SimObject.py (8998:c8bf5a20bc07) SimObject.py (8999:6f306dd5cee0)
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41# Nathan Binkert
42# Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41# Nathan Binkert
42# Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
47try:
48 import pydot
49except:
50 pydot = False
51
52import m5
53from m5.util import *
54
55# Have to import params up top since Param is referenced on initial
56# load (when SimObject class references Param to create a class
57# variable, the 'name' param)...
58from m5.params import *
59# There are a few things we need that aren't in params.__all__ since
60# normal users don't need them
61from m5.params import ParamDesc, VectorParamDesc, \
62 isNullPointer, SimObjectVector, Port
63
64from m5.proxy import *
65from m5.proxy import isproxy
66
67#####################################################################
68#
69# M5 Python Configuration Utility
70#
71# The basic idea is to write simple Python programs that build Python
72# objects corresponding to M5 SimObjects for the desired simulation
73# configuration. For now, the Python emits a .ini file that can be
74# parsed by M5. In the future, some tighter integration between M5
75# and the Python interpreter may allow bypassing the .ini file.
76#
77# Each SimObject class in M5 is represented by a Python class with the
78# same name. The Python inheritance tree mirrors the M5 C++ tree
79# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
80# SimObjects inherit from a single SimObject base class). To specify
81# an instance of an M5 SimObject in a configuration, the user simply
82# instantiates the corresponding Python object. The parameters for
83# that SimObject are given by assigning to attributes of the Python
84# object, either using keyword assignment in the constructor or in
85# separate assignment statements. For example:
86#
87# cache = BaseCache(size='64KB')
88# cache.hit_latency = 3
89# cache.assoc = 8
90#
91# The magic lies in the mapping of the Python attributes for SimObject
92# classes to the actual SimObject parameter specifications. This
93# allows parameter validity checking in the Python code. Continuing
94# the example above, the statements "cache.blurfl=3" or
95# "cache.assoc='hello'" would both result in runtime errors in Python,
96# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
97# parameter requires an integer, respectively. This magic is done
98# primarily by overriding the special __setattr__ method that controls
99# assignment to object attributes.
100#
101# Once a set of Python objects have been instantiated in a hierarchy,
102# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
103# will generate a .ini file.
104#
105#####################################################################
106
107# list of all SimObject classes
108allClasses = {}
109
110# dict to look up SimObjects based on path
111instanceDict = {}
112
113def public_value(key, value):
114 return key.startswith('_') or \
115 isinstance(value, (FunctionType, MethodType, ModuleType,
116 classmethod, type))
117
118# The metaclass for SimObject. This class controls how new classes
119# that derive from SimObject are instantiated, and provides inherited
120# class behavior (just like a class controls how instances of that
121# class are instantiated, and provides inherited instance behavior).
122class MetaSimObject(type):
123 # Attributes that can be set only at initialization time
124 init_keywords = { 'abstract' : bool,
125 'cxx_class' : str,
126 'cxx_type' : str,
127 'type' : str }
128 # Attributes that can be set any time
129 keywords = { 'check' : FunctionType }
130
131 # __new__ is called before __init__, and is where the statements
132 # in the body of the class definition get loaded into the class's
133 # __dict__. We intercept this to filter out parameter & port assignments
134 # and only allow "private" attributes to be passed to the base
135 # __new__ (starting with underscore).
136 def __new__(mcls, name, bases, dict):
137 assert name not in allClasses, "SimObject %s already present" % name
138
139 # Copy "private" attributes, functions, and classes to the
140 # official dict. Everything else goes in _init_dict to be
141 # filtered in __init__.
142 cls_dict = {}
143 value_dict = {}
144 for key,val in dict.items():
145 if public_value(key, val):
146 cls_dict[key] = val
147 else:
148 # must be a param/port setting
149 value_dict[key] = val
150 if 'abstract' not in value_dict:
151 value_dict['abstract'] = False
152 cls_dict['_value_dict'] = value_dict
153 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
154 if 'type' in value_dict:
155 allClasses[name] = cls
156 return cls
157
158 # subclass initialization
159 def __init__(cls, name, bases, dict):
160 # calls type.__init__()... I think that's a no-op, but leave
161 # it here just in case it's not.
162 super(MetaSimObject, cls).__init__(name, bases, dict)
163
164 # initialize required attributes
165
166 # class-only attributes
167 cls._params = multidict() # param descriptions
168 cls._ports = multidict() # port descriptions
169
170 # class or instance attributes
171 cls._values = multidict() # param values
172 cls._children = multidict() # SimObject children
173 cls._port_refs = multidict() # port ref objects
174 cls._instantiated = False # really instantiated, cloned, or subclassed
175
176 # We don't support multiple inheritance. If you want to, you
177 # must fix multidict to deal with it properly.
178 if len(bases) > 1:
179 raise TypeError, "SimObjects do not support multiple inheritance"
180
181 base = bases[0]
182
183 # Set up general inheritance via multidicts. A subclass will
184 # inherit all its settings from the base class. The only time
185 # the following is not true is when we define the SimObject
186 # class itself (in which case the multidicts have no parent).
187 if isinstance(base, MetaSimObject):
188 cls._base = base
189 cls._params.parent = base._params
190 cls._ports.parent = base._ports
191 cls._values.parent = base._values
192 cls._children.parent = base._children
193 cls._port_refs.parent = base._port_refs
194 # mark base as having been subclassed
195 base._instantiated = True
196 else:
197 cls._base = None
198
199 # default keyword values
200 if 'type' in cls._value_dict:
201 if 'cxx_class' not in cls._value_dict:
202 cls._value_dict['cxx_class'] = cls._value_dict['type']
203
204 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
205
206 # Export methods are automatically inherited via C++, so we
207 # don't want the method declarations to get inherited on the
208 # python side (and thus end up getting repeated in the wrapped
209 # versions of derived classes). The code below basicallly
210 # suppresses inheritance by substituting in the base (null)
211 # versions of these methods unless a different version is
212 # explicitly supplied.
213 for method_name in ('export_methods', 'export_method_cxx_predecls',
214 'export_method_swig_predecls'):
215 if method_name not in cls.__dict__:
216 base_method = getattr(MetaSimObject, method_name)
217 m = MethodType(base_method, cls, MetaSimObject)
218 setattr(cls, method_name, m)
219
220 # Now process the _value_dict items. They could be defining
221 # new (or overriding existing) parameters or ports, setting
222 # class keywords (e.g., 'abstract'), or setting parameter
223 # values or port bindings. The first 3 can only be set when
224 # the class is defined, so we handle them here. The others
225 # can be set later too, so just emulate that by calling
226 # setattr().
227 for key,val in cls._value_dict.items():
228 # param descriptions
229 if isinstance(val, ParamDesc):
230 cls._new_param(key, val)
231
232 # port objects
233 elif isinstance(val, Port):
234 cls._new_port(key, val)
235
236 # init-time-only keywords
237 elif cls.init_keywords.has_key(key):
238 cls._set_keyword(key, val, cls.init_keywords[key])
239
240 # default: use normal path (ends up in __setattr__)
241 else:
242 setattr(cls, key, val)
243
244 def _set_keyword(cls, keyword, val, kwtype):
245 if not isinstance(val, kwtype):
246 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
247 (keyword, type(val), kwtype)
248 if isinstance(val, FunctionType):
249 val = classmethod(val)
250 type.__setattr__(cls, keyword, val)
251
252 def _new_param(cls, name, pdesc):
253 # each param desc should be uniquely assigned to one variable
254 assert(not hasattr(pdesc, 'name'))
255 pdesc.name = name
256 cls._params[name] = pdesc
257 if hasattr(pdesc, 'default'):
258 cls._set_param(name, pdesc.default, pdesc)
259
260 def _set_param(cls, name, value, param):
261 assert(param.name == name)
262 try:
263 value = param.convert(value)
264 except Exception, e:
265 msg = "%s\nError setting param %s.%s to %s\n" % \
266 (e, cls.__name__, name, value)
267 e.args = (msg, )
268 raise
269 cls._values[name] = value
270 # if param value is a SimObject, make it a child too, so that
271 # it gets cloned properly when the class is instantiated
272 if isSimObjectOrVector(value) and not value.has_parent():
273 cls._add_cls_child(name, value)
274
275 def _add_cls_child(cls, name, child):
276 # It's a little funky to have a class as a parent, but these
277 # objects should never be instantiated (only cloned, which
278 # clears the parent pointer), and this makes it clear that the
279 # object is not an orphan and can provide better error
280 # messages.
281 child.set_parent(cls, name)
282 cls._children[name] = child
283
284 def _new_port(cls, name, port):
285 # each port should be uniquely assigned to one variable
286 assert(not hasattr(port, 'name'))
287 port.name = name
288 cls._ports[name] = port
289
290 # same as _get_port_ref, effectively, but for classes
291 def _cls_get_port_ref(cls, attr):
292 # Return reference that can be assigned to another port
293 # via __setattr__. There is only ever one reference
294 # object per port, but we create them lazily here.
295 ref = cls._port_refs.get(attr)
296 if not ref:
297 ref = cls._ports[attr].makeRef(cls)
298 cls._port_refs[attr] = ref
299 return ref
300
301 # Set attribute (called on foo.attr = value when foo is an
302 # instance of class cls).
303 def __setattr__(cls, attr, value):
304 # normal processing for private attributes
305 if public_value(attr, value):
306 type.__setattr__(cls, attr, value)
307 return
308
309 if cls.keywords.has_key(attr):
310 cls._set_keyword(attr, value, cls.keywords[attr])
311 return
312
313 if cls._ports.has_key(attr):
314 cls._cls_get_port_ref(attr).connect(value)
315 return
316
317 if isSimObjectOrSequence(value) and cls._instantiated:
318 raise RuntimeError, \
319 "cannot set SimObject parameter '%s' after\n" \
320 " class %s has been instantiated or subclassed" \
321 % (attr, cls.__name__)
322
323 # check for param
324 param = cls._params.get(attr)
325 if param:
326 cls._set_param(attr, value, param)
327 return
328
329 if isSimObjectOrSequence(value):
330 # If RHS is a SimObject, it's an implicit child assignment.
331 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
332 return
333
334 # no valid assignment... raise exception
335 raise AttributeError, \
336 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
337
338 def __getattr__(cls, attr):
339 if attr == 'cxx_class_path':
340 return cls.cxx_class.split('::')
341
342 if attr == 'cxx_class_name':
343 return cls.cxx_class_path[-1]
344
345 if attr == 'cxx_namespaces':
346 return cls.cxx_class_path[:-1]
347
348 if cls._values.has_key(attr):
349 return cls._values[attr]
350
351 if cls._children.has_key(attr):
352 return cls._children[attr]
353
354 raise AttributeError, \
355 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
356
357 def __str__(cls):
358 return cls.__name__
359
360 # See ParamValue.cxx_predecls for description.
361 def cxx_predecls(cls, code):
362 code('#include "params/$cls.hh"')
363
364 # See ParamValue.swig_predecls for description.
365 def swig_predecls(cls, code):
366 code('%import "python/m5/internal/param_$cls.i"')
367
368 # Hook for exporting additional C++ methods to Python via SWIG.
369 # Default is none, override using @classmethod in class definition.
370 def export_methods(cls, code):
371 pass
372
373 # Generate the code needed as a prerequisite for the C++ methods
374 # exported via export_methods() to be compiled in the _wrap.cc
375 # file. Typically generates one or more #include statements. If
376 # any methods are exported, typically at least the C++ header
377 # declaring the relevant SimObject class must be included.
378 def export_method_cxx_predecls(cls, code):
379 pass
380
381 # Generate the code needed as a prerequisite for the C++ methods
382 # exported via export_methods() to be processed by SWIG.
383 # Typically generates one or more %include or %import statements.
384 # If any methods are exported, typically at least the C++ header
385 # declaring the relevant SimObject class must be included.
386 def export_method_swig_predecls(cls, code):
387 pass
388
389 # Generate the declaration for this object for wrapping with SWIG.
390 # Generates code that goes into a SWIG .i file. Called from
391 # src/SConscript.
392 def swig_decl(cls, code):
393 class_path = cls.cxx_class.split('::')
394 classname = class_path[-1]
395 namespaces = class_path[:-1]
396
397 # The 'local' attribute restricts us to the params declared in
398 # the object itself, not including inherited params (which
399 # will also be inherited from the base class's param struct
400 # here).
401 params = cls._params.local.values()
402 ports = cls._ports.local
403
404 code('%module(package="m5.internal") param_$cls')
405 code()
406 code('%{')
407 code('#include "params/$cls.hh"')
408 for param in params:
409 param.cxx_predecls(code)
410 cls.export_method_cxx_predecls(code)
411 code('''\
412/**
413 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
414 * headers like vector, string, etc. used to automatically pull in
415 * the cstddef header but starting with gcc 4.6.1 they no longer do.
416 * This leads to swig generated a file that does not compile so we
417 * explicitly include cstddef. Additionally, including version 2.0.4,
418 * swig uses ptrdiff_t without the std:: namespace prefix which is
419 * required with gcc 4.6.1. We explicitly provide access to it.
420 */
421#include <cstddef>
422using std::ptrdiff_t;
423''')
424 code('%}')
425 code()
426
427 for param in params:
428 param.swig_predecls(code)
429 cls.export_method_swig_predecls(code)
430
431 code()
432 if cls._base:
433 code('%import "python/m5/internal/param_${{cls._base}}.i"')
434 code()
435
436 for ns in namespaces:
437 code('namespace $ns {')
438
439 if namespaces:
440 code('// avoid name conflicts')
441 sep_string = '_COLONS_'
442 flat_name = sep_string.join(class_path)
443 code('%rename($flat_name) $classname;')
444
445 code()
446 code('// stop swig from creating/wrapping default ctor/dtor')
447 code('%nodefault $classname;')
448 code('class $classname')
449 if cls._base:
450 code(' : public ${{cls._base.cxx_class}}')
451 code('{')
452 code(' public:')
453 cls.export_methods(code)
454 code('};')
455
456 for ns in reversed(namespaces):
457 code('} // namespace $ns')
458
459 code()
460 code('%include "params/$cls.hh"')
461
462
463 # Generate the C++ declaration (.hh file) for this SimObject's
464 # param struct. Called from src/SConscript.
465 def cxx_param_decl(cls, code):
466 # The 'local' attribute restricts us to the params declared in
467 # the object itself, not including inherited params (which
468 # will also be inherited from the base class's param struct
469 # here).
470 params = cls._params.local.values()
471 ports = cls._ports.local
472 try:
473 ptypes = [p.ptype for p in params]
474 except:
475 print cls, p, p.ptype_str
476 print params
477 raise
478
479 class_path = cls._value_dict['cxx_class'].split('::')
480
481 code('''\
482#ifndef __PARAMS__${cls}__
483#define __PARAMS__${cls}__
484
485''')
486
487 # A forward class declaration is sufficient since we are just
488 # declaring a pointer.
489 for ns in class_path[:-1]:
490 code('namespace $ns {')
491 code('class $0;', class_path[-1])
492 for ns in reversed(class_path[:-1]):
493 code('} // namespace $ns')
494 code()
495
496 # The base SimObject has a couple of params that get
497 # automatically set from Python without being declared through
498 # the normal Param mechanism; we slip them in here (needed
499 # predecls now, actual declarations below)
500 if cls == SimObject:
501 code('''
502#ifndef PY_VERSION
503struct PyObject;
504#endif
505
506#include <string>
507
508class EventQueue;
509''')
510 for param in params:
511 param.cxx_predecls(code)
512 for port in ports.itervalues():
513 port.cxx_predecls(code)
514 code()
515
516 if cls._base:
517 code('#include "params/${{cls._base.type}}.hh"')
518 code()
519
520 for ptype in ptypes:
521 if issubclass(ptype, Enum):
522 code('#include "enums/${{ptype.__name__}}.hh"')
523 code()
524
525 # now generate the actual param struct
526 code("struct ${cls}Params")
527 if cls._base:
528 code(" : public ${{cls._base.type}}Params")
529 code("{")
530 if not hasattr(cls, 'abstract') or not cls.abstract:
531 if 'type' in cls.__dict__:
532 code(" ${{cls.cxx_type}} create();")
533
534 code.indent()
535 if cls == SimObject:
536 code('''
537 SimObjectParams()
538 {
539 extern EventQueue mainEventQueue;
540 eventq = &mainEventQueue;
541 }
542 virtual ~SimObjectParams() {}
543
544 std::string name;
545 PyObject *pyobj;
546 EventQueue *eventq;
547 ''')
548 for param in params:
549 param.cxx_decl(code)
550 for port in ports.itervalues():
551 port.cxx_decl(code)
552
553 code.dedent()
554 code('};')
555
556 code()
557 code('#endif // __PARAMS__${cls}__')
558 return code
559
560
561
562# The SimObject class is the root of the special hierarchy. Most of
563# the code in this class deals with the configuration hierarchy itself
564# (parent/child node relationships).
565class SimObject(object):
566 # Specify metaclass. Any class inheriting from SimObject will
567 # get this metaclass.
568 __metaclass__ = MetaSimObject
569 type = 'SimObject'
570 abstract = True
571
572 @classmethod
573 def export_method_cxx_predecls(cls, code):
574 code('''
575#include <Python.h>
576
577#include "sim/serialize.hh"
578#include "sim/sim_object.hh"
579''')
580
581 @classmethod
582 def export_method_swig_predecls(cls, code):
583 code('''
584%include <std_string.i>
585''')
586
587 @classmethod
588 def export_methods(cls, code):
589 code('''
590 enum State {
591 Running,
592 Draining,
593 Drained
594 };
595
596 void init();
597 void loadState(Checkpoint *cp);
598 void initState();
599 void regStats();
600 void regFormulas();
601 void resetStats();
602 void startup();
603
604 unsigned int drain(Event *drain_event);
605 void resume();
606 void switchOut();
607 void takeOverFrom(BaseCPU *cpu);
608''')
609
610 # Initialize new instance. For objects with SimObject-valued
611 # children, we need to recursively clone the classes represented
612 # by those param values as well in a consistent "deep copy"-style
613 # fashion. That is, we want to make sure that each instance is
614 # cloned only once, and that if there are multiple references to
615 # the same original object, we end up with the corresponding
616 # cloned references all pointing to the same cloned instance.
617 def __init__(self, **kwargs):
618 ancestor = kwargs.get('_ancestor')
619 memo_dict = kwargs.get('_memo')
620 if memo_dict is None:
621 # prepare to memoize any recursively instantiated objects
622 memo_dict = {}
623 elif ancestor:
624 # memoize me now to avoid problems with recursive calls
625 memo_dict[ancestor] = self
626
627 if not ancestor:
628 ancestor = self.__class__
629 ancestor._instantiated = True
630
631 # initialize required attributes
632 self._parent = None
633 self._name = None
634 self._ccObject = None # pointer to C++ object
635 self._ccParams = None
636 self._instantiated = False # really "cloned"
637
638 # Clone children specified at class level. No need for a
639 # multidict here since we will be cloning everything.
640 # Do children before parameter values so that children that
641 # are also param values get cloned properly.
642 self._children = {}
643 for key,val in ancestor._children.iteritems():
644 self.add_child(key, val(_memo=memo_dict))
645
646 # Inherit parameter values from class using multidict so
647 # individual value settings can be overridden but we still
648 # inherit late changes to non-overridden class values.
649 self._values = multidict(ancestor._values)
650 # clone SimObject-valued parameters
651 for key,val in ancestor._values.iteritems():
652 val = tryAsSimObjectOrVector(val)
653 if val is not None:
654 self._values[key] = val(_memo=memo_dict)
655
656 # clone port references. no need to use a multidict here
657 # since we will be creating new references for all ports.
658 self._port_refs = {}
659 for key,val in ancestor._port_refs.iteritems():
660 self._port_refs[key] = val.clone(self, memo_dict)
661 # apply attribute assignments from keyword args, if any
662 for key,val in kwargs.iteritems():
663 setattr(self, key, val)
664
665 # "Clone" the current instance by creating another instance of
666 # this instance's class, but that inherits its parameter values
667 # and port mappings from the current instance. If we're in a
668 # "deep copy" recursive clone, check the _memo dict to see if
669 # we've already cloned this instance.
670 def __call__(self, **kwargs):
671 memo_dict = kwargs.get('_memo')
672 if memo_dict is None:
673 # no memo_dict: must be top-level clone operation.
674 # this is only allowed at the root of a hierarchy
675 if self._parent:
676 raise RuntimeError, "attempt to clone object %s " \
677 "not at the root of a tree (parent = %s)" \
678 % (self, self._parent)
679 # create a new dict and use that.
680 memo_dict = {}
681 kwargs['_memo'] = memo_dict
682 elif memo_dict.has_key(self):
683 # clone already done & memoized
684 return memo_dict[self]
685 return self.__class__(_ancestor = self, **kwargs)
686
687 def _get_port_ref(self, attr):
688 # Return reference that can be assigned to another port
689 # via __setattr__. There is only ever one reference
690 # object per port, but we create them lazily here.
691 ref = self._port_refs.get(attr)
692 if not ref:
693 ref = self._ports[attr].makeRef(self)
694 self._port_refs[attr] = ref
695 return ref
696
697 def __getattr__(self, attr):
698 if self._ports.has_key(attr):
699 return self._get_port_ref(attr)
700
701 if self._values.has_key(attr):
702 return self._values[attr]
703
704 if self._children.has_key(attr):
705 return self._children[attr]
706
707 # If the attribute exists on the C++ object, transparently
708 # forward the reference there. This is typically used for
709 # SWIG-wrapped methods such as init(), regStats(),
710 # regFormulas(), resetStats(), startup(), drain(), and
711 # resume().
712 if self._ccObject and hasattr(self._ccObject, attr):
713 return getattr(self._ccObject, attr)
714
715 raise AttributeError, "object '%s' has no attribute '%s'" \
716 % (self.__class__.__name__, attr)
717
718 # Set attribute (called on foo.attr = value when foo is an
719 # instance of class cls).
720 def __setattr__(self, attr, value):
721 # normal processing for private attributes
722 if attr.startswith('_'):
723 object.__setattr__(self, attr, value)
724 return
725
726 if self._ports.has_key(attr):
727 # set up port connection
728 self._get_port_ref(attr).connect(value)
729 return
730
731 if isSimObjectOrSequence(value) and self._instantiated:
732 raise RuntimeError, \
733 "cannot set SimObject parameter '%s' after\n" \
734 " instance been cloned %s" % (attr, `self`)
735
736 param = self._params.get(attr)
737 if param:
738 try:
739 value = param.convert(value)
740 except Exception, e:
741 msg = "%s\nError setting param %s.%s to %s\n" % \
742 (e, self.__class__.__name__, attr, value)
743 e.args = (msg, )
744 raise
745 self._values[attr] = value
746 # implicitly parent unparented objects assigned as params
747 if isSimObjectOrVector(value) and not value.has_parent():
748 self.add_child(attr, value)
749 return
750
751 # if RHS is a SimObject, it's an implicit child assignment
752 if isSimObjectOrSequence(value):
753 self.add_child(attr, value)
754 return
755
756 # no valid assignment... raise exception
757 raise AttributeError, "Class %s has no parameter %s" \
758 % (self.__class__.__name__, attr)
759
760
761 # this hack allows tacking a '[0]' onto parameters that may or may
762 # not be vectors, and always getting the first element (e.g. cpus)
763 def __getitem__(self, key):
764 if key == 0:
765 return self
766 raise TypeError, "Non-zero index '%s' to SimObject" % key
767
768 # Also implemented by SimObjectVector
769 def clear_parent(self, old_parent):
770 assert self._parent is old_parent
771 self._parent = None
772
773 # Also implemented by SimObjectVector
774 def set_parent(self, parent, name):
775 self._parent = parent
776 self._name = name
777
778 # Also implemented by SimObjectVector
779 def get_name(self):
780 return self._name
781
782 # Also implemented by SimObjectVector
783 def has_parent(self):
784 return self._parent is not None
785
786 # clear out child with given name. This code is not likely to be exercised.
787 # See comment in add_child.
788 def clear_child(self, name):
789 child = self._children[name]
790 child.clear_parent(self)
791 del self._children[name]
792
793 # Add a new child to this object.
794 def add_child(self, name, child):
795 child = coerceSimObjectOrVector(child)
796 if child.has_parent():
797 print "warning: add_child('%s'): child '%s' already has parent" % \
798 (name, child.get_name())
799 if self._children.has_key(name):
800 # This code path had an undiscovered bug that would make it fail
801 # at runtime. It had been here for a long time and was only
802 # exposed by a buggy script. Changes here will probably not be
803 # exercised without specialized testing.
804 self.clear_child(name)
805 child.set_parent(self, name)
806 self._children[name] = child
807
808 # Take SimObject-valued parameters that haven't been explicitly
809 # assigned as children and make them children of the object that
810 # they were assigned to as a parameter value. This guarantees
811 # that when we instantiate all the parameter objects we're still
812 # inside the configuration hierarchy.
813 def adoptOrphanParams(self):
814 for key,val in self._values.iteritems():
815 if not isSimObjectVector(val) and isSimObjectSequence(val):
816 # need to convert raw SimObject sequences to
817 # SimObjectVector class so we can call has_parent()
818 val = SimObjectVector(val)
819 self._values[key] = val
820 if isSimObjectOrVector(val) and not val.has_parent():
821 print "warning: %s adopting orphan SimObject param '%s'" \
822 % (self, key)
823 self.add_child(key, val)
824
825 def path(self):
826 if not self._parent:
827 return '<orphan %s>' % self.__class__
828 ppath = self._parent.path()
829 if ppath == 'root':
830 return self._name
831 return ppath + "." + self._name
832
833 def __str__(self):
834 return self.path()
835
836 def ini_str(self):
837 return self.path()
838
839 def find_any(self, ptype):
840 if isinstance(self, ptype):
841 return self, True
842
843 found_obj = None
844 for child in self._children.itervalues():
845 if isinstance(child, ptype):
846 if found_obj != None and child != found_obj:
847 raise AttributeError, \
848 'parent.any matched more than one: %s %s' % \
849 (found_obj.path, child.path)
850 found_obj = child
851 # search param space
852 for pname,pdesc in self._params.iteritems():
853 if issubclass(pdesc.ptype, ptype):
854 match_obj = self._values[pname]
855 if found_obj != None and found_obj != match_obj:
856 raise AttributeError, \
857 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
858 found_obj = match_obj
859 return found_obj, found_obj != None
860
861 def find_all(self, ptype):
862 all = {}
863 # search children
864 for child in self._children.itervalues():
865 if isinstance(child, ptype) and not isproxy(child) and \
866 not isNullPointer(child):
867 all[child] = True
868 if isSimObject(child):
869 # also add results from the child itself
870 child_all, done = child.find_all(ptype)
871 all.update(dict(zip(child_all, [done] * len(child_all))))
872 # search param space
873 for pname,pdesc in self._params.iteritems():
874 if issubclass(pdesc.ptype, ptype):
875 match_obj = self._values[pname]
876 if not isproxy(match_obj) and not isNullPointer(match_obj):
877 all[match_obj] = True
878 return all.keys(), True
879
880 def unproxy(self, base):
881 return self
882
883 def unproxyParams(self):
884 for param in self._params.iterkeys():
885 value = self._values.get(param)
886 if value != None and isproxy(value):
887 try:
888 value = value.unproxy(self)
889 except:
890 print "Error in unproxying param '%s' of %s" % \
891 (param, self.path())
892 raise
893 setattr(self, param, value)
894
895 # Unproxy ports in sorted order so that 'append' operations on
896 # vector ports are done in a deterministic fashion.
897 port_names = self._ports.keys()
898 port_names.sort()
899 for port_name in port_names:
900 port = self._port_refs.get(port_name)
901 if port != None:
902 port.unproxy(self)
903
904 def print_ini(self, ini_file):
905 print >>ini_file, '[' + self.path() + ']' # .ini section header
906
907 instanceDict[self.path()] = self
908
909 if hasattr(self, 'type'):
910 print >>ini_file, 'type=%s' % self.type
911
912 if len(self._children.keys()):
913 print >>ini_file, 'children=%s' % \
914 ' '.join(self._children[n].get_name() \
915 for n in sorted(self._children.keys()))
916
917 for param in sorted(self._params.keys()):
918 value = self._values.get(param)
919 if value != None:
920 print >>ini_file, '%s=%s' % (param,
921 self._values[param].ini_str())
922
923 for port_name in sorted(self._ports.keys()):
924 port = self._port_refs.get(port_name, None)
925 if port != None:
926 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
927
928 print >>ini_file # blank line between objects
929
930 # generate a tree of dictionaries expressing all the parameters in the
931 # instantiated system for use by scripts that want to do power, thermal
932 # visualization, and other similar tasks
933 def get_config_as_dict(self):
934 d = attrdict()
935 if hasattr(self, 'type'):
936 d.type = self.type
937 if hasattr(self, 'cxx_class'):
938 d.cxx_class = self.cxx_class
939
940 for param in sorted(self._params.keys()):
941 value = self._values.get(param)
942 if value != None:
943 try:
944 # Use native type for those supported by JSON and
945 # strings for everything else. skipkeys=True seems
946 # to not work as well as one would hope
947 if type(self._values[param].value) in \
948 [str, unicode, int, long, float, bool, None]:
949 d[param] = self._values[param].value
950 else:
951 d[param] = str(self._values[param])
952
953 except AttributeError:
954 pass
955
956 for n in sorted(self._children.keys()):
957 d[self._children[n].get_name()] = self._children[n].get_config_as_dict()
958
959 for port_name in sorted(self._ports.keys()):
960 port = self._port_refs.get(port_name, None)
961 if port != None:
962 # Might want to actually make this reference the object
963 # in the future, although execing the string problem would
964 # get some of the way there
965 d[port_name] = port.ini_str()
966
967 return d
968
969 def getCCParams(self):
970 if self._ccParams:
971 return self._ccParams
972
973 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
974 cc_params = cc_params_struct()
975 cc_params.pyobj = self
976 cc_params.name = str(self)
977
978 param_names = self._params.keys()
979 param_names.sort()
980 for param in param_names:
981 value = self._values.get(param)
982 if value is None:
983 fatal("%s.%s without default or user set value",
984 self.path(), param)
985
986 value = value.getValue()
987 if isinstance(self._params[param], VectorParamDesc):
988 assert isinstance(value, list)
989 vec = getattr(cc_params, param)
990 assert not len(vec)
991 for v in value:
992 vec.append(v)
993 else:
994 setattr(cc_params, param, value)
995
996 port_names = self._ports.keys()
997 port_names.sort()
998 for port_name in port_names:
999 port = self._port_refs.get(port_name, None)
1000 if port != None:
1001 port_count = len(port)
1002 else:
1003 port_count = 0
1004 setattr(cc_params, 'port_' + port_name + '_connection_count',
1005 port_count)
1006 self._ccParams = cc_params
1007 return self._ccParams
1008
1009 # Get C++ object corresponding to this object, calling C++ if
1010 # necessary to construct it. Does *not* recursively create
1011 # children.
1012 def getCCObject(self):
1013 if not self._ccObject:
1014 # Make sure this object is in the configuration hierarchy
1015 if not self._parent and not isRoot(self):
1016 raise RuntimeError, "Attempt to instantiate orphan node"
1017 # Cycles in the configuration hierarchy are not supported. This
1018 # will catch the resulting recursion and stop.
1019 self._ccObject = -1
1020 params = self.getCCParams()
1021 self._ccObject = params.create()
1022 elif self._ccObject == -1:
1023 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1024 % self.path()
1025 return self._ccObject
1026
1027 def descendants(self):
1028 yield self
1029 for child in self._children.itervalues():
1030 for obj in child.descendants():
1031 yield obj
1032
1033 # Call C++ to create C++ object corresponding to this object
1034 def createCCObject(self):
1035 self.getCCParams()
1036 self.getCCObject() # force creation
1037
1038 def getValue(self):
1039 return self.getCCObject()
1040
1041 # Create C++ port connections corresponding to the connections in
1042 # _port_refs
1043 def connectPorts(self):
1044 for portRef in self._port_refs.itervalues():
1045 portRef.ccConnect()
1046
1047 def getMemoryMode(self):
1048 if not isinstance(self, m5.objects.System):
1049 return None
1050
1051 return self._ccObject.getMemoryMode()
1052
1053 def changeTiming(self, mode):
1054 if isinstance(self, m5.objects.System):
1055 # i don't know if there's a better way to do this - calling
1056 # setMemoryMode directly from self._ccObject results in calling
1057 # SimObject::setMemoryMode, not the System::setMemoryMode
1058 self._ccObject.setMemoryMode(mode)
1059
1060 def takeOverFrom(self, old_cpu):
1061 self._ccObject.takeOverFrom(old_cpu._ccObject)
1062
47import m5
48from m5.util import *
49
50# Have to import params up top since Param is referenced on initial
51# load (when SimObject class references Param to create a class
52# variable, the 'name' param)...
53from m5.params import *
54# There are a few things we need that aren't in params.__all__ since
55# normal users don't need them
56from m5.params import ParamDesc, VectorParamDesc, \
57 isNullPointer, SimObjectVector, Port
58
59from m5.proxy import *
60from m5.proxy import isproxy
61
62#####################################################################
63#
64# M5 Python Configuration Utility
65#
66# The basic idea is to write simple Python programs that build Python
67# objects corresponding to M5 SimObjects for the desired simulation
68# configuration. For now, the Python emits a .ini file that can be
69# parsed by M5. In the future, some tighter integration between M5
70# and the Python interpreter may allow bypassing the .ini file.
71#
72# Each SimObject class in M5 is represented by a Python class with the
73# same name. The Python inheritance tree mirrors the M5 C++ tree
74# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75# SimObjects inherit from a single SimObject base class). To specify
76# an instance of an M5 SimObject in a configuration, the user simply
77# instantiates the corresponding Python object. The parameters for
78# that SimObject are given by assigning to attributes of the Python
79# object, either using keyword assignment in the constructor or in
80# separate assignment statements. For example:
81#
82# cache = BaseCache(size='64KB')
83# cache.hit_latency = 3
84# cache.assoc = 8
85#
86# The magic lies in the mapping of the Python attributes for SimObject
87# classes to the actual SimObject parameter specifications. This
88# allows parameter validity checking in the Python code. Continuing
89# the example above, the statements "cache.blurfl=3" or
90# "cache.assoc='hello'" would both result in runtime errors in Python,
91# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92# parameter requires an integer, respectively. This magic is done
93# primarily by overriding the special __setattr__ method that controls
94# assignment to object attributes.
95#
96# Once a set of Python objects have been instantiated in a hierarchy,
97# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98# will generate a .ini file.
99#
100#####################################################################
101
102# list of all SimObject classes
103allClasses = {}
104
105# dict to look up SimObjects based on path
106instanceDict = {}
107
108def public_value(key, value):
109 return key.startswith('_') or \
110 isinstance(value, (FunctionType, MethodType, ModuleType,
111 classmethod, type))
112
113# The metaclass for SimObject. This class controls how new classes
114# that derive from SimObject are instantiated, and provides inherited
115# class behavior (just like a class controls how instances of that
116# class are instantiated, and provides inherited instance behavior).
117class MetaSimObject(type):
118 # Attributes that can be set only at initialization time
119 init_keywords = { 'abstract' : bool,
120 'cxx_class' : str,
121 'cxx_type' : str,
122 'type' : str }
123 # Attributes that can be set any time
124 keywords = { 'check' : FunctionType }
125
126 # __new__ is called before __init__, and is where the statements
127 # in the body of the class definition get loaded into the class's
128 # __dict__. We intercept this to filter out parameter & port assignments
129 # and only allow "private" attributes to be passed to the base
130 # __new__ (starting with underscore).
131 def __new__(mcls, name, bases, dict):
132 assert name not in allClasses, "SimObject %s already present" % name
133
134 # Copy "private" attributes, functions, and classes to the
135 # official dict. Everything else goes in _init_dict to be
136 # filtered in __init__.
137 cls_dict = {}
138 value_dict = {}
139 for key,val in dict.items():
140 if public_value(key, val):
141 cls_dict[key] = val
142 else:
143 # must be a param/port setting
144 value_dict[key] = val
145 if 'abstract' not in value_dict:
146 value_dict['abstract'] = False
147 cls_dict['_value_dict'] = value_dict
148 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
149 if 'type' in value_dict:
150 allClasses[name] = cls
151 return cls
152
153 # subclass initialization
154 def __init__(cls, name, bases, dict):
155 # calls type.__init__()... I think that's a no-op, but leave
156 # it here just in case it's not.
157 super(MetaSimObject, cls).__init__(name, bases, dict)
158
159 # initialize required attributes
160
161 # class-only attributes
162 cls._params = multidict() # param descriptions
163 cls._ports = multidict() # port descriptions
164
165 # class or instance attributes
166 cls._values = multidict() # param values
167 cls._children = multidict() # SimObject children
168 cls._port_refs = multidict() # port ref objects
169 cls._instantiated = False # really instantiated, cloned, or subclassed
170
171 # We don't support multiple inheritance. If you want to, you
172 # must fix multidict to deal with it properly.
173 if len(bases) > 1:
174 raise TypeError, "SimObjects do not support multiple inheritance"
175
176 base = bases[0]
177
178 # Set up general inheritance via multidicts. A subclass will
179 # inherit all its settings from the base class. The only time
180 # the following is not true is when we define the SimObject
181 # class itself (in which case the multidicts have no parent).
182 if isinstance(base, MetaSimObject):
183 cls._base = base
184 cls._params.parent = base._params
185 cls._ports.parent = base._ports
186 cls._values.parent = base._values
187 cls._children.parent = base._children
188 cls._port_refs.parent = base._port_refs
189 # mark base as having been subclassed
190 base._instantiated = True
191 else:
192 cls._base = None
193
194 # default keyword values
195 if 'type' in cls._value_dict:
196 if 'cxx_class' not in cls._value_dict:
197 cls._value_dict['cxx_class'] = cls._value_dict['type']
198
199 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
200
201 # Export methods are automatically inherited via C++, so we
202 # don't want the method declarations to get inherited on the
203 # python side (and thus end up getting repeated in the wrapped
204 # versions of derived classes). The code below basicallly
205 # suppresses inheritance by substituting in the base (null)
206 # versions of these methods unless a different version is
207 # explicitly supplied.
208 for method_name in ('export_methods', 'export_method_cxx_predecls',
209 'export_method_swig_predecls'):
210 if method_name not in cls.__dict__:
211 base_method = getattr(MetaSimObject, method_name)
212 m = MethodType(base_method, cls, MetaSimObject)
213 setattr(cls, method_name, m)
214
215 # Now process the _value_dict items. They could be defining
216 # new (or overriding existing) parameters or ports, setting
217 # class keywords (e.g., 'abstract'), or setting parameter
218 # values or port bindings. The first 3 can only be set when
219 # the class is defined, so we handle them here. The others
220 # can be set later too, so just emulate that by calling
221 # setattr().
222 for key,val in cls._value_dict.items():
223 # param descriptions
224 if isinstance(val, ParamDesc):
225 cls._new_param(key, val)
226
227 # port objects
228 elif isinstance(val, Port):
229 cls._new_port(key, val)
230
231 # init-time-only keywords
232 elif cls.init_keywords.has_key(key):
233 cls._set_keyword(key, val, cls.init_keywords[key])
234
235 # default: use normal path (ends up in __setattr__)
236 else:
237 setattr(cls, key, val)
238
239 def _set_keyword(cls, keyword, val, kwtype):
240 if not isinstance(val, kwtype):
241 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
242 (keyword, type(val), kwtype)
243 if isinstance(val, FunctionType):
244 val = classmethod(val)
245 type.__setattr__(cls, keyword, val)
246
247 def _new_param(cls, name, pdesc):
248 # each param desc should be uniquely assigned to one variable
249 assert(not hasattr(pdesc, 'name'))
250 pdesc.name = name
251 cls._params[name] = pdesc
252 if hasattr(pdesc, 'default'):
253 cls._set_param(name, pdesc.default, pdesc)
254
255 def _set_param(cls, name, value, param):
256 assert(param.name == name)
257 try:
258 value = param.convert(value)
259 except Exception, e:
260 msg = "%s\nError setting param %s.%s to %s\n" % \
261 (e, cls.__name__, name, value)
262 e.args = (msg, )
263 raise
264 cls._values[name] = value
265 # if param value is a SimObject, make it a child too, so that
266 # it gets cloned properly when the class is instantiated
267 if isSimObjectOrVector(value) and not value.has_parent():
268 cls._add_cls_child(name, value)
269
270 def _add_cls_child(cls, name, child):
271 # It's a little funky to have a class as a parent, but these
272 # objects should never be instantiated (only cloned, which
273 # clears the parent pointer), and this makes it clear that the
274 # object is not an orphan and can provide better error
275 # messages.
276 child.set_parent(cls, name)
277 cls._children[name] = child
278
279 def _new_port(cls, name, port):
280 # each port should be uniquely assigned to one variable
281 assert(not hasattr(port, 'name'))
282 port.name = name
283 cls._ports[name] = port
284
285 # same as _get_port_ref, effectively, but for classes
286 def _cls_get_port_ref(cls, attr):
287 # Return reference that can be assigned to another port
288 # via __setattr__. There is only ever one reference
289 # object per port, but we create them lazily here.
290 ref = cls._port_refs.get(attr)
291 if not ref:
292 ref = cls._ports[attr].makeRef(cls)
293 cls._port_refs[attr] = ref
294 return ref
295
296 # Set attribute (called on foo.attr = value when foo is an
297 # instance of class cls).
298 def __setattr__(cls, attr, value):
299 # normal processing for private attributes
300 if public_value(attr, value):
301 type.__setattr__(cls, attr, value)
302 return
303
304 if cls.keywords.has_key(attr):
305 cls._set_keyword(attr, value, cls.keywords[attr])
306 return
307
308 if cls._ports.has_key(attr):
309 cls._cls_get_port_ref(attr).connect(value)
310 return
311
312 if isSimObjectOrSequence(value) and cls._instantiated:
313 raise RuntimeError, \
314 "cannot set SimObject parameter '%s' after\n" \
315 " class %s has been instantiated or subclassed" \
316 % (attr, cls.__name__)
317
318 # check for param
319 param = cls._params.get(attr)
320 if param:
321 cls._set_param(attr, value, param)
322 return
323
324 if isSimObjectOrSequence(value):
325 # If RHS is a SimObject, it's an implicit child assignment.
326 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
327 return
328
329 # no valid assignment... raise exception
330 raise AttributeError, \
331 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
332
333 def __getattr__(cls, attr):
334 if attr == 'cxx_class_path':
335 return cls.cxx_class.split('::')
336
337 if attr == 'cxx_class_name':
338 return cls.cxx_class_path[-1]
339
340 if attr == 'cxx_namespaces':
341 return cls.cxx_class_path[:-1]
342
343 if cls._values.has_key(attr):
344 return cls._values[attr]
345
346 if cls._children.has_key(attr):
347 return cls._children[attr]
348
349 raise AttributeError, \
350 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
351
352 def __str__(cls):
353 return cls.__name__
354
355 # See ParamValue.cxx_predecls for description.
356 def cxx_predecls(cls, code):
357 code('#include "params/$cls.hh"')
358
359 # See ParamValue.swig_predecls for description.
360 def swig_predecls(cls, code):
361 code('%import "python/m5/internal/param_$cls.i"')
362
363 # Hook for exporting additional C++ methods to Python via SWIG.
364 # Default is none, override using @classmethod in class definition.
365 def export_methods(cls, code):
366 pass
367
368 # Generate the code needed as a prerequisite for the C++ methods
369 # exported via export_methods() to be compiled in the _wrap.cc
370 # file. Typically generates one or more #include statements. If
371 # any methods are exported, typically at least the C++ header
372 # declaring the relevant SimObject class must be included.
373 def export_method_cxx_predecls(cls, code):
374 pass
375
376 # Generate the code needed as a prerequisite for the C++ methods
377 # exported via export_methods() to be processed by SWIG.
378 # Typically generates one or more %include or %import statements.
379 # If any methods are exported, typically at least the C++ header
380 # declaring the relevant SimObject class must be included.
381 def export_method_swig_predecls(cls, code):
382 pass
383
384 # Generate the declaration for this object for wrapping with SWIG.
385 # Generates code that goes into a SWIG .i file. Called from
386 # src/SConscript.
387 def swig_decl(cls, code):
388 class_path = cls.cxx_class.split('::')
389 classname = class_path[-1]
390 namespaces = class_path[:-1]
391
392 # The 'local' attribute restricts us to the params declared in
393 # the object itself, not including inherited params (which
394 # will also be inherited from the base class's param struct
395 # here).
396 params = cls._params.local.values()
397 ports = cls._ports.local
398
399 code('%module(package="m5.internal") param_$cls')
400 code()
401 code('%{')
402 code('#include "params/$cls.hh"')
403 for param in params:
404 param.cxx_predecls(code)
405 cls.export_method_cxx_predecls(code)
406 code('''\
407/**
408 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
409 * headers like vector, string, etc. used to automatically pull in
410 * the cstddef header but starting with gcc 4.6.1 they no longer do.
411 * This leads to swig generated a file that does not compile so we
412 * explicitly include cstddef. Additionally, including version 2.0.4,
413 * swig uses ptrdiff_t without the std:: namespace prefix which is
414 * required with gcc 4.6.1. We explicitly provide access to it.
415 */
416#include <cstddef>
417using std::ptrdiff_t;
418''')
419 code('%}')
420 code()
421
422 for param in params:
423 param.swig_predecls(code)
424 cls.export_method_swig_predecls(code)
425
426 code()
427 if cls._base:
428 code('%import "python/m5/internal/param_${{cls._base}}.i"')
429 code()
430
431 for ns in namespaces:
432 code('namespace $ns {')
433
434 if namespaces:
435 code('// avoid name conflicts')
436 sep_string = '_COLONS_'
437 flat_name = sep_string.join(class_path)
438 code('%rename($flat_name) $classname;')
439
440 code()
441 code('// stop swig from creating/wrapping default ctor/dtor')
442 code('%nodefault $classname;')
443 code('class $classname')
444 if cls._base:
445 code(' : public ${{cls._base.cxx_class}}')
446 code('{')
447 code(' public:')
448 cls.export_methods(code)
449 code('};')
450
451 for ns in reversed(namespaces):
452 code('} // namespace $ns')
453
454 code()
455 code('%include "params/$cls.hh"')
456
457
458 # Generate the C++ declaration (.hh file) for this SimObject's
459 # param struct. Called from src/SConscript.
460 def cxx_param_decl(cls, code):
461 # The 'local' attribute restricts us to the params declared in
462 # the object itself, not including inherited params (which
463 # will also be inherited from the base class's param struct
464 # here).
465 params = cls._params.local.values()
466 ports = cls._ports.local
467 try:
468 ptypes = [p.ptype for p in params]
469 except:
470 print cls, p, p.ptype_str
471 print params
472 raise
473
474 class_path = cls._value_dict['cxx_class'].split('::')
475
476 code('''\
477#ifndef __PARAMS__${cls}__
478#define __PARAMS__${cls}__
479
480''')
481
482 # A forward class declaration is sufficient since we are just
483 # declaring a pointer.
484 for ns in class_path[:-1]:
485 code('namespace $ns {')
486 code('class $0;', class_path[-1])
487 for ns in reversed(class_path[:-1]):
488 code('} // namespace $ns')
489 code()
490
491 # The base SimObject has a couple of params that get
492 # automatically set from Python without being declared through
493 # the normal Param mechanism; we slip them in here (needed
494 # predecls now, actual declarations below)
495 if cls == SimObject:
496 code('''
497#ifndef PY_VERSION
498struct PyObject;
499#endif
500
501#include <string>
502
503class EventQueue;
504''')
505 for param in params:
506 param.cxx_predecls(code)
507 for port in ports.itervalues():
508 port.cxx_predecls(code)
509 code()
510
511 if cls._base:
512 code('#include "params/${{cls._base.type}}.hh"')
513 code()
514
515 for ptype in ptypes:
516 if issubclass(ptype, Enum):
517 code('#include "enums/${{ptype.__name__}}.hh"')
518 code()
519
520 # now generate the actual param struct
521 code("struct ${cls}Params")
522 if cls._base:
523 code(" : public ${{cls._base.type}}Params")
524 code("{")
525 if not hasattr(cls, 'abstract') or not cls.abstract:
526 if 'type' in cls.__dict__:
527 code(" ${{cls.cxx_type}} create();")
528
529 code.indent()
530 if cls == SimObject:
531 code('''
532 SimObjectParams()
533 {
534 extern EventQueue mainEventQueue;
535 eventq = &mainEventQueue;
536 }
537 virtual ~SimObjectParams() {}
538
539 std::string name;
540 PyObject *pyobj;
541 EventQueue *eventq;
542 ''')
543 for param in params:
544 param.cxx_decl(code)
545 for port in ports.itervalues():
546 port.cxx_decl(code)
547
548 code.dedent()
549 code('};')
550
551 code()
552 code('#endif // __PARAMS__${cls}__')
553 return code
554
555
556
557# The SimObject class is the root of the special hierarchy. Most of
558# the code in this class deals with the configuration hierarchy itself
559# (parent/child node relationships).
560class SimObject(object):
561 # Specify metaclass. Any class inheriting from SimObject will
562 # get this metaclass.
563 __metaclass__ = MetaSimObject
564 type = 'SimObject'
565 abstract = True
566
567 @classmethod
568 def export_method_cxx_predecls(cls, code):
569 code('''
570#include <Python.h>
571
572#include "sim/serialize.hh"
573#include "sim/sim_object.hh"
574''')
575
576 @classmethod
577 def export_method_swig_predecls(cls, code):
578 code('''
579%include <std_string.i>
580''')
581
582 @classmethod
583 def export_methods(cls, code):
584 code('''
585 enum State {
586 Running,
587 Draining,
588 Drained
589 };
590
591 void init();
592 void loadState(Checkpoint *cp);
593 void initState();
594 void regStats();
595 void regFormulas();
596 void resetStats();
597 void startup();
598
599 unsigned int drain(Event *drain_event);
600 void resume();
601 void switchOut();
602 void takeOverFrom(BaseCPU *cpu);
603''')
604
605 # Initialize new instance. For objects with SimObject-valued
606 # children, we need to recursively clone the classes represented
607 # by those param values as well in a consistent "deep copy"-style
608 # fashion. That is, we want to make sure that each instance is
609 # cloned only once, and that if there are multiple references to
610 # the same original object, we end up with the corresponding
611 # cloned references all pointing to the same cloned instance.
612 def __init__(self, **kwargs):
613 ancestor = kwargs.get('_ancestor')
614 memo_dict = kwargs.get('_memo')
615 if memo_dict is None:
616 # prepare to memoize any recursively instantiated objects
617 memo_dict = {}
618 elif ancestor:
619 # memoize me now to avoid problems with recursive calls
620 memo_dict[ancestor] = self
621
622 if not ancestor:
623 ancestor = self.__class__
624 ancestor._instantiated = True
625
626 # initialize required attributes
627 self._parent = None
628 self._name = None
629 self._ccObject = None # pointer to C++ object
630 self._ccParams = None
631 self._instantiated = False # really "cloned"
632
633 # Clone children specified at class level. No need for a
634 # multidict here since we will be cloning everything.
635 # Do children before parameter values so that children that
636 # are also param values get cloned properly.
637 self._children = {}
638 for key,val in ancestor._children.iteritems():
639 self.add_child(key, val(_memo=memo_dict))
640
641 # Inherit parameter values from class using multidict so
642 # individual value settings can be overridden but we still
643 # inherit late changes to non-overridden class values.
644 self._values = multidict(ancestor._values)
645 # clone SimObject-valued parameters
646 for key,val in ancestor._values.iteritems():
647 val = tryAsSimObjectOrVector(val)
648 if val is not None:
649 self._values[key] = val(_memo=memo_dict)
650
651 # clone port references. no need to use a multidict here
652 # since we will be creating new references for all ports.
653 self._port_refs = {}
654 for key,val in ancestor._port_refs.iteritems():
655 self._port_refs[key] = val.clone(self, memo_dict)
656 # apply attribute assignments from keyword args, if any
657 for key,val in kwargs.iteritems():
658 setattr(self, key, val)
659
660 # "Clone" the current instance by creating another instance of
661 # this instance's class, but that inherits its parameter values
662 # and port mappings from the current instance. If we're in a
663 # "deep copy" recursive clone, check the _memo dict to see if
664 # we've already cloned this instance.
665 def __call__(self, **kwargs):
666 memo_dict = kwargs.get('_memo')
667 if memo_dict is None:
668 # no memo_dict: must be top-level clone operation.
669 # this is only allowed at the root of a hierarchy
670 if self._parent:
671 raise RuntimeError, "attempt to clone object %s " \
672 "not at the root of a tree (parent = %s)" \
673 % (self, self._parent)
674 # create a new dict and use that.
675 memo_dict = {}
676 kwargs['_memo'] = memo_dict
677 elif memo_dict.has_key(self):
678 # clone already done & memoized
679 return memo_dict[self]
680 return self.__class__(_ancestor = self, **kwargs)
681
682 def _get_port_ref(self, attr):
683 # Return reference that can be assigned to another port
684 # via __setattr__. There is only ever one reference
685 # object per port, but we create them lazily here.
686 ref = self._port_refs.get(attr)
687 if not ref:
688 ref = self._ports[attr].makeRef(self)
689 self._port_refs[attr] = ref
690 return ref
691
692 def __getattr__(self, attr):
693 if self._ports.has_key(attr):
694 return self._get_port_ref(attr)
695
696 if self._values.has_key(attr):
697 return self._values[attr]
698
699 if self._children.has_key(attr):
700 return self._children[attr]
701
702 # If the attribute exists on the C++ object, transparently
703 # forward the reference there. This is typically used for
704 # SWIG-wrapped methods such as init(), regStats(),
705 # regFormulas(), resetStats(), startup(), drain(), and
706 # resume().
707 if self._ccObject and hasattr(self._ccObject, attr):
708 return getattr(self._ccObject, attr)
709
710 raise AttributeError, "object '%s' has no attribute '%s'" \
711 % (self.__class__.__name__, attr)
712
713 # Set attribute (called on foo.attr = value when foo is an
714 # instance of class cls).
715 def __setattr__(self, attr, value):
716 # normal processing for private attributes
717 if attr.startswith('_'):
718 object.__setattr__(self, attr, value)
719 return
720
721 if self._ports.has_key(attr):
722 # set up port connection
723 self._get_port_ref(attr).connect(value)
724 return
725
726 if isSimObjectOrSequence(value) and self._instantiated:
727 raise RuntimeError, \
728 "cannot set SimObject parameter '%s' after\n" \
729 " instance been cloned %s" % (attr, `self`)
730
731 param = self._params.get(attr)
732 if param:
733 try:
734 value = param.convert(value)
735 except Exception, e:
736 msg = "%s\nError setting param %s.%s to %s\n" % \
737 (e, self.__class__.__name__, attr, value)
738 e.args = (msg, )
739 raise
740 self._values[attr] = value
741 # implicitly parent unparented objects assigned as params
742 if isSimObjectOrVector(value) and not value.has_parent():
743 self.add_child(attr, value)
744 return
745
746 # if RHS is a SimObject, it's an implicit child assignment
747 if isSimObjectOrSequence(value):
748 self.add_child(attr, value)
749 return
750
751 # no valid assignment... raise exception
752 raise AttributeError, "Class %s has no parameter %s" \
753 % (self.__class__.__name__, attr)
754
755
756 # this hack allows tacking a '[0]' onto parameters that may or may
757 # not be vectors, and always getting the first element (e.g. cpus)
758 def __getitem__(self, key):
759 if key == 0:
760 return self
761 raise TypeError, "Non-zero index '%s' to SimObject" % key
762
763 # Also implemented by SimObjectVector
764 def clear_parent(self, old_parent):
765 assert self._parent is old_parent
766 self._parent = None
767
768 # Also implemented by SimObjectVector
769 def set_parent(self, parent, name):
770 self._parent = parent
771 self._name = name
772
773 # Also implemented by SimObjectVector
774 def get_name(self):
775 return self._name
776
777 # Also implemented by SimObjectVector
778 def has_parent(self):
779 return self._parent is not None
780
781 # clear out child with given name. This code is not likely to be exercised.
782 # See comment in add_child.
783 def clear_child(self, name):
784 child = self._children[name]
785 child.clear_parent(self)
786 del self._children[name]
787
788 # Add a new child to this object.
789 def add_child(self, name, child):
790 child = coerceSimObjectOrVector(child)
791 if child.has_parent():
792 print "warning: add_child('%s'): child '%s' already has parent" % \
793 (name, child.get_name())
794 if self._children.has_key(name):
795 # This code path had an undiscovered bug that would make it fail
796 # at runtime. It had been here for a long time and was only
797 # exposed by a buggy script. Changes here will probably not be
798 # exercised without specialized testing.
799 self.clear_child(name)
800 child.set_parent(self, name)
801 self._children[name] = child
802
803 # Take SimObject-valued parameters that haven't been explicitly
804 # assigned as children and make them children of the object that
805 # they were assigned to as a parameter value. This guarantees
806 # that when we instantiate all the parameter objects we're still
807 # inside the configuration hierarchy.
808 def adoptOrphanParams(self):
809 for key,val in self._values.iteritems():
810 if not isSimObjectVector(val) and isSimObjectSequence(val):
811 # need to convert raw SimObject sequences to
812 # SimObjectVector class so we can call has_parent()
813 val = SimObjectVector(val)
814 self._values[key] = val
815 if isSimObjectOrVector(val) and not val.has_parent():
816 print "warning: %s adopting orphan SimObject param '%s'" \
817 % (self, key)
818 self.add_child(key, val)
819
820 def path(self):
821 if not self._parent:
822 return '<orphan %s>' % self.__class__
823 ppath = self._parent.path()
824 if ppath == 'root':
825 return self._name
826 return ppath + "." + self._name
827
828 def __str__(self):
829 return self.path()
830
831 def ini_str(self):
832 return self.path()
833
834 def find_any(self, ptype):
835 if isinstance(self, ptype):
836 return self, True
837
838 found_obj = None
839 for child in self._children.itervalues():
840 if isinstance(child, ptype):
841 if found_obj != None and child != found_obj:
842 raise AttributeError, \
843 'parent.any matched more than one: %s %s' % \
844 (found_obj.path, child.path)
845 found_obj = child
846 # search param space
847 for pname,pdesc in self._params.iteritems():
848 if issubclass(pdesc.ptype, ptype):
849 match_obj = self._values[pname]
850 if found_obj != None and found_obj != match_obj:
851 raise AttributeError, \
852 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
853 found_obj = match_obj
854 return found_obj, found_obj != None
855
856 def find_all(self, ptype):
857 all = {}
858 # search children
859 for child in self._children.itervalues():
860 if isinstance(child, ptype) and not isproxy(child) and \
861 not isNullPointer(child):
862 all[child] = True
863 if isSimObject(child):
864 # also add results from the child itself
865 child_all, done = child.find_all(ptype)
866 all.update(dict(zip(child_all, [done] * len(child_all))))
867 # search param space
868 for pname,pdesc in self._params.iteritems():
869 if issubclass(pdesc.ptype, ptype):
870 match_obj = self._values[pname]
871 if not isproxy(match_obj) and not isNullPointer(match_obj):
872 all[match_obj] = True
873 return all.keys(), True
874
875 def unproxy(self, base):
876 return self
877
878 def unproxyParams(self):
879 for param in self._params.iterkeys():
880 value = self._values.get(param)
881 if value != None and isproxy(value):
882 try:
883 value = value.unproxy(self)
884 except:
885 print "Error in unproxying param '%s' of %s" % \
886 (param, self.path())
887 raise
888 setattr(self, param, value)
889
890 # Unproxy ports in sorted order so that 'append' operations on
891 # vector ports are done in a deterministic fashion.
892 port_names = self._ports.keys()
893 port_names.sort()
894 for port_name in port_names:
895 port = self._port_refs.get(port_name)
896 if port != None:
897 port.unproxy(self)
898
899 def print_ini(self, ini_file):
900 print >>ini_file, '[' + self.path() + ']' # .ini section header
901
902 instanceDict[self.path()] = self
903
904 if hasattr(self, 'type'):
905 print >>ini_file, 'type=%s' % self.type
906
907 if len(self._children.keys()):
908 print >>ini_file, 'children=%s' % \
909 ' '.join(self._children[n].get_name() \
910 for n in sorted(self._children.keys()))
911
912 for param in sorted(self._params.keys()):
913 value = self._values.get(param)
914 if value != None:
915 print >>ini_file, '%s=%s' % (param,
916 self._values[param].ini_str())
917
918 for port_name in sorted(self._ports.keys()):
919 port = self._port_refs.get(port_name, None)
920 if port != None:
921 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
922
923 print >>ini_file # blank line between objects
924
925 # generate a tree of dictionaries expressing all the parameters in the
926 # instantiated system for use by scripts that want to do power, thermal
927 # visualization, and other similar tasks
928 def get_config_as_dict(self):
929 d = attrdict()
930 if hasattr(self, 'type'):
931 d.type = self.type
932 if hasattr(self, 'cxx_class'):
933 d.cxx_class = self.cxx_class
934
935 for param in sorted(self._params.keys()):
936 value = self._values.get(param)
937 if value != None:
938 try:
939 # Use native type for those supported by JSON and
940 # strings for everything else. skipkeys=True seems
941 # to not work as well as one would hope
942 if type(self._values[param].value) in \
943 [str, unicode, int, long, float, bool, None]:
944 d[param] = self._values[param].value
945 else:
946 d[param] = str(self._values[param])
947
948 except AttributeError:
949 pass
950
951 for n in sorted(self._children.keys()):
952 d[self._children[n].get_name()] = self._children[n].get_config_as_dict()
953
954 for port_name in sorted(self._ports.keys()):
955 port = self._port_refs.get(port_name, None)
956 if port != None:
957 # Might want to actually make this reference the object
958 # in the future, although execing the string problem would
959 # get some of the way there
960 d[port_name] = port.ini_str()
961
962 return d
963
964 def getCCParams(self):
965 if self._ccParams:
966 return self._ccParams
967
968 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
969 cc_params = cc_params_struct()
970 cc_params.pyobj = self
971 cc_params.name = str(self)
972
973 param_names = self._params.keys()
974 param_names.sort()
975 for param in param_names:
976 value = self._values.get(param)
977 if value is None:
978 fatal("%s.%s without default or user set value",
979 self.path(), param)
980
981 value = value.getValue()
982 if isinstance(self._params[param], VectorParamDesc):
983 assert isinstance(value, list)
984 vec = getattr(cc_params, param)
985 assert not len(vec)
986 for v in value:
987 vec.append(v)
988 else:
989 setattr(cc_params, param, value)
990
991 port_names = self._ports.keys()
992 port_names.sort()
993 for port_name in port_names:
994 port = self._port_refs.get(port_name, None)
995 if port != None:
996 port_count = len(port)
997 else:
998 port_count = 0
999 setattr(cc_params, 'port_' + port_name + '_connection_count',
1000 port_count)
1001 self._ccParams = cc_params
1002 return self._ccParams
1003
1004 # Get C++ object corresponding to this object, calling C++ if
1005 # necessary to construct it. Does *not* recursively create
1006 # children.
1007 def getCCObject(self):
1008 if not self._ccObject:
1009 # Make sure this object is in the configuration hierarchy
1010 if not self._parent and not isRoot(self):
1011 raise RuntimeError, "Attempt to instantiate orphan node"
1012 # Cycles in the configuration hierarchy are not supported. This
1013 # will catch the resulting recursion and stop.
1014 self._ccObject = -1
1015 params = self.getCCParams()
1016 self._ccObject = params.create()
1017 elif self._ccObject == -1:
1018 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1019 % self.path()
1020 return self._ccObject
1021
1022 def descendants(self):
1023 yield self
1024 for child in self._children.itervalues():
1025 for obj in child.descendants():
1026 yield obj
1027
1028 # Call C++ to create C++ object corresponding to this object
1029 def createCCObject(self):
1030 self.getCCParams()
1031 self.getCCObject() # force creation
1032
1033 def getValue(self):
1034 return self.getCCObject()
1035
1036 # Create C++ port connections corresponding to the connections in
1037 # _port_refs
1038 def connectPorts(self):
1039 for portRef in self._port_refs.itervalues():
1040 portRef.ccConnect()
1041
1042 def getMemoryMode(self):
1043 if not isinstance(self, m5.objects.System):
1044 return None
1045
1046 return self._ccObject.getMemoryMode()
1047
1048 def changeTiming(self, mode):
1049 if isinstance(self, m5.objects.System):
1050 # i don't know if there's a better way to do this - calling
1051 # setMemoryMode directly from self._ccObject results in calling
1052 # SimObject::setMemoryMode, not the System::setMemoryMode
1053 self._ccObject.setMemoryMode(mode)
1054
1055 def takeOverFrom(self, old_cpu):
1056 self._ccObject.takeOverFrom(old_cpu._ccObject)
1057
1063 # generate output file for 'dot' to display as a pretty graph.
1064 def outputDot(self, dot):
1065 if isRoot(self):
1066 label = "{root|"
1067 else:
1068 label = "{%s|" % self._name
1069
1070 if isSimObject(self._base):
1071 label += '%s|' % self.type
1072
1073 if self._children:
1074 for c in self._children:
1075 child = self._children[c]
1076 if isSimObjectVector(child):
1077 for obj in child:
1078 dot.add_edge(pydot.Edge(self.path(), obj.path(), style="bold"))
1079 else:
1080 dot.add_edge(pydot.Edge(self.path(), child.path(), style="bold"))
1081
1082 for param in self._params.keys():
1083 value = self._values.get(param)
1084 if value != None:
1085 ini_str_value = self._values[param].ini_str()
1086 label += '%s = %s\\n' % (param, re.sub(':', '-', ini_str_value))
1087
1088 label += '}'
1089
1090 dot.add_node(pydot.Node(self.path(), shape="Mrecord",label=label))
1091
1092 # recursively dump out children
1093 for c in self._children:
1094 child = self._children[c]
1095 if isSimObjectVector(child):
1096 for obj in child:
1097 obj.outputDot(dot)
1098 else:
1099 child.outputDot(dot)
1100
1101# Function to provide to C++ so it can look up instances based on paths
1102def resolveSimObject(name):
1103 obj = instanceDict[name]
1104 return obj.getCCObject()
1105
1106def isSimObject(value):
1107 return isinstance(value, SimObject)
1108
1109def isSimObjectClass(value):
1110 return issubclass(value, SimObject)
1111
1112def isSimObjectVector(value):
1113 return isinstance(value, SimObjectVector)
1114
1115def isSimObjectSequence(value):
1116 if not isinstance(value, (list, tuple)) or len(value) == 0:
1117 return False
1118
1119 for val in value:
1120 if not isNullPointer(val) and not isSimObject(val):
1121 return False
1122
1123 return True
1124
1125def isSimObjectOrSequence(value):
1126 return isSimObject(value) or isSimObjectSequence(value)
1127
1128def isRoot(obj):
1129 from m5.objects import Root
1130 return obj and obj is Root.getInstance()
1131
1132def isSimObjectOrVector(value):
1133 return isSimObject(value) or isSimObjectVector(value)
1134
1135def tryAsSimObjectOrVector(value):
1136 if isSimObjectOrVector(value):
1137 return value
1138 if isSimObjectSequence(value):
1139 return SimObjectVector(value)
1140 return None
1141
1142def coerceSimObjectOrVector(value):
1143 value = tryAsSimObjectOrVector(value)
1144 if value is None:
1145 raise TypeError, "SimObject or SimObjectVector expected"
1146 return value
1147
1148baseClasses = allClasses.copy()
1149baseInstances = instanceDict.copy()
1150
1151def clear():
1152 global allClasses, instanceDict
1153
1154 allClasses = baseClasses.copy()
1155 instanceDict = baseInstances.copy()
1156
1157# __all__ defines the list of symbols that get exported when
1158# 'from config import *' is invoked. Try to keep this reasonably
1159# short to avoid polluting other namespaces.
1160__all__ = [ 'SimObject' ]
1058# Function to provide to C++ so it can look up instances based on paths
1059def resolveSimObject(name):
1060 obj = instanceDict[name]
1061 return obj.getCCObject()
1062
1063def isSimObject(value):
1064 return isinstance(value, SimObject)
1065
1066def isSimObjectClass(value):
1067 return issubclass(value, SimObject)
1068
1069def isSimObjectVector(value):
1070 return isinstance(value, SimObjectVector)
1071
1072def isSimObjectSequence(value):
1073 if not isinstance(value, (list, tuple)) or len(value) == 0:
1074 return False
1075
1076 for val in value:
1077 if not isNullPointer(val) and not isSimObject(val):
1078 return False
1079
1080 return True
1081
1082def isSimObjectOrSequence(value):
1083 return isSimObject(value) or isSimObjectSequence(value)
1084
1085def isRoot(obj):
1086 from m5.objects import Root
1087 return obj and obj is Root.getInstance()
1088
1089def isSimObjectOrVector(value):
1090 return isSimObject(value) or isSimObjectVector(value)
1091
1092def tryAsSimObjectOrVector(value):
1093 if isSimObjectOrVector(value):
1094 return value
1095 if isSimObjectSequence(value):
1096 return SimObjectVector(value)
1097 return None
1098
1099def coerceSimObjectOrVector(value):
1100 value = tryAsSimObjectOrVector(value)
1101 if value is None:
1102 raise TypeError, "SimObject or SimObjectVector expected"
1103 return value
1104
1105baseClasses = allClasses.copy()
1106baseInstances = instanceDict.copy()
1107
1108def clear():
1109 global allClasses, instanceDict
1110
1111 allClasses = baseClasses.copy()
1112 instanceDict = baseInstances.copy()
1113
1114# __all__ defines the list of symbols that get exported when
1115# 'from config import *' is invoked. Try to keep this reasonably
1116# short to avoid polluting other namespaces.
1117__all__ = [ 'SimObject' ]