SimObject.py (10911:0ca18446a5bb) SimObject.py (11231:75c0e4915c05)
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010-20013 Advanced Micro Devices, Inc.
15# Copyright (c) 2013 Mark D. Hill and David A. Wood
16# All rights reserved.
17#
18# Redistribution and use in source and binary forms, with or without
19# modification, are permitted provided that the following conditions are
20# met: redistributions of source code must retain the above copyright
21# notice, this list of conditions and the following disclaimer;
22# redistributions in binary form must reproduce the above copyright
23# notice, this list of conditions and the following disclaimer in the
24# documentation and/or other materials provided with the distribution;
25# neither the name of the copyright holders nor the names of its
26# contributors may be used to endorse or promote products derived from
27# this software without specific prior written permission.
28#
29# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40#
41# Authors: Steve Reinhardt
42# Nathan Binkert
43# Andreas Hansson
44
45import sys
46from types import FunctionType, MethodType, ModuleType
47
48import m5
49from m5.util import *
50
51# Have to import params up top since Param is referenced on initial
52# load (when SimObject class references Param to create a class
53# variable, the 'name' param)...
54from m5.params import *
55# There are a few things we need that aren't in params.__all__ since
56# normal users don't need them
57from m5.params import ParamDesc, VectorParamDesc, \
58 isNullPointer, SimObjectVector, Port
59
60from m5.proxy import *
61from m5.proxy import isproxy
62
63#####################################################################
64#
65# M5 Python Configuration Utility
66#
67# The basic idea is to write simple Python programs that build Python
68# objects corresponding to M5 SimObjects for the desired simulation
69# configuration. For now, the Python emits a .ini file that can be
70# parsed by M5. In the future, some tighter integration between M5
71# and the Python interpreter may allow bypassing the .ini file.
72#
73# Each SimObject class in M5 is represented by a Python class with the
74# same name. The Python inheritance tree mirrors the M5 C++ tree
75# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
76# SimObjects inherit from a single SimObject base class). To specify
77# an instance of an M5 SimObject in a configuration, the user simply
78# instantiates the corresponding Python object. The parameters for
79# that SimObject are given by assigning to attributes of the Python
80# object, either using keyword assignment in the constructor or in
81# separate assignment statements. For example:
82#
83# cache = BaseCache(size='64KB')
84# cache.hit_latency = 3
85# cache.assoc = 8
86#
87# The magic lies in the mapping of the Python attributes for SimObject
88# classes to the actual SimObject parameter specifications. This
89# allows parameter validity checking in the Python code. Continuing
90# the example above, the statements "cache.blurfl=3" or
91# "cache.assoc='hello'" would both result in runtime errors in Python,
92# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
93# parameter requires an integer, respectively. This magic is done
94# primarily by overriding the special __setattr__ method that controls
95# assignment to object attributes.
96#
97# Once a set of Python objects have been instantiated in a hierarchy,
98# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
99# will generate a .ini file.
100#
101#####################################################################
102
103# list of all SimObject classes
104allClasses = {}
105
106# dict to look up SimObjects based on path
107instanceDict = {}
108
109# Did any of the SimObjects lack a header file?
110noCxxHeader = False
111
112def public_value(key, value):
113 return key.startswith('_') or \
114 isinstance(value, (FunctionType, MethodType, ModuleType,
115 classmethod, type))
116
117def createCxxConfigDirectoryEntryFile(code, name, simobj, is_header):
118 entry_class = 'CxxConfigDirectoryEntry_%s' % name
119 param_class = '%sCxxConfigParams' % name
120
121 code('#include "params/%s.hh"' % name)
122
123 if not is_header:
124 for param in simobj._params.values():
125 if isSimObjectClass(param.ptype):
126 code('#include "%s"' % param.ptype._value_dict['cxx_header'])
127 code('#include "params/%s.hh"' % param.ptype.__name__)
128 else:
129 param.ptype.cxx_ini_predecls(code)
130
131 if is_header:
132 member_prefix = ''
133 end_of_decl = ';'
134 code('#include "sim/cxx_config.hh"')
135 code()
136 code('class ${param_class} : public CxxConfigParams,'
137 ' public ${name}Params')
138 code('{')
139 code(' private:')
140 code.indent()
141 code('class DirectoryEntry : public CxxConfigDirectoryEntry')
142 code('{')
143 code(' public:')
144 code.indent()
145 code('DirectoryEntry();');
146 code()
147 code('CxxConfigParams *makeParamsObject() const')
148 code('{ return new ${param_class}; }')
149 code.dedent()
150 code('};')
151 code()
152 code.dedent()
153 code(' public:')
154 code.indent()
155 else:
156 member_prefix = '%s::' % param_class
157 end_of_decl = ''
158 code('#include "%s"' % simobj._value_dict['cxx_header'])
159 code('#include "base/str.hh"')
160 code('#include "cxx_config/${name}.hh"')
161
162 if simobj._ports.values() != []:
163 code('#include "mem/mem_object.hh"')
164 code('#include "mem/port.hh"')
165
166 code()
167 code('${member_prefix}DirectoryEntry::DirectoryEntry()');
168 code('{')
169
170 def cxx_bool(b):
171 return 'true' if b else 'false'
172
173 code.indent()
174 for param in simobj._params.values():
175 is_vector = isinstance(param, m5.params.VectorParamDesc)
176 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
177
178 code('parameters["%s"] = new ParamDesc("%s", %s, %s);' %
179 (param.name, param.name, cxx_bool(is_vector),
180 cxx_bool(is_simobj)));
181
182 for port in simobj._ports.values():
183 is_vector = isinstance(port, m5.params.VectorPort)
184 is_master = port.role == 'MASTER'
185
186 code('ports["%s"] = new PortDesc("%s", %s, %s);' %
187 (port.name, port.name, cxx_bool(is_vector),
188 cxx_bool(is_master)))
189
190 code.dedent()
191 code('}')
192 code()
193
194 code('bool ${member_prefix}setSimObject(const std::string &name,')
195 code(' SimObject *simObject)${end_of_decl}')
196
197 if not is_header:
198 code('{')
199 code.indent()
200 code('bool ret = true;')
201 code()
202 code('if (false) {')
203 for param in simobj._params.values():
204 is_vector = isinstance(param, m5.params.VectorParamDesc)
205 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
206
207 if is_simobj and not is_vector:
208 code('} else if (name == "${{param.name}}") {')
209 code.indent()
210 code('this->${{param.name}} = '
211 'dynamic_cast<${{param.ptype.cxx_type}}>(simObject);')
212 code('if (simObject && !this->${{param.name}})')
213 code(' ret = false;')
214 code.dedent()
215 code('} else {')
216 code(' ret = false;')
217 code('}')
218 code()
219 code('return ret;')
220 code.dedent()
221 code('}')
222
223 code()
224 code('bool ${member_prefix}setSimObjectVector('
225 'const std::string &name,')
226 code(' const std::vector<SimObject *> &simObjects)${end_of_decl}')
227
228 if not is_header:
229 code('{')
230 code.indent()
231 code('bool ret = true;')
232 code()
233 code('if (false) {')
234 for param in simobj._params.values():
235 is_vector = isinstance(param, m5.params.VectorParamDesc)
236 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
237
238 if is_simobj and is_vector:
239 code('} else if (name == "${{param.name}}") {')
240 code.indent()
241 code('this->${{param.name}}.clear();')
242 code('for (auto i = simObjects.begin(); '
243 'ret && i != simObjects.end(); i ++)')
244 code('{')
245 code.indent()
246 code('${{param.ptype.cxx_type}} object = '
247 'dynamic_cast<${{param.ptype.cxx_type}}>(*i);')
248 code('if (*i && !object)')
249 code(' ret = false;')
250 code('else')
251 code(' this->${{param.name}}.push_back(object);')
252 code.dedent()
253 code('}')
254 code.dedent()
255 code('} else {')
256 code(' ret = false;')
257 code('}')
258 code()
259 code('return ret;')
260 code.dedent()
261 code('}')
262
263 code()
264 code('void ${member_prefix}setName(const std::string &name_)'
265 '${end_of_decl}')
266
267 if not is_header:
268 code('{')
269 code.indent()
270 code('this->name = name_;')
271 code('this->pyobj = NULL;')
272 code.dedent()
273 code('}')
274
275 if is_header:
276 code('const std::string &${member_prefix}getName()')
277 code('{ return this->name; }')
278
279 code()
280 code('bool ${member_prefix}setParam(const std::string &name,')
281 code(' const std::string &value, const Flags flags)${end_of_decl}')
282
283 if not is_header:
284 code('{')
285 code.indent()
286 code('bool ret = true;')
287 code()
288 code('if (false) {')
289 for param in simobj._params.values():
290 is_vector = isinstance(param, m5.params.VectorParamDesc)
291 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
292
293 if not is_simobj and not is_vector:
294 code('} else if (name == "${{param.name}}") {')
295 code.indent()
296 param.ptype.cxx_ini_parse(code,
297 'value', 'this->%s' % param.name, 'ret =')
298 code.dedent()
299 code('} else {')
300 code(' ret = false;')
301 code('}')
302 code()
303 code('return ret;')
304 code.dedent()
305 code('}')
306
307 code()
308 code('bool ${member_prefix}setParamVector('
309 'const std::string &name,')
310 code(' const std::vector<std::string> &values,')
311 code(' const Flags flags)${end_of_decl}')
312
313 if not is_header:
314 code('{')
315 code.indent()
316 code('bool ret = true;')
317 code()
318 code('if (false) {')
319 for param in simobj._params.values():
320 is_vector = isinstance(param, m5.params.VectorParamDesc)
321 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
322
323 if not is_simobj and is_vector:
324 code('} else if (name == "${{param.name}}") {')
325 code.indent()
326 code('${{param.name}}.clear();')
327 code('for (auto i = values.begin(); '
328 'ret && i != values.end(); i ++)')
329 code('{')
330 code.indent()
331 code('${{param.ptype.cxx_type}} elem;')
332 param.ptype.cxx_ini_parse(code,
333 '*i', 'elem', 'ret =')
334 code('if (ret)')
335 code(' this->${{param.name}}.push_back(elem);')
336 code.dedent()
337 code('}')
338 code.dedent()
339 code('} else {')
340 code(' ret = false;')
341 code('}')
342 code()
343 code('return ret;')
344 code.dedent()
345 code('}')
346
347 code()
348 code('bool ${member_prefix}setPortConnectionCount('
349 'const std::string &name,')
350 code(' unsigned int count)${end_of_decl}')
351
352 if not is_header:
353 code('{')
354 code.indent()
355 code('bool ret = true;')
356 code()
357 code('if (false)')
358 code(' ;')
359 for port in simobj._ports.values():
360 code('else if (name == "${{port.name}}")')
361 code(' this->port_${{port.name}}_connection_count = count;')
362 code('else')
363 code(' ret = false;')
364 code()
365 code('return ret;')
366 code.dedent()
367 code('}')
368
369 code()
370 code('SimObject *${member_prefix}simObjectCreate()${end_of_decl}')
371
372 if not is_header:
373 code('{')
374 if hasattr(simobj, 'abstract') and simobj.abstract:
375 code(' return NULL;')
376 else:
377 code(' return this->create();')
378 code('}')
379
380 if is_header:
381 code()
382 code('static CxxConfigDirectoryEntry'
383 ' *${member_prefix}makeDirectoryEntry()')
384 code('{ return new DirectoryEntry; }')
385
386 if is_header:
387 code.dedent()
388 code('};')
389
390# The metaclass for SimObject. This class controls how new classes
391# that derive from SimObject are instantiated, and provides inherited
392# class behavior (just like a class controls how instances of that
393# class are instantiated, and provides inherited instance behavior).
394class MetaSimObject(type):
395 # Attributes that can be set only at initialization time
396 init_keywords = { 'abstract' : bool,
397 'cxx_class' : str,
398 'cxx_type' : str,
399 'cxx_header' : str,
400 'type' : str,
401 'cxx_bases' : list }
402 # Attributes that can be set any time
403 keywords = { 'check' : FunctionType }
404
405 # __new__ is called before __init__, and is where the statements
406 # in the body of the class definition get loaded into the class's
407 # __dict__. We intercept this to filter out parameter & port assignments
408 # and only allow "private" attributes to be passed to the base
409 # __new__ (starting with underscore).
410 def __new__(mcls, name, bases, dict):
411 assert name not in allClasses, "SimObject %s already present" % name
412
413 # Copy "private" attributes, functions, and classes to the
414 # official dict. Everything else goes in _init_dict to be
415 # filtered in __init__.
416 cls_dict = {}
417 value_dict = {}
418 for key,val in dict.items():
419 if public_value(key, val):
420 cls_dict[key] = val
421 else:
422 # must be a param/port setting
423 value_dict[key] = val
424 if 'abstract' not in value_dict:
425 value_dict['abstract'] = False
426 if 'cxx_bases' not in value_dict:
427 value_dict['cxx_bases'] = []
428 cls_dict['_value_dict'] = value_dict
429 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
430 if 'type' in value_dict:
431 allClasses[name] = cls
432 return cls
433
434 # subclass initialization
435 def __init__(cls, name, bases, dict):
436 # calls type.__init__()... I think that's a no-op, but leave
437 # it here just in case it's not.
438 super(MetaSimObject, cls).__init__(name, bases, dict)
439
440 # initialize required attributes
441
442 # class-only attributes
443 cls._params = multidict() # param descriptions
444 cls._ports = multidict() # port descriptions
445
446 # class or instance attributes
447 cls._values = multidict() # param values
448 cls._hr_values = multidict() # human readable param values
449 cls._children = multidict() # SimObject children
450 cls._port_refs = multidict() # port ref objects
451 cls._instantiated = False # really instantiated, cloned, or subclassed
452
453 # We don't support multiple inheritance of sim objects. If you want
454 # to, you must fix multidict to deal with it properly. Non sim-objects
455 # are ok, though
456 bTotal = 0
457 for c in bases:
458 if isinstance(c, MetaSimObject):
459 bTotal += 1
460 if bTotal > 1:
461 raise TypeError, "SimObjects do not support multiple inheritance"
462
463 base = bases[0]
464
465 # Set up general inheritance via multidicts. A subclass will
466 # inherit all its settings from the base class. The only time
467 # the following is not true is when we define the SimObject
468 # class itself (in which case the multidicts have no parent).
469 if isinstance(base, MetaSimObject):
470 cls._base = base
471 cls._params.parent = base._params
472 cls._ports.parent = base._ports
473 cls._values.parent = base._values
474 cls._hr_values.parent = base._hr_values
475 cls._children.parent = base._children
476 cls._port_refs.parent = base._port_refs
477 # mark base as having been subclassed
478 base._instantiated = True
479 else:
480 cls._base = None
481
482 # default keyword values
483 if 'type' in cls._value_dict:
484 if 'cxx_class' not in cls._value_dict:
485 cls._value_dict['cxx_class'] = cls._value_dict['type']
486
487 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
488
489 if 'cxx_header' not in cls._value_dict:
490 global noCxxHeader
491 noCxxHeader = True
492 warn("No header file specified for SimObject: %s", name)
493
494 # Export methods are automatically inherited via C++, so we
495 # don't want the method declarations to get inherited on the
496 # python side (and thus end up getting repeated in the wrapped
497 # versions of derived classes). The code below basicallly
498 # suppresses inheritance by substituting in the base (null)
499 # versions of these methods unless a different version is
500 # explicitly supplied.
501 for method_name in ('export_methods', 'export_method_cxx_predecls',
502 'export_method_swig_predecls'):
503 if method_name not in cls.__dict__:
504 base_method = getattr(MetaSimObject, method_name)
505 m = MethodType(base_method, cls, MetaSimObject)
506 setattr(cls, method_name, m)
507
508 # Now process the _value_dict items. They could be defining
509 # new (or overriding existing) parameters or ports, setting
510 # class keywords (e.g., 'abstract'), or setting parameter
511 # values or port bindings. The first 3 can only be set when
512 # the class is defined, so we handle them here. The others
513 # can be set later too, so just emulate that by calling
514 # setattr().
515 for key,val in cls._value_dict.items():
516 # param descriptions
517 if isinstance(val, ParamDesc):
518 cls._new_param(key, val)
519
520 # port objects
521 elif isinstance(val, Port):
522 cls._new_port(key, val)
523
524 # init-time-only keywords
525 elif cls.init_keywords.has_key(key):
526 cls._set_keyword(key, val, cls.init_keywords[key])
527
528 # default: use normal path (ends up in __setattr__)
529 else:
530 setattr(cls, key, val)
531
532 def _set_keyword(cls, keyword, val, kwtype):
533 if not isinstance(val, kwtype):
534 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
535 (keyword, type(val), kwtype)
536 if isinstance(val, FunctionType):
537 val = classmethod(val)
538 type.__setattr__(cls, keyword, val)
539
540 def _new_param(cls, name, pdesc):
541 # each param desc should be uniquely assigned to one variable
542 assert(not hasattr(pdesc, 'name'))
543 pdesc.name = name
544 cls._params[name] = pdesc
545 if hasattr(pdesc, 'default'):
546 cls._set_param(name, pdesc.default, pdesc)
547
548 def _set_param(cls, name, value, param):
549 assert(param.name == name)
550 try:
551 hr_value = value
552 value = param.convert(value)
553 except Exception, e:
554 msg = "%s\nError setting param %s.%s to %s\n" % \
555 (e, cls.__name__, name, value)
556 e.args = (msg, )
557 raise
558 cls._values[name] = value
559 # if param value is a SimObject, make it a child too, so that
560 # it gets cloned properly when the class is instantiated
561 if isSimObjectOrVector(value) and not value.has_parent():
562 cls._add_cls_child(name, value)
563 # update human-readable values of the param if it has a literal
564 # value and is not an object or proxy.
565 if not (isSimObjectOrVector(value) or\
566 isinstance(value, m5.proxy.BaseProxy)):
567 cls._hr_values[name] = hr_value
568
569 def _add_cls_child(cls, name, child):
570 # It's a little funky to have a class as a parent, but these
571 # objects should never be instantiated (only cloned, which
572 # clears the parent pointer), and this makes it clear that the
573 # object is not an orphan and can provide better error
574 # messages.
575 child.set_parent(cls, name)
576 cls._children[name] = child
577
578 def _new_port(cls, name, port):
579 # each port should be uniquely assigned to one variable
580 assert(not hasattr(port, 'name'))
581 port.name = name
582 cls._ports[name] = port
583
584 # same as _get_port_ref, effectively, but for classes
585 def _cls_get_port_ref(cls, attr):
586 # Return reference that can be assigned to another port
587 # via __setattr__. There is only ever one reference
588 # object per port, but we create them lazily here.
589 ref = cls._port_refs.get(attr)
590 if not ref:
591 ref = cls._ports[attr].makeRef(cls)
592 cls._port_refs[attr] = ref
593 return ref
594
595 # Set attribute (called on foo.attr = value when foo is an
596 # instance of class cls).
597 def __setattr__(cls, attr, value):
598 # normal processing for private attributes
599 if public_value(attr, value):
600 type.__setattr__(cls, attr, value)
601 return
602
603 if cls.keywords.has_key(attr):
604 cls._set_keyword(attr, value, cls.keywords[attr])
605 return
606
607 if cls._ports.has_key(attr):
608 cls._cls_get_port_ref(attr).connect(value)
609 return
610
611 if isSimObjectOrSequence(value) and cls._instantiated:
612 raise RuntimeError, \
613 "cannot set SimObject parameter '%s' after\n" \
614 " class %s has been instantiated or subclassed" \
615 % (attr, cls.__name__)
616
617 # check for param
618 param = cls._params.get(attr)
619 if param:
620 cls._set_param(attr, value, param)
621 return
622
623 if isSimObjectOrSequence(value):
624 # If RHS is a SimObject, it's an implicit child assignment.
625 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
626 return
627
628 # no valid assignment... raise exception
629 raise AttributeError, \
630 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
631
632 def __getattr__(cls, attr):
633 if attr == 'cxx_class_path':
634 return cls.cxx_class.split('::')
635
636 if attr == 'cxx_class_name':
637 return cls.cxx_class_path[-1]
638
639 if attr == 'cxx_namespaces':
640 return cls.cxx_class_path[:-1]
641
642 if cls._values.has_key(attr):
643 return cls._values[attr]
644
645 if cls._children.has_key(attr):
646 return cls._children[attr]
647
648 raise AttributeError, \
649 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
650
651 def __str__(cls):
652 return cls.__name__
653
654 # See ParamValue.cxx_predecls for description.
655 def cxx_predecls(cls, code):
656 code('#include "params/$cls.hh"')
657
658 # See ParamValue.swig_predecls for description.
659 def swig_predecls(cls, code):
660 code('%import "python/m5/internal/param_$cls.i"')
661
662 # Hook for exporting additional C++ methods to Python via SWIG.
663 # Default is none, override using @classmethod in class definition.
664 def export_methods(cls, code):
665 pass
666
667 # Generate the code needed as a prerequisite for the C++ methods
668 # exported via export_methods() to be compiled in the _wrap.cc
669 # file. Typically generates one or more #include statements. If
670 # any methods are exported, typically at least the C++ header
671 # declaring the relevant SimObject class must be included.
672 def export_method_cxx_predecls(cls, code):
673 pass
674
675 # Generate the code needed as a prerequisite for the C++ methods
676 # exported via export_methods() to be processed by SWIG.
677 # Typically generates one or more %include or %import statements.
678 # If any methods are exported, typically at least the C++ header
679 # declaring the relevant SimObject class must be included.
680 def export_method_swig_predecls(cls, code):
681 pass
682
683 # Generate the declaration for this object for wrapping with SWIG.
684 # Generates code that goes into a SWIG .i file. Called from
685 # src/SConscript.
686 def swig_decl(cls, code):
687 class_path = cls.cxx_class.split('::')
688 classname = class_path[-1]
689 namespaces = class_path[:-1]
690
691 # The 'local' attribute restricts us to the params declared in
692 # the object itself, not including inherited params (which
693 # will also be inherited from the base class's param struct
694 # here). Sort the params based on their key
695 params = map(lambda (k, v): v, sorted(cls._params.local.items()))
696 ports = cls._ports.local
697
698 code('%module(package="m5.internal") param_$cls')
699 code()
700 code('%{')
701 code('#include "sim/sim_object.hh"')
702 code('#include "params/$cls.hh"')
703 for param in params:
704 param.cxx_predecls(code)
705 code('#include "${{cls.cxx_header}}"')
706 cls.export_method_cxx_predecls(code)
707 code('''\
708/**
709 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
710 * headers like vector, string, etc. used to automatically pull in
711 * the cstddef header but starting with gcc 4.6.1 they no longer do.
712 * This leads to swig generated a file that does not compile so we
713 * explicitly include cstddef. Additionally, including version 2.0.4,
714 * swig uses ptrdiff_t without the std:: namespace prefix which is
715 * required with gcc 4.6.1. We explicitly provide access to it.
716 */
717#include <cstddef>
718using std::ptrdiff_t;
719''')
720 code('%}')
721 code()
722
723 for param in params:
724 param.swig_predecls(code)
725 cls.export_method_swig_predecls(code)
726
727 code()
728 if cls._base:
729 code('%import "python/m5/internal/param_${{cls._base}}.i"')
730 code()
731
732 for ns in namespaces:
733 code('namespace $ns {')
734
735 if namespaces:
736 code('// avoid name conflicts')
737 sep_string = '_COLONS_'
738 flat_name = sep_string.join(class_path)
739 code('%rename($flat_name) $classname;')
740
741 code()
742 code('// stop swig from creating/wrapping default ctor/dtor')
743 code('%nodefault $classname;')
744 code('class $classname')
745 if cls._base:
746 bases = [ cls._base.cxx_class ] + cls.cxx_bases
747 else:
748 bases = cls.cxx_bases
749 base_first = True
750 for base in bases:
751 if base_first:
752 code(' : public ${{base}}')
753 base_first = False
754 else:
755 code(' , public ${{base}}')
756
757 code('{')
758 code(' public:')
759 cls.export_methods(code)
760 code('};')
761
762 for ns in reversed(namespaces):
763 code('} // namespace $ns')
764
765 code()
766 code('%include "params/$cls.hh"')
767
768
769 # Generate the C++ declaration (.hh file) for this SimObject's
770 # param struct. Called from src/SConscript.
771 def cxx_param_decl(cls, code):
772 # The 'local' attribute restricts us to the params declared in
773 # the object itself, not including inherited params (which
774 # will also be inherited from the base class's param struct
775 # here). Sort the params based on their key
776 params = map(lambda (k, v): v, sorted(cls._params.local.items()))
777 ports = cls._ports.local
778 try:
779 ptypes = [p.ptype for p in params]
780 except:
781 print cls, p, p.ptype_str
782 print params
783 raise
784
785 class_path = cls._value_dict['cxx_class'].split('::')
786
787 code('''\
788#ifndef __PARAMS__${cls}__
789#define __PARAMS__${cls}__
790
791''')
792
793 # A forward class declaration is sufficient since we are just
794 # declaring a pointer.
795 for ns in class_path[:-1]:
796 code('namespace $ns {')
797 code('class $0;', class_path[-1])
798 for ns in reversed(class_path[:-1]):
799 code('} // namespace $ns')
800 code()
801
802 # The base SimObject has a couple of params that get
803 # automatically set from Python without being declared through
804 # the normal Param mechanism; we slip them in here (needed
805 # predecls now, actual declarations below)
806 if cls == SimObject:
807 code('''
808#ifndef PY_VERSION
809struct PyObject;
810#endif
811
812#include <string>
813''')
814 for param in params:
815 param.cxx_predecls(code)
816 for port in ports.itervalues():
817 port.cxx_predecls(code)
818 code()
819
820 if cls._base:
821 code('#include "params/${{cls._base.type}}.hh"')
822 code()
823
824 for ptype in ptypes:
825 if issubclass(ptype, Enum):
826 code('#include "enums/${{ptype.__name__}}.hh"')
827 code()
828
829 # now generate the actual param struct
830 code("struct ${cls}Params")
831 if cls._base:
832 code(" : public ${{cls._base.type}}Params")
833 code("{")
834 if not hasattr(cls, 'abstract') or not cls.abstract:
835 if 'type' in cls.__dict__:
836 code(" ${{cls.cxx_type}} create();")
837
838 code.indent()
839 if cls == SimObject:
840 code('''
841 SimObjectParams() {}
842 virtual ~SimObjectParams() {}
843
844 std::string name;
845 PyObject *pyobj;
846 ''')
847 for param in params:
848 param.cxx_decl(code)
849 for port in ports.itervalues():
850 port.cxx_decl(code)
851
852 code.dedent()
853 code('};')
854
855 code()
856 code('#endif // __PARAMS__${cls}__')
857 return code
858
859 # Generate the C++ declaration/definition files for this SimObject's
860 # param struct to allow C++ initialisation
861 def cxx_config_param_file(cls, code, is_header):
862 createCxxConfigDirectoryEntryFile(code, cls.__name__, cls, is_header)
863 return code
864
865# This *temporary* definition is required to support calls from the
866# SimObject class definition to the MetaSimObject methods (in
867# particular _set_param, which gets called for parameters with default
868# values defined on the SimObject class itself). It will get
869# overridden by the permanent definition (which requires that
870# SimObject be defined) lower in this file.
871def isSimObjectOrVector(value):
872 return False
873
874# This class holds information about each simobject parameter
875# that should be displayed on the command line for use in the
876# configuration system.
877class ParamInfo(object):
878 def __init__(self, type, desc, type_str, example, default_val, access_str):
879 self.type = type
880 self.desc = desc
881 self.type_str = type_str
882 self.example_str = example
883 self.default_val = default_val
884 # The string representation used to access this param through python.
885 # The method to access this parameter presented on the command line may
886 # be different, so this needs to be stored for later use.
887 self.access_str = access_str
888 self.created = True
889
890 # Make it so we can only set attributes at initialization time
891 # and effectively make this a const object.
892 def __setattr__(self, name, value):
893 if not "created" in self.__dict__:
894 self.__dict__[name] = value
895
896# The SimObject class is the root of the special hierarchy. Most of
897# the code in this class deals with the configuration hierarchy itself
898# (parent/child node relationships).
899class SimObject(object):
900 # Specify metaclass. Any class inheriting from SimObject will
901 # get this metaclass.
902 __metaclass__ = MetaSimObject
903 type = 'SimObject'
904 abstract = True
905
906 cxx_header = "sim/sim_object.hh"
907 cxx_bases = [ "Drainable", "Serializable" ]
908 eventq_index = Param.UInt32(Parent.eventq_index, "Event Queue Index")
909
910 @classmethod
911 def export_method_swig_predecls(cls, code):
912 code('''
913%include <std_string.i>
914
915%import "python/swig/drain.i"
916%import "python/swig/serialize.i"
917''')
918
919 @classmethod
920 def export_methods(cls, code):
921 code('''
922 void init();
923 void loadState(CheckpointIn &cp);
924 void initState();
925 void memInvalidate();
926 void memWriteback();
927 void regStats();
928 void resetStats();
929 void regProbePoints();
930 void regProbeListeners();
931 void startup();
932''')
933
934 # Returns a dict of all the option strings that can be
935 # generated as command line options for this simobject instance
936 # by tracing all reachable params in the top level instance and
937 # any children it contains.
938 def enumerateParams(self, flags_dict = {},
939 cmd_line_str = "", access_str = ""):
940 if hasattr(self, "_paramEnumed"):
941 print "Cycle detected enumerating params"
942 else:
943 self._paramEnumed = True
944 # Scan the children first to pick up all the objects in this SimObj
945 for keys in self._children:
946 child = self._children[keys]
947 next_cmdline_str = cmd_line_str + keys
948 next_access_str = access_str + keys
949 if not isSimObjectVector(child):
950 next_cmdline_str = next_cmdline_str + "."
951 next_access_str = next_access_str + "."
952 flags_dict = child.enumerateParams(flags_dict,
953 next_cmdline_str,
954 next_access_str)
955
956 # Go through the simple params in the simobject in this level
957 # of the simobject hierarchy and save information about the
958 # parameter to be used for generating and processing command line
959 # options to the simulator to set these parameters.
960 for keys,values in self._params.items():
961 if values.isCmdLineSettable():
962 type_str = ''
963 ex_str = values.example_str()
964 ptype = None
965 if isinstance(values, VectorParamDesc):
966 type_str = 'Vector_%s' % values.ptype_str
967 ptype = values
968 else:
969 type_str = '%s' % values.ptype_str
970 ptype = values.ptype
971
972 if keys in self._hr_values\
973 and keys in self._values\
974 and not isinstance(self._values[keys], m5.proxy.BaseProxy):
975 cmd_str = cmd_line_str + keys
976 acc_str = access_str + keys
977 flags_dict[cmd_str] = ParamInfo(ptype,
978 self._params[keys].desc, type_str, ex_str,
979 values.pretty_print(self._hr_values[keys]),
980 acc_str)
981 elif not keys in self._hr_values\
982 and not keys in self._values:
983 # Empty param
984 cmd_str = cmd_line_str + keys
985 acc_str = access_str + keys
986 flags_dict[cmd_str] = ParamInfo(ptype,
987 self._params[keys].desc,
988 type_str, ex_str, '', acc_str)
989
990 return flags_dict
991
992 # Initialize new instance. For objects with SimObject-valued
993 # children, we need to recursively clone the classes represented
994 # by those param values as well in a consistent "deep copy"-style
995 # fashion. That is, we want to make sure that each instance is
996 # cloned only once, and that if there are multiple references to
997 # the same original object, we end up with the corresponding
998 # cloned references all pointing to the same cloned instance.
999 def __init__(self, **kwargs):
1000 ancestor = kwargs.get('_ancestor')
1001 memo_dict = kwargs.get('_memo')
1002 if memo_dict is None:
1003 # prepare to memoize any recursively instantiated objects
1004 memo_dict = {}
1005 elif ancestor:
1006 # memoize me now to avoid problems with recursive calls
1007 memo_dict[ancestor] = self
1008
1009 if not ancestor:
1010 ancestor = self.__class__
1011 ancestor._instantiated = True
1012
1013 # initialize required attributes
1014 self._parent = None
1015 self._name = None
1016 self._ccObject = None # pointer to C++ object
1017 self._ccParams = None
1018 self._instantiated = False # really "cloned"
1019
1020 # Clone children specified at class level. No need for a
1021 # multidict here since we will be cloning everything.
1022 # Do children before parameter values so that children that
1023 # are also param values get cloned properly.
1024 self._children = {}
1025 for key,val in ancestor._children.iteritems():
1026 self.add_child(key, val(_memo=memo_dict))
1027
1028 # Inherit parameter values from class using multidict so
1029 # individual value settings can be overridden but we still
1030 # inherit late changes to non-overridden class values.
1031 self._values = multidict(ancestor._values)
1032 self._hr_values = multidict(ancestor._hr_values)
1033 # clone SimObject-valued parameters
1034 for key,val in ancestor._values.iteritems():
1035 val = tryAsSimObjectOrVector(val)
1036 if val is not None:
1037 self._values[key] = val(_memo=memo_dict)
1038
1039 # clone port references. no need to use a multidict here
1040 # since we will be creating new references for all ports.
1041 self._port_refs = {}
1042 for key,val in ancestor._port_refs.iteritems():
1043 self._port_refs[key] = val.clone(self, memo_dict)
1044 # apply attribute assignments from keyword args, if any
1045 for key,val in kwargs.iteritems():
1046 setattr(self, key, val)
1047
1048 # "Clone" the current instance by creating another instance of
1049 # this instance's class, but that inherits its parameter values
1050 # and port mappings from the current instance. If we're in a
1051 # "deep copy" recursive clone, check the _memo dict to see if
1052 # we've already cloned this instance.
1053 def __call__(self, **kwargs):
1054 memo_dict = kwargs.get('_memo')
1055 if memo_dict is None:
1056 # no memo_dict: must be top-level clone operation.
1057 # this is only allowed at the root of a hierarchy
1058 if self._parent:
1059 raise RuntimeError, "attempt to clone object %s " \
1060 "not at the root of a tree (parent = %s)" \
1061 % (self, self._parent)
1062 # create a new dict and use that.
1063 memo_dict = {}
1064 kwargs['_memo'] = memo_dict
1065 elif memo_dict.has_key(self):
1066 # clone already done & memoized
1067 return memo_dict[self]
1068 return self.__class__(_ancestor = self, **kwargs)
1069
1070 def _get_port_ref(self, attr):
1071 # Return reference that can be assigned to another port
1072 # via __setattr__. There is only ever one reference
1073 # object per port, but we create them lazily here.
1074 ref = self._port_refs.get(attr)
1075 if ref == None:
1076 ref = self._ports[attr].makeRef(self)
1077 self._port_refs[attr] = ref
1078 return ref
1079
1080 def __getattr__(self, attr):
1081 if self._ports.has_key(attr):
1082 return self._get_port_ref(attr)
1083
1084 if self._values.has_key(attr):
1085 return self._values[attr]
1086
1087 if self._children.has_key(attr):
1088 return self._children[attr]
1089
1090 # If the attribute exists on the C++ object, transparently
1091 # forward the reference there. This is typically used for
1092 # SWIG-wrapped methods such as init(), regStats(),
1093 # resetStats(), startup(), drain(), and
1094 # resume().
1095 if self._ccObject and hasattr(self._ccObject, attr):
1096 return getattr(self._ccObject, attr)
1097
1098 err_string = "object '%s' has no attribute '%s'" \
1099 % (self.__class__.__name__, attr)
1100
1101 if not self._ccObject:
1102 err_string += "\n (C++ object is not yet constructed," \
1103 " so wrapped C++ methods are unavailable.)"
1104
1105 raise AttributeError, err_string
1106
1107 # Set attribute (called on foo.attr = value when foo is an
1108 # instance of class cls).
1109 def __setattr__(self, attr, value):
1110 # normal processing for private attributes
1111 if attr.startswith('_'):
1112 object.__setattr__(self, attr, value)
1113 return
1114
1115 if self._ports.has_key(attr):
1116 # set up port connection
1117 self._get_port_ref(attr).connect(value)
1118 return
1119
1120 param = self._params.get(attr)
1121 if param:
1122 try:
1123 hr_value = value
1124 value = param.convert(value)
1125 except Exception, e:
1126 msg = "%s\nError setting param %s.%s to %s\n" % \
1127 (e, self.__class__.__name__, attr, value)
1128 e.args = (msg, )
1129 raise
1130 self._values[attr] = value
1131 # implicitly parent unparented objects assigned as params
1132 if isSimObjectOrVector(value) and not value.has_parent():
1133 self.add_child(attr, value)
1134 # set the human-readable value dict if this is a param
1135 # with a literal value and is not being set as an object
1136 # or proxy.
1137 if not (isSimObjectOrVector(value) or\
1138 isinstance(value, m5.proxy.BaseProxy)):
1139 self._hr_values[attr] = hr_value
1140
1141 return
1142
1143 # if RHS is a SimObject, it's an implicit child assignment
1144 if isSimObjectOrSequence(value):
1145 self.add_child(attr, value)
1146 return
1147
1148 # no valid assignment... raise exception
1149 raise AttributeError, "Class %s has no parameter %s" \
1150 % (self.__class__.__name__, attr)
1151
1152
1153 # this hack allows tacking a '[0]' onto parameters that may or may
1154 # not be vectors, and always getting the first element (e.g. cpus)
1155 def __getitem__(self, key):
1156 if key == 0:
1157 return self
1158 raise IndexError, "Non-zero index '%s' to SimObject" % key
1159
1160 # this hack allows us to iterate over a SimObject that may
1161 # not be a vector, so we can call a loop over it and get just one
1162 # element.
1163 def __len__(self):
1164 return 1
1165
1166 # Also implemented by SimObjectVector
1167 def clear_parent(self, old_parent):
1168 assert self._parent is old_parent
1169 self._parent = None
1170
1171 # Also implemented by SimObjectVector
1172 def set_parent(self, parent, name):
1173 self._parent = parent
1174 self._name = name
1175
1176 # Return parent object of this SimObject, not implemented by SimObjectVector
1177 # because the elements in a SimObjectVector may not share the same parent
1178 def get_parent(self):
1179 return self._parent
1180
1181 # Also implemented by SimObjectVector
1182 def get_name(self):
1183 return self._name
1184
1185 # Also implemented by SimObjectVector
1186 def has_parent(self):
1187 return self._parent is not None
1188
1189 # clear out child with given name. This code is not likely to be exercised.
1190 # See comment in add_child.
1191 def clear_child(self, name):
1192 child = self._children[name]
1193 child.clear_parent(self)
1194 del self._children[name]
1195
1196 # Add a new child to this object.
1197 def add_child(self, name, child):
1198 child = coerceSimObjectOrVector(child)
1199 if child.has_parent():
1200 warn("add_child('%s'): child '%s' already has parent", name,
1201 child.get_name())
1202 if self._children.has_key(name):
1203 # This code path had an undiscovered bug that would make it fail
1204 # at runtime. It had been here for a long time and was only
1205 # exposed by a buggy script. Changes here will probably not be
1206 # exercised without specialized testing.
1207 self.clear_child(name)
1208 child.set_parent(self, name)
1209 self._children[name] = child
1210
1211 # Take SimObject-valued parameters that haven't been explicitly
1212 # assigned as children and make them children of the object that
1213 # they were assigned to as a parameter value. This guarantees
1214 # that when we instantiate all the parameter objects we're still
1215 # inside the configuration hierarchy.
1216 def adoptOrphanParams(self):
1217 for key,val in self._values.iteritems():
1218 if not isSimObjectVector(val) and isSimObjectSequence(val):
1219 # need to convert raw SimObject sequences to
1220 # SimObjectVector class so we can call has_parent()
1221 val = SimObjectVector(val)
1222 self._values[key] = val
1223 if isSimObjectOrVector(val) and not val.has_parent():
1224 warn("%s adopting orphan SimObject param '%s'", self, key)
1225 self.add_child(key, val)
1226
1227 def path(self):
1228 if not self._parent:
1229 return '<orphan %s>' % self.__class__
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010-20013 Advanced Micro Devices, Inc.
15# Copyright (c) 2013 Mark D. Hill and David A. Wood
16# All rights reserved.
17#
18# Redistribution and use in source and binary forms, with or without
19# modification, are permitted provided that the following conditions are
20# met: redistributions of source code must retain the above copyright
21# notice, this list of conditions and the following disclaimer;
22# redistributions in binary form must reproduce the above copyright
23# notice, this list of conditions and the following disclaimer in the
24# documentation and/or other materials provided with the distribution;
25# neither the name of the copyright holders nor the names of its
26# contributors may be used to endorse or promote products derived from
27# this software without specific prior written permission.
28#
29# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40#
41# Authors: Steve Reinhardt
42# Nathan Binkert
43# Andreas Hansson
44
45import sys
46from types import FunctionType, MethodType, ModuleType
47
48import m5
49from m5.util import *
50
51# Have to import params up top since Param is referenced on initial
52# load (when SimObject class references Param to create a class
53# variable, the 'name' param)...
54from m5.params import *
55# There are a few things we need that aren't in params.__all__ since
56# normal users don't need them
57from m5.params import ParamDesc, VectorParamDesc, \
58 isNullPointer, SimObjectVector, Port
59
60from m5.proxy import *
61from m5.proxy import isproxy
62
63#####################################################################
64#
65# M5 Python Configuration Utility
66#
67# The basic idea is to write simple Python programs that build Python
68# objects corresponding to M5 SimObjects for the desired simulation
69# configuration. For now, the Python emits a .ini file that can be
70# parsed by M5. In the future, some tighter integration between M5
71# and the Python interpreter may allow bypassing the .ini file.
72#
73# Each SimObject class in M5 is represented by a Python class with the
74# same name. The Python inheritance tree mirrors the M5 C++ tree
75# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
76# SimObjects inherit from a single SimObject base class). To specify
77# an instance of an M5 SimObject in a configuration, the user simply
78# instantiates the corresponding Python object. The parameters for
79# that SimObject are given by assigning to attributes of the Python
80# object, either using keyword assignment in the constructor or in
81# separate assignment statements. For example:
82#
83# cache = BaseCache(size='64KB')
84# cache.hit_latency = 3
85# cache.assoc = 8
86#
87# The magic lies in the mapping of the Python attributes for SimObject
88# classes to the actual SimObject parameter specifications. This
89# allows parameter validity checking in the Python code. Continuing
90# the example above, the statements "cache.blurfl=3" or
91# "cache.assoc='hello'" would both result in runtime errors in Python,
92# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
93# parameter requires an integer, respectively. This magic is done
94# primarily by overriding the special __setattr__ method that controls
95# assignment to object attributes.
96#
97# Once a set of Python objects have been instantiated in a hierarchy,
98# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
99# will generate a .ini file.
100#
101#####################################################################
102
103# list of all SimObject classes
104allClasses = {}
105
106# dict to look up SimObjects based on path
107instanceDict = {}
108
109# Did any of the SimObjects lack a header file?
110noCxxHeader = False
111
112def public_value(key, value):
113 return key.startswith('_') or \
114 isinstance(value, (FunctionType, MethodType, ModuleType,
115 classmethod, type))
116
117def createCxxConfigDirectoryEntryFile(code, name, simobj, is_header):
118 entry_class = 'CxxConfigDirectoryEntry_%s' % name
119 param_class = '%sCxxConfigParams' % name
120
121 code('#include "params/%s.hh"' % name)
122
123 if not is_header:
124 for param in simobj._params.values():
125 if isSimObjectClass(param.ptype):
126 code('#include "%s"' % param.ptype._value_dict['cxx_header'])
127 code('#include "params/%s.hh"' % param.ptype.__name__)
128 else:
129 param.ptype.cxx_ini_predecls(code)
130
131 if is_header:
132 member_prefix = ''
133 end_of_decl = ';'
134 code('#include "sim/cxx_config.hh"')
135 code()
136 code('class ${param_class} : public CxxConfigParams,'
137 ' public ${name}Params')
138 code('{')
139 code(' private:')
140 code.indent()
141 code('class DirectoryEntry : public CxxConfigDirectoryEntry')
142 code('{')
143 code(' public:')
144 code.indent()
145 code('DirectoryEntry();');
146 code()
147 code('CxxConfigParams *makeParamsObject() const')
148 code('{ return new ${param_class}; }')
149 code.dedent()
150 code('};')
151 code()
152 code.dedent()
153 code(' public:')
154 code.indent()
155 else:
156 member_prefix = '%s::' % param_class
157 end_of_decl = ''
158 code('#include "%s"' % simobj._value_dict['cxx_header'])
159 code('#include "base/str.hh"')
160 code('#include "cxx_config/${name}.hh"')
161
162 if simobj._ports.values() != []:
163 code('#include "mem/mem_object.hh"')
164 code('#include "mem/port.hh"')
165
166 code()
167 code('${member_prefix}DirectoryEntry::DirectoryEntry()');
168 code('{')
169
170 def cxx_bool(b):
171 return 'true' if b else 'false'
172
173 code.indent()
174 for param in simobj._params.values():
175 is_vector = isinstance(param, m5.params.VectorParamDesc)
176 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
177
178 code('parameters["%s"] = new ParamDesc("%s", %s, %s);' %
179 (param.name, param.name, cxx_bool(is_vector),
180 cxx_bool(is_simobj)));
181
182 for port in simobj._ports.values():
183 is_vector = isinstance(port, m5.params.VectorPort)
184 is_master = port.role == 'MASTER'
185
186 code('ports["%s"] = new PortDesc("%s", %s, %s);' %
187 (port.name, port.name, cxx_bool(is_vector),
188 cxx_bool(is_master)))
189
190 code.dedent()
191 code('}')
192 code()
193
194 code('bool ${member_prefix}setSimObject(const std::string &name,')
195 code(' SimObject *simObject)${end_of_decl}')
196
197 if not is_header:
198 code('{')
199 code.indent()
200 code('bool ret = true;')
201 code()
202 code('if (false) {')
203 for param in simobj._params.values():
204 is_vector = isinstance(param, m5.params.VectorParamDesc)
205 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
206
207 if is_simobj and not is_vector:
208 code('} else if (name == "${{param.name}}") {')
209 code.indent()
210 code('this->${{param.name}} = '
211 'dynamic_cast<${{param.ptype.cxx_type}}>(simObject);')
212 code('if (simObject && !this->${{param.name}})')
213 code(' ret = false;')
214 code.dedent()
215 code('} else {')
216 code(' ret = false;')
217 code('}')
218 code()
219 code('return ret;')
220 code.dedent()
221 code('}')
222
223 code()
224 code('bool ${member_prefix}setSimObjectVector('
225 'const std::string &name,')
226 code(' const std::vector<SimObject *> &simObjects)${end_of_decl}')
227
228 if not is_header:
229 code('{')
230 code.indent()
231 code('bool ret = true;')
232 code()
233 code('if (false) {')
234 for param in simobj._params.values():
235 is_vector = isinstance(param, m5.params.VectorParamDesc)
236 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
237
238 if is_simobj and is_vector:
239 code('} else if (name == "${{param.name}}") {')
240 code.indent()
241 code('this->${{param.name}}.clear();')
242 code('for (auto i = simObjects.begin(); '
243 'ret && i != simObjects.end(); i ++)')
244 code('{')
245 code.indent()
246 code('${{param.ptype.cxx_type}} object = '
247 'dynamic_cast<${{param.ptype.cxx_type}}>(*i);')
248 code('if (*i && !object)')
249 code(' ret = false;')
250 code('else')
251 code(' this->${{param.name}}.push_back(object);')
252 code.dedent()
253 code('}')
254 code.dedent()
255 code('} else {')
256 code(' ret = false;')
257 code('}')
258 code()
259 code('return ret;')
260 code.dedent()
261 code('}')
262
263 code()
264 code('void ${member_prefix}setName(const std::string &name_)'
265 '${end_of_decl}')
266
267 if not is_header:
268 code('{')
269 code.indent()
270 code('this->name = name_;')
271 code('this->pyobj = NULL;')
272 code.dedent()
273 code('}')
274
275 if is_header:
276 code('const std::string &${member_prefix}getName()')
277 code('{ return this->name; }')
278
279 code()
280 code('bool ${member_prefix}setParam(const std::string &name,')
281 code(' const std::string &value, const Flags flags)${end_of_decl}')
282
283 if not is_header:
284 code('{')
285 code.indent()
286 code('bool ret = true;')
287 code()
288 code('if (false) {')
289 for param in simobj._params.values():
290 is_vector = isinstance(param, m5.params.VectorParamDesc)
291 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
292
293 if not is_simobj and not is_vector:
294 code('} else if (name == "${{param.name}}") {')
295 code.indent()
296 param.ptype.cxx_ini_parse(code,
297 'value', 'this->%s' % param.name, 'ret =')
298 code.dedent()
299 code('} else {')
300 code(' ret = false;')
301 code('}')
302 code()
303 code('return ret;')
304 code.dedent()
305 code('}')
306
307 code()
308 code('bool ${member_prefix}setParamVector('
309 'const std::string &name,')
310 code(' const std::vector<std::string> &values,')
311 code(' const Flags flags)${end_of_decl}')
312
313 if not is_header:
314 code('{')
315 code.indent()
316 code('bool ret = true;')
317 code()
318 code('if (false) {')
319 for param in simobj._params.values():
320 is_vector = isinstance(param, m5.params.VectorParamDesc)
321 is_simobj = issubclass(param.ptype, m5.SimObject.SimObject)
322
323 if not is_simobj and is_vector:
324 code('} else if (name == "${{param.name}}") {')
325 code.indent()
326 code('${{param.name}}.clear();')
327 code('for (auto i = values.begin(); '
328 'ret && i != values.end(); i ++)')
329 code('{')
330 code.indent()
331 code('${{param.ptype.cxx_type}} elem;')
332 param.ptype.cxx_ini_parse(code,
333 '*i', 'elem', 'ret =')
334 code('if (ret)')
335 code(' this->${{param.name}}.push_back(elem);')
336 code.dedent()
337 code('}')
338 code.dedent()
339 code('} else {')
340 code(' ret = false;')
341 code('}')
342 code()
343 code('return ret;')
344 code.dedent()
345 code('}')
346
347 code()
348 code('bool ${member_prefix}setPortConnectionCount('
349 'const std::string &name,')
350 code(' unsigned int count)${end_of_decl}')
351
352 if not is_header:
353 code('{')
354 code.indent()
355 code('bool ret = true;')
356 code()
357 code('if (false)')
358 code(' ;')
359 for port in simobj._ports.values():
360 code('else if (name == "${{port.name}}")')
361 code(' this->port_${{port.name}}_connection_count = count;')
362 code('else')
363 code(' ret = false;')
364 code()
365 code('return ret;')
366 code.dedent()
367 code('}')
368
369 code()
370 code('SimObject *${member_prefix}simObjectCreate()${end_of_decl}')
371
372 if not is_header:
373 code('{')
374 if hasattr(simobj, 'abstract') and simobj.abstract:
375 code(' return NULL;')
376 else:
377 code(' return this->create();')
378 code('}')
379
380 if is_header:
381 code()
382 code('static CxxConfigDirectoryEntry'
383 ' *${member_prefix}makeDirectoryEntry()')
384 code('{ return new DirectoryEntry; }')
385
386 if is_header:
387 code.dedent()
388 code('};')
389
390# The metaclass for SimObject. This class controls how new classes
391# that derive from SimObject are instantiated, and provides inherited
392# class behavior (just like a class controls how instances of that
393# class are instantiated, and provides inherited instance behavior).
394class MetaSimObject(type):
395 # Attributes that can be set only at initialization time
396 init_keywords = { 'abstract' : bool,
397 'cxx_class' : str,
398 'cxx_type' : str,
399 'cxx_header' : str,
400 'type' : str,
401 'cxx_bases' : list }
402 # Attributes that can be set any time
403 keywords = { 'check' : FunctionType }
404
405 # __new__ is called before __init__, and is where the statements
406 # in the body of the class definition get loaded into the class's
407 # __dict__. We intercept this to filter out parameter & port assignments
408 # and only allow "private" attributes to be passed to the base
409 # __new__ (starting with underscore).
410 def __new__(mcls, name, bases, dict):
411 assert name not in allClasses, "SimObject %s already present" % name
412
413 # Copy "private" attributes, functions, and classes to the
414 # official dict. Everything else goes in _init_dict to be
415 # filtered in __init__.
416 cls_dict = {}
417 value_dict = {}
418 for key,val in dict.items():
419 if public_value(key, val):
420 cls_dict[key] = val
421 else:
422 # must be a param/port setting
423 value_dict[key] = val
424 if 'abstract' not in value_dict:
425 value_dict['abstract'] = False
426 if 'cxx_bases' not in value_dict:
427 value_dict['cxx_bases'] = []
428 cls_dict['_value_dict'] = value_dict
429 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
430 if 'type' in value_dict:
431 allClasses[name] = cls
432 return cls
433
434 # subclass initialization
435 def __init__(cls, name, bases, dict):
436 # calls type.__init__()... I think that's a no-op, but leave
437 # it here just in case it's not.
438 super(MetaSimObject, cls).__init__(name, bases, dict)
439
440 # initialize required attributes
441
442 # class-only attributes
443 cls._params = multidict() # param descriptions
444 cls._ports = multidict() # port descriptions
445
446 # class or instance attributes
447 cls._values = multidict() # param values
448 cls._hr_values = multidict() # human readable param values
449 cls._children = multidict() # SimObject children
450 cls._port_refs = multidict() # port ref objects
451 cls._instantiated = False # really instantiated, cloned, or subclassed
452
453 # We don't support multiple inheritance of sim objects. If you want
454 # to, you must fix multidict to deal with it properly. Non sim-objects
455 # are ok, though
456 bTotal = 0
457 for c in bases:
458 if isinstance(c, MetaSimObject):
459 bTotal += 1
460 if bTotal > 1:
461 raise TypeError, "SimObjects do not support multiple inheritance"
462
463 base = bases[0]
464
465 # Set up general inheritance via multidicts. A subclass will
466 # inherit all its settings from the base class. The only time
467 # the following is not true is when we define the SimObject
468 # class itself (in which case the multidicts have no parent).
469 if isinstance(base, MetaSimObject):
470 cls._base = base
471 cls._params.parent = base._params
472 cls._ports.parent = base._ports
473 cls._values.parent = base._values
474 cls._hr_values.parent = base._hr_values
475 cls._children.parent = base._children
476 cls._port_refs.parent = base._port_refs
477 # mark base as having been subclassed
478 base._instantiated = True
479 else:
480 cls._base = None
481
482 # default keyword values
483 if 'type' in cls._value_dict:
484 if 'cxx_class' not in cls._value_dict:
485 cls._value_dict['cxx_class'] = cls._value_dict['type']
486
487 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
488
489 if 'cxx_header' not in cls._value_dict:
490 global noCxxHeader
491 noCxxHeader = True
492 warn("No header file specified for SimObject: %s", name)
493
494 # Export methods are automatically inherited via C++, so we
495 # don't want the method declarations to get inherited on the
496 # python side (and thus end up getting repeated in the wrapped
497 # versions of derived classes). The code below basicallly
498 # suppresses inheritance by substituting in the base (null)
499 # versions of these methods unless a different version is
500 # explicitly supplied.
501 for method_name in ('export_methods', 'export_method_cxx_predecls',
502 'export_method_swig_predecls'):
503 if method_name not in cls.__dict__:
504 base_method = getattr(MetaSimObject, method_name)
505 m = MethodType(base_method, cls, MetaSimObject)
506 setattr(cls, method_name, m)
507
508 # Now process the _value_dict items. They could be defining
509 # new (or overriding existing) parameters or ports, setting
510 # class keywords (e.g., 'abstract'), or setting parameter
511 # values or port bindings. The first 3 can only be set when
512 # the class is defined, so we handle them here. The others
513 # can be set later too, so just emulate that by calling
514 # setattr().
515 for key,val in cls._value_dict.items():
516 # param descriptions
517 if isinstance(val, ParamDesc):
518 cls._new_param(key, val)
519
520 # port objects
521 elif isinstance(val, Port):
522 cls._new_port(key, val)
523
524 # init-time-only keywords
525 elif cls.init_keywords.has_key(key):
526 cls._set_keyword(key, val, cls.init_keywords[key])
527
528 # default: use normal path (ends up in __setattr__)
529 else:
530 setattr(cls, key, val)
531
532 def _set_keyword(cls, keyword, val, kwtype):
533 if not isinstance(val, kwtype):
534 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
535 (keyword, type(val), kwtype)
536 if isinstance(val, FunctionType):
537 val = classmethod(val)
538 type.__setattr__(cls, keyword, val)
539
540 def _new_param(cls, name, pdesc):
541 # each param desc should be uniquely assigned to one variable
542 assert(not hasattr(pdesc, 'name'))
543 pdesc.name = name
544 cls._params[name] = pdesc
545 if hasattr(pdesc, 'default'):
546 cls._set_param(name, pdesc.default, pdesc)
547
548 def _set_param(cls, name, value, param):
549 assert(param.name == name)
550 try:
551 hr_value = value
552 value = param.convert(value)
553 except Exception, e:
554 msg = "%s\nError setting param %s.%s to %s\n" % \
555 (e, cls.__name__, name, value)
556 e.args = (msg, )
557 raise
558 cls._values[name] = value
559 # if param value is a SimObject, make it a child too, so that
560 # it gets cloned properly when the class is instantiated
561 if isSimObjectOrVector(value) and not value.has_parent():
562 cls._add_cls_child(name, value)
563 # update human-readable values of the param if it has a literal
564 # value and is not an object or proxy.
565 if not (isSimObjectOrVector(value) or\
566 isinstance(value, m5.proxy.BaseProxy)):
567 cls._hr_values[name] = hr_value
568
569 def _add_cls_child(cls, name, child):
570 # It's a little funky to have a class as a parent, but these
571 # objects should never be instantiated (only cloned, which
572 # clears the parent pointer), and this makes it clear that the
573 # object is not an orphan and can provide better error
574 # messages.
575 child.set_parent(cls, name)
576 cls._children[name] = child
577
578 def _new_port(cls, name, port):
579 # each port should be uniquely assigned to one variable
580 assert(not hasattr(port, 'name'))
581 port.name = name
582 cls._ports[name] = port
583
584 # same as _get_port_ref, effectively, but for classes
585 def _cls_get_port_ref(cls, attr):
586 # Return reference that can be assigned to another port
587 # via __setattr__. There is only ever one reference
588 # object per port, but we create them lazily here.
589 ref = cls._port_refs.get(attr)
590 if not ref:
591 ref = cls._ports[attr].makeRef(cls)
592 cls._port_refs[attr] = ref
593 return ref
594
595 # Set attribute (called on foo.attr = value when foo is an
596 # instance of class cls).
597 def __setattr__(cls, attr, value):
598 # normal processing for private attributes
599 if public_value(attr, value):
600 type.__setattr__(cls, attr, value)
601 return
602
603 if cls.keywords.has_key(attr):
604 cls._set_keyword(attr, value, cls.keywords[attr])
605 return
606
607 if cls._ports.has_key(attr):
608 cls._cls_get_port_ref(attr).connect(value)
609 return
610
611 if isSimObjectOrSequence(value) and cls._instantiated:
612 raise RuntimeError, \
613 "cannot set SimObject parameter '%s' after\n" \
614 " class %s has been instantiated or subclassed" \
615 % (attr, cls.__name__)
616
617 # check for param
618 param = cls._params.get(attr)
619 if param:
620 cls._set_param(attr, value, param)
621 return
622
623 if isSimObjectOrSequence(value):
624 # If RHS is a SimObject, it's an implicit child assignment.
625 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
626 return
627
628 # no valid assignment... raise exception
629 raise AttributeError, \
630 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
631
632 def __getattr__(cls, attr):
633 if attr == 'cxx_class_path':
634 return cls.cxx_class.split('::')
635
636 if attr == 'cxx_class_name':
637 return cls.cxx_class_path[-1]
638
639 if attr == 'cxx_namespaces':
640 return cls.cxx_class_path[:-1]
641
642 if cls._values.has_key(attr):
643 return cls._values[attr]
644
645 if cls._children.has_key(attr):
646 return cls._children[attr]
647
648 raise AttributeError, \
649 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
650
651 def __str__(cls):
652 return cls.__name__
653
654 # See ParamValue.cxx_predecls for description.
655 def cxx_predecls(cls, code):
656 code('#include "params/$cls.hh"')
657
658 # See ParamValue.swig_predecls for description.
659 def swig_predecls(cls, code):
660 code('%import "python/m5/internal/param_$cls.i"')
661
662 # Hook for exporting additional C++ methods to Python via SWIG.
663 # Default is none, override using @classmethod in class definition.
664 def export_methods(cls, code):
665 pass
666
667 # Generate the code needed as a prerequisite for the C++ methods
668 # exported via export_methods() to be compiled in the _wrap.cc
669 # file. Typically generates one or more #include statements. If
670 # any methods are exported, typically at least the C++ header
671 # declaring the relevant SimObject class must be included.
672 def export_method_cxx_predecls(cls, code):
673 pass
674
675 # Generate the code needed as a prerequisite for the C++ methods
676 # exported via export_methods() to be processed by SWIG.
677 # Typically generates one or more %include or %import statements.
678 # If any methods are exported, typically at least the C++ header
679 # declaring the relevant SimObject class must be included.
680 def export_method_swig_predecls(cls, code):
681 pass
682
683 # Generate the declaration for this object for wrapping with SWIG.
684 # Generates code that goes into a SWIG .i file. Called from
685 # src/SConscript.
686 def swig_decl(cls, code):
687 class_path = cls.cxx_class.split('::')
688 classname = class_path[-1]
689 namespaces = class_path[:-1]
690
691 # The 'local' attribute restricts us to the params declared in
692 # the object itself, not including inherited params (which
693 # will also be inherited from the base class's param struct
694 # here). Sort the params based on their key
695 params = map(lambda (k, v): v, sorted(cls._params.local.items()))
696 ports = cls._ports.local
697
698 code('%module(package="m5.internal") param_$cls')
699 code()
700 code('%{')
701 code('#include "sim/sim_object.hh"')
702 code('#include "params/$cls.hh"')
703 for param in params:
704 param.cxx_predecls(code)
705 code('#include "${{cls.cxx_header}}"')
706 cls.export_method_cxx_predecls(code)
707 code('''\
708/**
709 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
710 * headers like vector, string, etc. used to automatically pull in
711 * the cstddef header but starting with gcc 4.6.1 they no longer do.
712 * This leads to swig generated a file that does not compile so we
713 * explicitly include cstddef. Additionally, including version 2.0.4,
714 * swig uses ptrdiff_t without the std:: namespace prefix which is
715 * required with gcc 4.6.1. We explicitly provide access to it.
716 */
717#include <cstddef>
718using std::ptrdiff_t;
719''')
720 code('%}')
721 code()
722
723 for param in params:
724 param.swig_predecls(code)
725 cls.export_method_swig_predecls(code)
726
727 code()
728 if cls._base:
729 code('%import "python/m5/internal/param_${{cls._base}}.i"')
730 code()
731
732 for ns in namespaces:
733 code('namespace $ns {')
734
735 if namespaces:
736 code('// avoid name conflicts')
737 sep_string = '_COLONS_'
738 flat_name = sep_string.join(class_path)
739 code('%rename($flat_name) $classname;')
740
741 code()
742 code('// stop swig from creating/wrapping default ctor/dtor')
743 code('%nodefault $classname;')
744 code('class $classname')
745 if cls._base:
746 bases = [ cls._base.cxx_class ] + cls.cxx_bases
747 else:
748 bases = cls.cxx_bases
749 base_first = True
750 for base in bases:
751 if base_first:
752 code(' : public ${{base}}')
753 base_first = False
754 else:
755 code(' , public ${{base}}')
756
757 code('{')
758 code(' public:')
759 cls.export_methods(code)
760 code('};')
761
762 for ns in reversed(namespaces):
763 code('} // namespace $ns')
764
765 code()
766 code('%include "params/$cls.hh"')
767
768
769 # Generate the C++ declaration (.hh file) for this SimObject's
770 # param struct. Called from src/SConscript.
771 def cxx_param_decl(cls, code):
772 # The 'local' attribute restricts us to the params declared in
773 # the object itself, not including inherited params (which
774 # will also be inherited from the base class's param struct
775 # here). Sort the params based on their key
776 params = map(lambda (k, v): v, sorted(cls._params.local.items()))
777 ports = cls._ports.local
778 try:
779 ptypes = [p.ptype for p in params]
780 except:
781 print cls, p, p.ptype_str
782 print params
783 raise
784
785 class_path = cls._value_dict['cxx_class'].split('::')
786
787 code('''\
788#ifndef __PARAMS__${cls}__
789#define __PARAMS__${cls}__
790
791''')
792
793 # A forward class declaration is sufficient since we are just
794 # declaring a pointer.
795 for ns in class_path[:-1]:
796 code('namespace $ns {')
797 code('class $0;', class_path[-1])
798 for ns in reversed(class_path[:-1]):
799 code('} // namespace $ns')
800 code()
801
802 # The base SimObject has a couple of params that get
803 # automatically set from Python without being declared through
804 # the normal Param mechanism; we slip them in here (needed
805 # predecls now, actual declarations below)
806 if cls == SimObject:
807 code('''
808#ifndef PY_VERSION
809struct PyObject;
810#endif
811
812#include <string>
813''')
814 for param in params:
815 param.cxx_predecls(code)
816 for port in ports.itervalues():
817 port.cxx_predecls(code)
818 code()
819
820 if cls._base:
821 code('#include "params/${{cls._base.type}}.hh"')
822 code()
823
824 for ptype in ptypes:
825 if issubclass(ptype, Enum):
826 code('#include "enums/${{ptype.__name__}}.hh"')
827 code()
828
829 # now generate the actual param struct
830 code("struct ${cls}Params")
831 if cls._base:
832 code(" : public ${{cls._base.type}}Params")
833 code("{")
834 if not hasattr(cls, 'abstract') or not cls.abstract:
835 if 'type' in cls.__dict__:
836 code(" ${{cls.cxx_type}} create();")
837
838 code.indent()
839 if cls == SimObject:
840 code('''
841 SimObjectParams() {}
842 virtual ~SimObjectParams() {}
843
844 std::string name;
845 PyObject *pyobj;
846 ''')
847 for param in params:
848 param.cxx_decl(code)
849 for port in ports.itervalues():
850 port.cxx_decl(code)
851
852 code.dedent()
853 code('};')
854
855 code()
856 code('#endif // __PARAMS__${cls}__')
857 return code
858
859 # Generate the C++ declaration/definition files for this SimObject's
860 # param struct to allow C++ initialisation
861 def cxx_config_param_file(cls, code, is_header):
862 createCxxConfigDirectoryEntryFile(code, cls.__name__, cls, is_header)
863 return code
864
865# This *temporary* definition is required to support calls from the
866# SimObject class definition to the MetaSimObject methods (in
867# particular _set_param, which gets called for parameters with default
868# values defined on the SimObject class itself). It will get
869# overridden by the permanent definition (which requires that
870# SimObject be defined) lower in this file.
871def isSimObjectOrVector(value):
872 return False
873
874# This class holds information about each simobject parameter
875# that should be displayed on the command line for use in the
876# configuration system.
877class ParamInfo(object):
878 def __init__(self, type, desc, type_str, example, default_val, access_str):
879 self.type = type
880 self.desc = desc
881 self.type_str = type_str
882 self.example_str = example
883 self.default_val = default_val
884 # The string representation used to access this param through python.
885 # The method to access this parameter presented on the command line may
886 # be different, so this needs to be stored for later use.
887 self.access_str = access_str
888 self.created = True
889
890 # Make it so we can only set attributes at initialization time
891 # and effectively make this a const object.
892 def __setattr__(self, name, value):
893 if not "created" in self.__dict__:
894 self.__dict__[name] = value
895
896# The SimObject class is the root of the special hierarchy. Most of
897# the code in this class deals with the configuration hierarchy itself
898# (parent/child node relationships).
899class SimObject(object):
900 # Specify metaclass. Any class inheriting from SimObject will
901 # get this metaclass.
902 __metaclass__ = MetaSimObject
903 type = 'SimObject'
904 abstract = True
905
906 cxx_header = "sim/sim_object.hh"
907 cxx_bases = [ "Drainable", "Serializable" ]
908 eventq_index = Param.UInt32(Parent.eventq_index, "Event Queue Index")
909
910 @classmethod
911 def export_method_swig_predecls(cls, code):
912 code('''
913%include <std_string.i>
914
915%import "python/swig/drain.i"
916%import "python/swig/serialize.i"
917''')
918
919 @classmethod
920 def export_methods(cls, code):
921 code('''
922 void init();
923 void loadState(CheckpointIn &cp);
924 void initState();
925 void memInvalidate();
926 void memWriteback();
927 void regStats();
928 void resetStats();
929 void regProbePoints();
930 void regProbeListeners();
931 void startup();
932''')
933
934 # Returns a dict of all the option strings that can be
935 # generated as command line options for this simobject instance
936 # by tracing all reachable params in the top level instance and
937 # any children it contains.
938 def enumerateParams(self, flags_dict = {},
939 cmd_line_str = "", access_str = ""):
940 if hasattr(self, "_paramEnumed"):
941 print "Cycle detected enumerating params"
942 else:
943 self._paramEnumed = True
944 # Scan the children first to pick up all the objects in this SimObj
945 for keys in self._children:
946 child = self._children[keys]
947 next_cmdline_str = cmd_line_str + keys
948 next_access_str = access_str + keys
949 if not isSimObjectVector(child):
950 next_cmdline_str = next_cmdline_str + "."
951 next_access_str = next_access_str + "."
952 flags_dict = child.enumerateParams(flags_dict,
953 next_cmdline_str,
954 next_access_str)
955
956 # Go through the simple params in the simobject in this level
957 # of the simobject hierarchy and save information about the
958 # parameter to be used for generating and processing command line
959 # options to the simulator to set these parameters.
960 for keys,values in self._params.items():
961 if values.isCmdLineSettable():
962 type_str = ''
963 ex_str = values.example_str()
964 ptype = None
965 if isinstance(values, VectorParamDesc):
966 type_str = 'Vector_%s' % values.ptype_str
967 ptype = values
968 else:
969 type_str = '%s' % values.ptype_str
970 ptype = values.ptype
971
972 if keys in self._hr_values\
973 and keys in self._values\
974 and not isinstance(self._values[keys], m5.proxy.BaseProxy):
975 cmd_str = cmd_line_str + keys
976 acc_str = access_str + keys
977 flags_dict[cmd_str] = ParamInfo(ptype,
978 self._params[keys].desc, type_str, ex_str,
979 values.pretty_print(self._hr_values[keys]),
980 acc_str)
981 elif not keys in self._hr_values\
982 and not keys in self._values:
983 # Empty param
984 cmd_str = cmd_line_str + keys
985 acc_str = access_str + keys
986 flags_dict[cmd_str] = ParamInfo(ptype,
987 self._params[keys].desc,
988 type_str, ex_str, '', acc_str)
989
990 return flags_dict
991
992 # Initialize new instance. For objects with SimObject-valued
993 # children, we need to recursively clone the classes represented
994 # by those param values as well in a consistent "deep copy"-style
995 # fashion. That is, we want to make sure that each instance is
996 # cloned only once, and that if there are multiple references to
997 # the same original object, we end up with the corresponding
998 # cloned references all pointing to the same cloned instance.
999 def __init__(self, **kwargs):
1000 ancestor = kwargs.get('_ancestor')
1001 memo_dict = kwargs.get('_memo')
1002 if memo_dict is None:
1003 # prepare to memoize any recursively instantiated objects
1004 memo_dict = {}
1005 elif ancestor:
1006 # memoize me now to avoid problems with recursive calls
1007 memo_dict[ancestor] = self
1008
1009 if not ancestor:
1010 ancestor = self.__class__
1011 ancestor._instantiated = True
1012
1013 # initialize required attributes
1014 self._parent = None
1015 self._name = None
1016 self._ccObject = None # pointer to C++ object
1017 self._ccParams = None
1018 self._instantiated = False # really "cloned"
1019
1020 # Clone children specified at class level. No need for a
1021 # multidict here since we will be cloning everything.
1022 # Do children before parameter values so that children that
1023 # are also param values get cloned properly.
1024 self._children = {}
1025 for key,val in ancestor._children.iteritems():
1026 self.add_child(key, val(_memo=memo_dict))
1027
1028 # Inherit parameter values from class using multidict so
1029 # individual value settings can be overridden but we still
1030 # inherit late changes to non-overridden class values.
1031 self._values = multidict(ancestor._values)
1032 self._hr_values = multidict(ancestor._hr_values)
1033 # clone SimObject-valued parameters
1034 for key,val in ancestor._values.iteritems():
1035 val = tryAsSimObjectOrVector(val)
1036 if val is not None:
1037 self._values[key] = val(_memo=memo_dict)
1038
1039 # clone port references. no need to use a multidict here
1040 # since we will be creating new references for all ports.
1041 self._port_refs = {}
1042 for key,val in ancestor._port_refs.iteritems():
1043 self._port_refs[key] = val.clone(self, memo_dict)
1044 # apply attribute assignments from keyword args, if any
1045 for key,val in kwargs.iteritems():
1046 setattr(self, key, val)
1047
1048 # "Clone" the current instance by creating another instance of
1049 # this instance's class, but that inherits its parameter values
1050 # and port mappings from the current instance. If we're in a
1051 # "deep copy" recursive clone, check the _memo dict to see if
1052 # we've already cloned this instance.
1053 def __call__(self, **kwargs):
1054 memo_dict = kwargs.get('_memo')
1055 if memo_dict is None:
1056 # no memo_dict: must be top-level clone operation.
1057 # this is only allowed at the root of a hierarchy
1058 if self._parent:
1059 raise RuntimeError, "attempt to clone object %s " \
1060 "not at the root of a tree (parent = %s)" \
1061 % (self, self._parent)
1062 # create a new dict and use that.
1063 memo_dict = {}
1064 kwargs['_memo'] = memo_dict
1065 elif memo_dict.has_key(self):
1066 # clone already done & memoized
1067 return memo_dict[self]
1068 return self.__class__(_ancestor = self, **kwargs)
1069
1070 def _get_port_ref(self, attr):
1071 # Return reference that can be assigned to another port
1072 # via __setattr__. There is only ever one reference
1073 # object per port, but we create them lazily here.
1074 ref = self._port_refs.get(attr)
1075 if ref == None:
1076 ref = self._ports[attr].makeRef(self)
1077 self._port_refs[attr] = ref
1078 return ref
1079
1080 def __getattr__(self, attr):
1081 if self._ports.has_key(attr):
1082 return self._get_port_ref(attr)
1083
1084 if self._values.has_key(attr):
1085 return self._values[attr]
1086
1087 if self._children.has_key(attr):
1088 return self._children[attr]
1089
1090 # If the attribute exists on the C++ object, transparently
1091 # forward the reference there. This is typically used for
1092 # SWIG-wrapped methods such as init(), regStats(),
1093 # resetStats(), startup(), drain(), and
1094 # resume().
1095 if self._ccObject and hasattr(self._ccObject, attr):
1096 return getattr(self._ccObject, attr)
1097
1098 err_string = "object '%s' has no attribute '%s'" \
1099 % (self.__class__.__name__, attr)
1100
1101 if not self._ccObject:
1102 err_string += "\n (C++ object is not yet constructed," \
1103 " so wrapped C++ methods are unavailable.)"
1104
1105 raise AttributeError, err_string
1106
1107 # Set attribute (called on foo.attr = value when foo is an
1108 # instance of class cls).
1109 def __setattr__(self, attr, value):
1110 # normal processing for private attributes
1111 if attr.startswith('_'):
1112 object.__setattr__(self, attr, value)
1113 return
1114
1115 if self._ports.has_key(attr):
1116 # set up port connection
1117 self._get_port_ref(attr).connect(value)
1118 return
1119
1120 param = self._params.get(attr)
1121 if param:
1122 try:
1123 hr_value = value
1124 value = param.convert(value)
1125 except Exception, e:
1126 msg = "%s\nError setting param %s.%s to %s\n" % \
1127 (e, self.__class__.__name__, attr, value)
1128 e.args = (msg, )
1129 raise
1130 self._values[attr] = value
1131 # implicitly parent unparented objects assigned as params
1132 if isSimObjectOrVector(value) and not value.has_parent():
1133 self.add_child(attr, value)
1134 # set the human-readable value dict if this is a param
1135 # with a literal value and is not being set as an object
1136 # or proxy.
1137 if not (isSimObjectOrVector(value) or\
1138 isinstance(value, m5.proxy.BaseProxy)):
1139 self._hr_values[attr] = hr_value
1140
1141 return
1142
1143 # if RHS is a SimObject, it's an implicit child assignment
1144 if isSimObjectOrSequence(value):
1145 self.add_child(attr, value)
1146 return
1147
1148 # no valid assignment... raise exception
1149 raise AttributeError, "Class %s has no parameter %s" \
1150 % (self.__class__.__name__, attr)
1151
1152
1153 # this hack allows tacking a '[0]' onto parameters that may or may
1154 # not be vectors, and always getting the first element (e.g. cpus)
1155 def __getitem__(self, key):
1156 if key == 0:
1157 return self
1158 raise IndexError, "Non-zero index '%s' to SimObject" % key
1159
1160 # this hack allows us to iterate over a SimObject that may
1161 # not be a vector, so we can call a loop over it and get just one
1162 # element.
1163 def __len__(self):
1164 return 1
1165
1166 # Also implemented by SimObjectVector
1167 def clear_parent(self, old_parent):
1168 assert self._parent is old_parent
1169 self._parent = None
1170
1171 # Also implemented by SimObjectVector
1172 def set_parent(self, parent, name):
1173 self._parent = parent
1174 self._name = name
1175
1176 # Return parent object of this SimObject, not implemented by SimObjectVector
1177 # because the elements in a SimObjectVector may not share the same parent
1178 def get_parent(self):
1179 return self._parent
1180
1181 # Also implemented by SimObjectVector
1182 def get_name(self):
1183 return self._name
1184
1185 # Also implemented by SimObjectVector
1186 def has_parent(self):
1187 return self._parent is not None
1188
1189 # clear out child with given name. This code is not likely to be exercised.
1190 # See comment in add_child.
1191 def clear_child(self, name):
1192 child = self._children[name]
1193 child.clear_parent(self)
1194 del self._children[name]
1195
1196 # Add a new child to this object.
1197 def add_child(self, name, child):
1198 child = coerceSimObjectOrVector(child)
1199 if child.has_parent():
1200 warn("add_child('%s'): child '%s' already has parent", name,
1201 child.get_name())
1202 if self._children.has_key(name):
1203 # This code path had an undiscovered bug that would make it fail
1204 # at runtime. It had been here for a long time and was only
1205 # exposed by a buggy script. Changes here will probably not be
1206 # exercised without specialized testing.
1207 self.clear_child(name)
1208 child.set_parent(self, name)
1209 self._children[name] = child
1210
1211 # Take SimObject-valued parameters that haven't been explicitly
1212 # assigned as children and make them children of the object that
1213 # they were assigned to as a parameter value. This guarantees
1214 # that when we instantiate all the parameter objects we're still
1215 # inside the configuration hierarchy.
1216 def adoptOrphanParams(self):
1217 for key,val in self._values.iteritems():
1218 if not isSimObjectVector(val) and isSimObjectSequence(val):
1219 # need to convert raw SimObject sequences to
1220 # SimObjectVector class so we can call has_parent()
1221 val = SimObjectVector(val)
1222 self._values[key] = val
1223 if isSimObjectOrVector(val) and not val.has_parent():
1224 warn("%s adopting orphan SimObject param '%s'", self, key)
1225 self.add_child(key, val)
1226
1227 def path(self):
1228 if not self._parent:
1229 return '<orphan %s>' % self.__class__
1230 elif isinstance(self._parent, MetaSimObject):
1231 return str(self.__class__)
1232
1230 ppath = self._parent.path()
1231 if ppath == 'root':
1232 return self._name
1233 return ppath + "." + self._name
1234
1235 def __str__(self):
1236 return self.path()
1237
1238 def config_value(self):
1239 return self.path()
1240
1241 def ini_str(self):
1242 return self.path()
1243
1244 def find_any(self, ptype):
1245 if isinstance(self, ptype):
1246 return self, True
1247
1248 found_obj = None
1249 for child in self._children.itervalues():
1250 visited = False
1251 if hasattr(child, '_visited'):
1252 visited = getattr(child, '_visited')
1253
1254 if isinstance(child, ptype) and not visited:
1255 if found_obj != None and child != found_obj:
1256 raise AttributeError, \
1257 'parent.any matched more than one: %s %s' % \
1258 (found_obj.path, child.path)
1259 found_obj = child
1260 # search param space
1261 for pname,pdesc in self._params.iteritems():
1262 if issubclass(pdesc.ptype, ptype):
1263 match_obj = self._values[pname]
1264 if found_obj != None and found_obj != match_obj:
1265 raise AttributeError, \
1266 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
1267 found_obj = match_obj
1268 return found_obj, found_obj != None
1269
1270 def find_all(self, ptype):
1271 all = {}
1272 # search children
1273 for child in self._children.itervalues():
1274 # a child could be a list, so ensure we visit each item
1275 if isinstance(child, list):
1276 children = child
1277 else:
1278 children = [child]
1279
1280 for child in children:
1281 if isinstance(child, ptype) and not isproxy(child) and \
1282 not isNullPointer(child):
1283 all[child] = True
1284 if isSimObject(child):
1285 # also add results from the child itself
1286 child_all, done = child.find_all(ptype)
1287 all.update(dict(zip(child_all, [done] * len(child_all))))
1288 # search param space
1289 for pname,pdesc in self._params.iteritems():
1290 if issubclass(pdesc.ptype, ptype):
1291 match_obj = self._values[pname]
1292 if not isproxy(match_obj) and not isNullPointer(match_obj):
1293 all[match_obj] = True
1294 # Also make sure to sort the keys based on the objects' path to
1295 # ensure that the order is the same on all hosts
1296 return sorted(all.keys(), key = lambda o: o.path()), True
1297
1298 def unproxy(self, base):
1299 return self
1300
1301 def unproxyParams(self):
1302 for param in self._params.iterkeys():
1303 value = self._values.get(param)
1304 if value != None and isproxy(value):
1305 try:
1306 value = value.unproxy(self)
1307 except:
1308 print "Error in unproxying param '%s' of %s" % \
1309 (param, self.path())
1310 raise
1311 setattr(self, param, value)
1312
1313 # Unproxy ports in sorted order so that 'append' operations on
1314 # vector ports are done in a deterministic fashion.
1315 port_names = self._ports.keys()
1316 port_names.sort()
1317 for port_name in port_names:
1318 port = self._port_refs.get(port_name)
1319 if port != None:
1320 port.unproxy(self)
1321
1322 def print_ini(self, ini_file):
1323 print >>ini_file, '[' + self.path() + ']' # .ini section header
1324
1325 instanceDict[self.path()] = self
1326
1327 if hasattr(self, 'type'):
1328 print >>ini_file, 'type=%s' % self.type
1329
1330 if len(self._children.keys()):
1331 print >>ini_file, 'children=%s' % \
1332 ' '.join(self._children[n].get_name() \
1333 for n in sorted(self._children.keys()))
1334
1335 for param in sorted(self._params.keys()):
1336 value = self._values.get(param)
1337 if value != None:
1338 print >>ini_file, '%s=%s' % (param,
1339 self._values[param].ini_str())
1340
1341 for port_name in sorted(self._ports.keys()):
1342 port = self._port_refs.get(port_name, None)
1343 if port != None:
1344 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
1345
1346 print >>ini_file # blank line between objects
1347
1348 # generate a tree of dictionaries expressing all the parameters in the
1349 # instantiated system for use by scripts that want to do power, thermal
1350 # visualization, and other similar tasks
1351 def get_config_as_dict(self):
1352 d = attrdict()
1353 if hasattr(self, 'type'):
1354 d.type = self.type
1355 if hasattr(self, 'cxx_class'):
1356 d.cxx_class = self.cxx_class
1357 # Add the name and path of this object to be able to link to
1358 # the stats
1359 d.name = self.get_name()
1360 d.path = self.path()
1361
1362 for param in sorted(self._params.keys()):
1363 value = self._values.get(param)
1364 if value != None:
1365 d[param] = value.config_value()
1366
1367 for n in sorted(self._children.keys()):
1368 child = self._children[n]
1369 # Use the name of the attribute (and not get_name()) as
1370 # the key in the JSON dictionary to capture the hierarchy
1371 # in the Python code that assembled this system
1372 d[n] = child.get_config_as_dict()
1373
1374 for port_name in sorted(self._ports.keys()):
1375 port = self._port_refs.get(port_name, None)
1376 if port != None:
1377 # Represent each port with a dictionary containing the
1378 # prominent attributes
1379 d[port_name] = port.get_config_as_dict()
1380
1381 return d
1382
1383 def getCCParams(self):
1384 if self._ccParams:
1385 return self._ccParams
1386
1387 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
1388 cc_params = cc_params_struct()
1389 cc_params.pyobj = self
1390 cc_params.name = str(self)
1391
1392 param_names = self._params.keys()
1393 param_names.sort()
1394 for param in param_names:
1395 value = self._values.get(param)
1396 if value is None:
1397 fatal("%s.%s without default or user set value",
1398 self.path(), param)
1399
1400 value = value.getValue()
1401 if isinstance(self._params[param], VectorParamDesc):
1402 assert isinstance(value, list)
1403 vec = getattr(cc_params, param)
1404 assert not len(vec)
1405 for v in value:
1406 vec.append(v)
1407 else:
1408 setattr(cc_params, param, value)
1409
1410 port_names = self._ports.keys()
1411 port_names.sort()
1412 for port_name in port_names:
1413 port = self._port_refs.get(port_name, None)
1414 if port != None:
1415 port_count = len(port)
1416 else:
1417 port_count = 0
1418 setattr(cc_params, 'port_' + port_name + '_connection_count',
1419 port_count)
1420 self._ccParams = cc_params
1421 return self._ccParams
1422
1423 # Get C++ object corresponding to this object, calling C++ if
1424 # necessary to construct it. Does *not* recursively create
1425 # children.
1426 def getCCObject(self):
1427 if not self._ccObject:
1428 # Make sure this object is in the configuration hierarchy
1429 if not self._parent and not isRoot(self):
1430 raise RuntimeError, "Attempt to instantiate orphan node"
1431 # Cycles in the configuration hierarchy are not supported. This
1432 # will catch the resulting recursion and stop.
1433 self._ccObject = -1
1434 if not self.abstract:
1435 params = self.getCCParams()
1436 self._ccObject = params.create()
1437 elif self._ccObject == -1:
1438 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1439 % self.path()
1440 return self._ccObject
1441
1442 def descendants(self):
1443 yield self
1444 # The order of the dict is implementation dependent, so sort
1445 # it based on the key (name) to ensure the order is the same
1446 # on all hosts
1447 for (name, child) in sorted(self._children.iteritems()):
1448 for obj in child.descendants():
1449 yield obj
1450
1451 # Call C++ to create C++ object corresponding to this object
1452 def createCCObject(self):
1453 self.getCCParams()
1454 self.getCCObject() # force creation
1455
1456 def getValue(self):
1457 return self.getCCObject()
1458
1459 # Create C++ port connections corresponding to the connections in
1460 # _port_refs
1461 def connectPorts(self):
1462 # Sort the ports based on their attribute name to ensure the
1463 # order is the same on all hosts
1464 for (attr, portRef) in sorted(self._port_refs.iteritems()):
1465 portRef.ccConnect()
1466
1467# Function to provide to C++ so it can look up instances based on paths
1468def resolveSimObject(name):
1469 obj = instanceDict[name]
1470 return obj.getCCObject()
1471
1472def isSimObject(value):
1473 return isinstance(value, SimObject)
1474
1475def isSimObjectClass(value):
1476 return issubclass(value, SimObject)
1477
1478def isSimObjectVector(value):
1479 return isinstance(value, SimObjectVector)
1480
1481def isSimObjectSequence(value):
1482 if not isinstance(value, (list, tuple)) or len(value) == 0:
1483 return False
1484
1485 for val in value:
1486 if not isNullPointer(val) and not isSimObject(val):
1487 return False
1488
1489 return True
1490
1491def isSimObjectOrSequence(value):
1492 return isSimObject(value) or isSimObjectSequence(value)
1493
1494def isRoot(obj):
1495 from m5.objects import Root
1496 return obj and obj is Root.getInstance()
1497
1498def isSimObjectOrVector(value):
1499 return isSimObject(value) or isSimObjectVector(value)
1500
1501def tryAsSimObjectOrVector(value):
1502 if isSimObjectOrVector(value):
1503 return value
1504 if isSimObjectSequence(value):
1505 return SimObjectVector(value)
1506 return None
1507
1508def coerceSimObjectOrVector(value):
1509 value = tryAsSimObjectOrVector(value)
1510 if value is None:
1511 raise TypeError, "SimObject or SimObjectVector expected"
1512 return value
1513
1514baseClasses = allClasses.copy()
1515baseInstances = instanceDict.copy()
1516
1517def clear():
1518 global allClasses, instanceDict, noCxxHeader
1519
1520 allClasses = baseClasses.copy()
1521 instanceDict = baseInstances.copy()
1522 noCxxHeader = False
1523
1524# __all__ defines the list of symbols that get exported when
1525# 'from config import *' is invoked. Try to keep this reasonably
1526# short to avoid polluting other namespaces.
1527__all__ = [ 'SimObject' ]
1233 ppath = self._parent.path()
1234 if ppath == 'root':
1235 return self._name
1236 return ppath + "." + self._name
1237
1238 def __str__(self):
1239 return self.path()
1240
1241 def config_value(self):
1242 return self.path()
1243
1244 def ini_str(self):
1245 return self.path()
1246
1247 def find_any(self, ptype):
1248 if isinstance(self, ptype):
1249 return self, True
1250
1251 found_obj = None
1252 for child in self._children.itervalues():
1253 visited = False
1254 if hasattr(child, '_visited'):
1255 visited = getattr(child, '_visited')
1256
1257 if isinstance(child, ptype) and not visited:
1258 if found_obj != None and child != found_obj:
1259 raise AttributeError, \
1260 'parent.any matched more than one: %s %s' % \
1261 (found_obj.path, child.path)
1262 found_obj = child
1263 # search param space
1264 for pname,pdesc in self._params.iteritems():
1265 if issubclass(pdesc.ptype, ptype):
1266 match_obj = self._values[pname]
1267 if found_obj != None and found_obj != match_obj:
1268 raise AttributeError, \
1269 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
1270 found_obj = match_obj
1271 return found_obj, found_obj != None
1272
1273 def find_all(self, ptype):
1274 all = {}
1275 # search children
1276 for child in self._children.itervalues():
1277 # a child could be a list, so ensure we visit each item
1278 if isinstance(child, list):
1279 children = child
1280 else:
1281 children = [child]
1282
1283 for child in children:
1284 if isinstance(child, ptype) and not isproxy(child) and \
1285 not isNullPointer(child):
1286 all[child] = True
1287 if isSimObject(child):
1288 # also add results from the child itself
1289 child_all, done = child.find_all(ptype)
1290 all.update(dict(zip(child_all, [done] * len(child_all))))
1291 # search param space
1292 for pname,pdesc in self._params.iteritems():
1293 if issubclass(pdesc.ptype, ptype):
1294 match_obj = self._values[pname]
1295 if not isproxy(match_obj) and not isNullPointer(match_obj):
1296 all[match_obj] = True
1297 # Also make sure to sort the keys based on the objects' path to
1298 # ensure that the order is the same on all hosts
1299 return sorted(all.keys(), key = lambda o: o.path()), True
1300
1301 def unproxy(self, base):
1302 return self
1303
1304 def unproxyParams(self):
1305 for param in self._params.iterkeys():
1306 value = self._values.get(param)
1307 if value != None and isproxy(value):
1308 try:
1309 value = value.unproxy(self)
1310 except:
1311 print "Error in unproxying param '%s' of %s" % \
1312 (param, self.path())
1313 raise
1314 setattr(self, param, value)
1315
1316 # Unproxy ports in sorted order so that 'append' operations on
1317 # vector ports are done in a deterministic fashion.
1318 port_names = self._ports.keys()
1319 port_names.sort()
1320 for port_name in port_names:
1321 port = self._port_refs.get(port_name)
1322 if port != None:
1323 port.unproxy(self)
1324
1325 def print_ini(self, ini_file):
1326 print >>ini_file, '[' + self.path() + ']' # .ini section header
1327
1328 instanceDict[self.path()] = self
1329
1330 if hasattr(self, 'type'):
1331 print >>ini_file, 'type=%s' % self.type
1332
1333 if len(self._children.keys()):
1334 print >>ini_file, 'children=%s' % \
1335 ' '.join(self._children[n].get_name() \
1336 for n in sorted(self._children.keys()))
1337
1338 for param in sorted(self._params.keys()):
1339 value = self._values.get(param)
1340 if value != None:
1341 print >>ini_file, '%s=%s' % (param,
1342 self._values[param].ini_str())
1343
1344 for port_name in sorted(self._ports.keys()):
1345 port = self._port_refs.get(port_name, None)
1346 if port != None:
1347 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
1348
1349 print >>ini_file # blank line between objects
1350
1351 # generate a tree of dictionaries expressing all the parameters in the
1352 # instantiated system for use by scripts that want to do power, thermal
1353 # visualization, and other similar tasks
1354 def get_config_as_dict(self):
1355 d = attrdict()
1356 if hasattr(self, 'type'):
1357 d.type = self.type
1358 if hasattr(self, 'cxx_class'):
1359 d.cxx_class = self.cxx_class
1360 # Add the name and path of this object to be able to link to
1361 # the stats
1362 d.name = self.get_name()
1363 d.path = self.path()
1364
1365 for param in sorted(self._params.keys()):
1366 value = self._values.get(param)
1367 if value != None:
1368 d[param] = value.config_value()
1369
1370 for n in sorted(self._children.keys()):
1371 child = self._children[n]
1372 # Use the name of the attribute (and not get_name()) as
1373 # the key in the JSON dictionary to capture the hierarchy
1374 # in the Python code that assembled this system
1375 d[n] = child.get_config_as_dict()
1376
1377 for port_name in sorted(self._ports.keys()):
1378 port = self._port_refs.get(port_name, None)
1379 if port != None:
1380 # Represent each port with a dictionary containing the
1381 # prominent attributes
1382 d[port_name] = port.get_config_as_dict()
1383
1384 return d
1385
1386 def getCCParams(self):
1387 if self._ccParams:
1388 return self._ccParams
1389
1390 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
1391 cc_params = cc_params_struct()
1392 cc_params.pyobj = self
1393 cc_params.name = str(self)
1394
1395 param_names = self._params.keys()
1396 param_names.sort()
1397 for param in param_names:
1398 value = self._values.get(param)
1399 if value is None:
1400 fatal("%s.%s without default or user set value",
1401 self.path(), param)
1402
1403 value = value.getValue()
1404 if isinstance(self._params[param], VectorParamDesc):
1405 assert isinstance(value, list)
1406 vec = getattr(cc_params, param)
1407 assert not len(vec)
1408 for v in value:
1409 vec.append(v)
1410 else:
1411 setattr(cc_params, param, value)
1412
1413 port_names = self._ports.keys()
1414 port_names.sort()
1415 for port_name in port_names:
1416 port = self._port_refs.get(port_name, None)
1417 if port != None:
1418 port_count = len(port)
1419 else:
1420 port_count = 0
1421 setattr(cc_params, 'port_' + port_name + '_connection_count',
1422 port_count)
1423 self._ccParams = cc_params
1424 return self._ccParams
1425
1426 # Get C++ object corresponding to this object, calling C++ if
1427 # necessary to construct it. Does *not* recursively create
1428 # children.
1429 def getCCObject(self):
1430 if not self._ccObject:
1431 # Make sure this object is in the configuration hierarchy
1432 if not self._parent and not isRoot(self):
1433 raise RuntimeError, "Attempt to instantiate orphan node"
1434 # Cycles in the configuration hierarchy are not supported. This
1435 # will catch the resulting recursion and stop.
1436 self._ccObject = -1
1437 if not self.abstract:
1438 params = self.getCCParams()
1439 self._ccObject = params.create()
1440 elif self._ccObject == -1:
1441 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1442 % self.path()
1443 return self._ccObject
1444
1445 def descendants(self):
1446 yield self
1447 # The order of the dict is implementation dependent, so sort
1448 # it based on the key (name) to ensure the order is the same
1449 # on all hosts
1450 for (name, child) in sorted(self._children.iteritems()):
1451 for obj in child.descendants():
1452 yield obj
1453
1454 # Call C++ to create C++ object corresponding to this object
1455 def createCCObject(self):
1456 self.getCCParams()
1457 self.getCCObject() # force creation
1458
1459 def getValue(self):
1460 return self.getCCObject()
1461
1462 # Create C++ port connections corresponding to the connections in
1463 # _port_refs
1464 def connectPorts(self):
1465 # Sort the ports based on their attribute name to ensure the
1466 # order is the same on all hosts
1467 for (attr, portRef) in sorted(self._port_refs.iteritems()):
1468 portRef.ccConnect()
1469
1470# Function to provide to C++ so it can look up instances based on paths
1471def resolveSimObject(name):
1472 obj = instanceDict[name]
1473 return obj.getCCObject()
1474
1475def isSimObject(value):
1476 return isinstance(value, SimObject)
1477
1478def isSimObjectClass(value):
1479 return issubclass(value, SimObject)
1480
1481def isSimObjectVector(value):
1482 return isinstance(value, SimObjectVector)
1483
1484def isSimObjectSequence(value):
1485 if not isinstance(value, (list, tuple)) or len(value) == 0:
1486 return False
1487
1488 for val in value:
1489 if not isNullPointer(val) and not isSimObject(val):
1490 return False
1491
1492 return True
1493
1494def isSimObjectOrSequence(value):
1495 return isSimObject(value) or isSimObjectSequence(value)
1496
1497def isRoot(obj):
1498 from m5.objects import Root
1499 return obj and obj is Root.getInstance()
1500
1501def isSimObjectOrVector(value):
1502 return isSimObject(value) or isSimObjectVector(value)
1503
1504def tryAsSimObjectOrVector(value):
1505 if isSimObjectOrVector(value):
1506 return value
1507 if isSimObjectSequence(value):
1508 return SimObjectVector(value)
1509 return None
1510
1511def coerceSimObjectOrVector(value):
1512 value = tryAsSimObjectOrVector(value)
1513 if value is None:
1514 raise TypeError, "SimObject or SimObjectVector expected"
1515 return value
1516
1517baseClasses = allClasses.copy()
1518baseInstances = instanceDict.copy()
1519
1520def clear():
1521 global allClasses, instanceDict, noCxxHeader
1522
1523 allClasses = baseClasses.copy()
1524 instanceDict = baseInstances.copy()
1525 noCxxHeader = False
1526
1527# __all__ defines the list of symbols that get exported when
1528# 'from config import *' is invoked. Try to keep this reasonably
1529# short to avoid polluting other namespaces.
1530__all__ = [ 'SimObject' ]