode(self):
1043 if not isinstance(self, m5.objects.System):
1044 return None
1045
1046 return self._ccObject.getMemoryMode()
1047
1048 def changeTiming(self, mode):
1049 if isinstance(self, m5.objects.System):
1050 # i don't know if there's a better way to do this - calling
1051 # setMemoryMode directly from self._ccObject results in calling
1052 # SimObject::setMemoryMode, not the System::setMemoryMode
1053 self._ccObject.setMemoryMode(mode)
1054
1055 def takeOverFrom(self, old_cpu):
1056 self._ccObject.takeOverFrom(old_cpu._ccObject)
1057
1058# Function to provide to C++ so it can look up instances based on paths
1059def resolveSimObject(name):
1060 obj = instanceDict[name]
1061 return obj.getCCObject()
1062
1063def isSimObject(value):
1064 return isinstance(value, SimObject)
1065
1066def isSimObjectClass(value):
1067 return issubclass(value, SimObject)
1068
1069def isSimObjectVector(value):
1070 return isinstance(value, SimObjectVector)
1071
1072def isSimObjectSequence(value):
1073 if not isinstance(value, (list, tuple)) or len(value) == 0:
1074 return False
1075
1076 for val in value:
1077 if not isNullPointer(val) and not isSimObject(val):
1078 return False
1079
1080 return True
1081
1082def isSimObjectOrSequence(value):
1083 return isSimObject(value) or isSimObjectSequence(value)
1084
1085def isRoot(obj):
1086 from m5.objects import Root
1087 return obj and obj is Root.getInstance()
1088
1089def isSimObjectOrVector(value):
1090 return isSimObject(value) or isSimObjectVector(value)
1091
1092def tryAsSimObjectOrVector(value):
1093 if isSimObjectOrVector(value):
1094 return value
1095 if isSimObjectSequence(value):
1096 return SimObjectVector(value)
1097 return None
1098
1099def coerceSimObjectOrVector(value):
1100 value = tryAsSimObjectOrVector(value)
1101 if value is None:
1102 raise TypeError, "SimObject or SimObjectVector expected"
1103 return value
1104
1105baseClasses = allClasses.copy()
1106baseInstances = instanceDict.copy()
1107
1108def clear():
1109 global allClasses, instanceDict
1110
1111 allClasses = baseClasses.copy()
1112 instanceDict = baseInstances.copy()
1113
1114# __all__ defines the list of symbols that get exported when
1115# 'from config import *' is invoked. Try to keep this reasonably
1116# short to avoid polluting other namespaces.
1117__all__ = [ 'SimObject' ]
968
969 return d
970
971 def getCCParams(self):
972 if self._ccParams:
973 return self._ccParams
974
975 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
976 cc_params = cc_params_struct()
977 cc_params.pyobj = self
978 cc_params.name = str(self)
979
980 param_names = self._params.keys()
981 param_names.sort()
982 for param in param_names:
983 value = self._values.get(param)
984 if value is None:
985 fatal("%s.%s without default or user set value",
986 self.path(), param)
987
988 value = value.getValue()
989 if isinstance(self._params[param], VectorParamDesc):
990 assert isinstance(value, list)
991 vec = getattr(cc_params, param)
992 assert not len(vec)
993 for v in value:
994 vec.append(v)
995 else:
996 setattr(cc_params, param, value)
997
998 port_names = self._ports.keys()
999 port_names.sort()
1000 for port_name in port_names:
1001 port = self._port_refs.get(port_name, None)
1002 if port != None:
1003 port_count = len(port)
1004 else:
1005 port_count = 0
1006 setattr(cc_params, 'port_' + port_name + '_connection_count',
1007 port_count)
1008 self._ccParams = cc_params
1009 return self._ccParams
1010
1011 # Get C++ object corresponding to this object, calling C++ if
1012 # necessary to construct it. Does *not* recursively create
1013 # children.
1014 def getCCObject(self):
1015 if not self._ccObject:
1016 # Make sure this object is in the configuration hierarchy
1017 if not self._parent and not isRoot(self):
1018 raise RuntimeError, "Attempt to instantiate orphan node"
1019 # Cycles in the configuration hierarchy are not supported. This
1020 # will catch the resulting recursion and stop.
1021 self._ccObject = -1
1022 params = self.getCCParams()
1023 self._ccObject = params.create()
1024 elif self._ccObject == -1:
1025 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1026 % self.path()
1027 return self._ccObject
1028
1029 def descendants(self):
1030 yield self
1031 for child in self._children.itervalues():
1032 for obj in child.descendants():
1033 yield obj
1034
1035 # Call C++ to create C++ object corresponding to this object
1036 def createCCObject(self):
1037 self.getCCParams()
1038 self.getCCObject() # force creation
1039
1040 def getValue(self):
1041 return self.getCCObject()
1042
1043 # Create C++ port connections corresponding to the connections in
1044 # _port_refs
1045 def connectPorts(self):
1046 for portRef in self._port_refs.itervalues():
1047 portRef.ccConnect()
1048
1049 def getMemoryMode(self):
1050 if not isinstance(self, m5.objects.System):
1051 return None
1052
1053 return self._ccObject.getMemoryMode()
1054
1055 def changeTiming(self, mode):
1056 if isinstance(self, m5.objects.System):
1057 # i don't know if there's a better way to do this - calling
1058 # setMemoryMode directly from self._ccObject results in calling
1059 # SimObject::setMemoryMode, not the System::setMemoryMode
1060 self._ccObject.setMemoryMode(mode)
1061
1062 def takeOverFrom(self, old_cpu):
1063 self._ccObject.takeOverFrom(old_cpu._ccObject)
1064
1065# Function to provide to C++ so it can look up instances based on paths
1066def resolveSimObject(name):
1067 obj = instanceDict[name]
1068 return obj.getCCObject()
1069
1070def isSimObject(value):
1071 return isinstance(value, SimObject)
1072
1073def isSimObjectClass(value):
1074 return issubclass(value, SimObject)
1075
1076def isSimObjectVector(value):
1077 return isinstance(value, SimObjectVector)
1078
1079def isSimObjectSequence(value):
1080 if not isinstance(value, (list, tuple)) or len(value) == 0:
1081 return False
1082
1083 for val in value:
1084 if not isNullPointer(val) and not isSimObject(val):
1085 return False
1086
1087 return True
1088
1089def isSimObjectOrSequence(value):
1090 return isSimObject(value) or isSimObjectSequence(value)
1091
1092def isRoot(obj):
1093 from m5.objects import Root
1094 return obj and obj is Root.getInstance()
1095
1096def isSimObjectOrVector(value):
1097 return isSimObject(value) or isSimObjectVector(value)
1098
1099def tryAsSimObjectOrVector(value):
1100 if isSimObjectOrVector(value):
1101 return value
1102 if isSimObjectSequence(value):
1103 return SimObjectVector(value)
1104 return None
1105
1106def coerceSimObjectOrVector(value):
1107 value = tryAsSimObjectOrVector(value)
1108 if value is None:
1109 raise TypeError, "SimObject or SimObjectVector expected"
1110 return value
1111
1112baseClasses = allClasses.copy()
1113baseInstances = instanceDict.copy()
1114
1115def clear():
1116 global allClasses, instanceDict
1117
1118 allClasses = baseClasses.copy()
1119 instanceDict = baseInstances.copy()
1120
1121# __all__ defines the list of symbols that get exported when
1122# 'from config import *' is invoked. Try to keep this reasonably
1123# short to avoid polluting other namespaces.
1124__all__ = [ 'SimObject' ]