Sequencer.cc (9507:d2ab6d889fc7) Sequencer.cc (9508:dde110931867)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55 return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59 : RubyPort(p), deadlockCheckEvent(this)
60{
61 m_store_waiting_on_load_cycles = 0;
62 m_store_waiting_on_store_cycles = 0;
63 m_load_waiting_on_store_cycles = 0;
64 m_load_waiting_on_load_cycles = 0;
65
66 m_outstanding_count = 0;
67
68 m_instCache_ptr = p->icache;
69 m_dataCache_ptr = p->dcache;
70 m_max_outstanding_requests = p->max_outstanding_requests;
71 m_deadlock_threshold = p->deadlock_threshold;
72
73 assert(m_max_outstanding_requests > 0);
74 assert(m_deadlock_threshold > 0);
75 assert(m_instCache_ptr != NULL);
76 assert(m_dataCache_ptr != NULL);
77
78 m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88 assert(getDrainState() != Drainable::Draining);
89
90 // Check for deadlock of any of the requests
91 Cycles current_time = curCycle();
92
93 // Check across all outstanding requests
94 int total_outstanding = 0;
95
96 RequestTable::iterator read = m_readRequestTable.begin();
97 RequestTable::iterator read_end = m_readRequestTable.end();
98 for (; read != read_end; ++read) {
99 SequencerRequest* request = read->second;
100 if (current_time - request->issue_time < m_deadlock_threshold)
101 continue;
102
103 panic("Possible Deadlock detected. Aborting!\n"
104 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
105 "current time: %u issue_time: %d difference: %d\n", m_version,
106 Address(request->pkt->getAddr()), m_readRequestTable.size(),
107 current_time * clockPeriod(), request->issue_time * clockPeriod(),
108 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
109 }
110
111 RequestTable::iterator write = m_writeRequestTable.begin();
112 RequestTable::iterator write_end = m_writeRequestTable.end();
113 for (; write != write_end; ++write) {
114 SequencerRequest* request = write->second;
115 if (current_time - request->issue_time < m_deadlock_threshold)
116 continue;
117
118 panic("Possible Deadlock detected. Aborting!\n"
119 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
120 "current time: %u issue_time: %d difference: %d\n", m_version,
121 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
122 current_time * clockPeriod(), request->issue_time * clockPeriod(),
123 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
124 }
125
126 total_outstanding += m_writeRequestTable.size();
127 total_outstanding += m_readRequestTable.size();
128
129 assert(m_outstanding_count == total_outstanding);
130
131 if (m_outstanding_count > 0) {
132 // If there are still outstanding requests, keep checking
133 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
134 }
135}
136
137void
138Sequencer::printStats(ostream & out) const
139{
140 out << "Sequencer: " << m_name << endl
141 << " store_waiting_on_load_cycles: "
142 << m_store_waiting_on_load_cycles << endl
143 << " store_waiting_on_store_cycles: "
144 << m_store_waiting_on_store_cycles << endl
145 << " load_waiting_on_load_cycles: "
146 << m_load_waiting_on_load_cycles << endl
147 << " load_waiting_on_store_cycles: "
148 << m_load_waiting_on_store_cycles << endl;
149}
150
151void
152Sequencer::printProgress(ostream& out) const
153{
154#if 0
155 int total_demand = 0;
156 out << "Sequencer Stats Version " << m_version << endl;
157 out << "Current time = " << g_system_ptr->getTime() << endl;
158 out << "---------------" << endl;
159 out << "outstanding requests" << endl;
160
161 out << "proc " << m_Read
162 << " version Requests = " << m_readRequestTable.size() << endl;
163
164 // print the request table
165 RequestTable::iterator read = m_readRequestTable.begin();
166 RequestTable::iterator read_end = m_readRequestTable.end();
167 for (; read != read_end; ++read) {
168 SequencerRequest* request = read->second;
169 out << "\tRequest[ " << i << " ] = " << request->type
170 << " Address " << rkeys[i]
171 << " Posted " << request->issue_time
172 << " PF " << PrefetchBit_No << endl;
173 total_demand++;
174 }
175
176 out << "proc " << m_version
177 << " Write Requests = " << m_writeRequestTable.size << endl;
178
179 // print the request table
180 RequestTable::iterator write = m_writeRequestTable.begin();
181 RequestTable::iterator write_end = m_writeRequestTable.end();
182 for (; write != write_end; ++write) {
183 SequencerRequest* request = write->second;
184 out << "\tRequest[ " << i << " ] = " << request.getType()
185 << " Address " << wkeys[i]
186 << " Posted " << request.getTime()
187 << " PF " << request.getPrefetch() << endl;
188 if (request.getPrefetch() == PrefetchBit_No) {
189 total_demand++;
190 }
191 }
192
193 out << endl;
194
195 out << "Total Number Outstanding: " << m_outstanding_count << endl
196 << "Total Number Demand : " << total_demand << endl
197 << "Total Number Prefetches : " << m_outstanding_count - total_demand
198 << endl << endl << endl;
199#endif
200}
201
202// Insert the request on the correct request table. Return true if
203// the entry was already present.
204RequestStatus
205Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
206{
207 assert(m_outstanding_count ==
208 (m_writeRequestTable.size() + m_readRequestTable.size()));
209
210 // See if we should schedule a deadlock check
211 if (!deadlockCheckEvent.scheduled() &&
212 getDrainState() != Drainable::Draining) {
213 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
214 }
215
216 Address line_addr(pkt->getAddr());
217 line_addr.makeLineAddress();
218 // Create a default entry, mapping the address to NULL, the cast is
219 // there to make gcc 4.4 happy
220 RequestTable::value_type default_entry(line_addr,
221 (SequencerRequest*) NULL);
222
223 if ((request_type == RubyRequestType_ST) ||
224 (request_type == RubyRequestType_RMW_Read) ||
225 (request_type == RubyRequestType_RMW_Write) ||
226 (request_type == RubyRequestType_Load_Linked) ||
227 (request_type == RubyRequestType_Store_Conditional) ||
228 (request_type == RubyRequestType_Locked_RMW_Read) ||
229 (request_type == RubyRequestType_Locked_RMW_Write) ||
230 (request_type == RubyRequestType_FLUSH)) {
231
232 // Check if there is any outstanding read request for the same
233 // cache line.
234 if (m_readRequestTable.count(line_addr) > 0) {
235 m_store_waiting_on_load_cycles++;
236 return RequestStatus_Aliased;
237 }
238
239 pair<RequestTable::iterator, bool> r =
240 m_writeRequestTable.insert(default_entry);
241 if (r.second) {
242 RequestTable::iterator i = r.first;
243 i->second = new SequencerRequest(pkt, request_type, curCycle());
244 m_outstanding_count++;
245 } else {
246 // There is an outstanding write request for the cache line
247 m_store_waiting_on_store_cycles++;
248 return RequestStatus_Aliased;
249 }
250 } else {
251 // Check if there is any outstanding write request for the same
252 // cache line.
253 if (m_writeRequestTable.count(line_addr) > 0) {
254 m_load_waiting_on_store_cycles++;
255 return RequestStatus_Aliased;
256 }
257
258 pair<RequestTable::iterator, bool> r =
259 m_readRequestTable.insert(default_entry);
260
261 if (r.second) {
262 RequestTable::iterator i = r.first;
263 i->second = new SequencerRequest(pkt, request_type, curCycle());
264 m_outstanding_count++;
265 } else {
266 // There is an outstanding read request for the cache line
267 m_load_waiting_on_load_cycles++;
268 return RequestStatus_Aliased;
269 }
270 }
271
272 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
273 assert(m_outstanding_count ==
274 (m_writeRequestTable.size() + m_readRequestTable.size()));
275
276 return RequestStatus_Ready;
277}
278
279void
280Sequencer::markRemoved()
281{
282 m_outstanding_count--;
283 assert(m_outstanding_count ==
284 m_writeRequestTable.size() + m_readRequestTable.size());
285}
286
287void
288Sequencer::removeRequest(SequencerRequest* srequest)
289{
290 assert(m_outstanding_count ==
291 m_writeRequestTable.size() + m_readRequestTable.size());
292
293 Address line_addr(srequest->pkt->getAddr());
294 line_addr.makeLineAddress();
295 if ((srequest->m_type == RubyRequestType_ST) ||
296 (srequest->m_type == RubyRequestType_RMW_Read) ||
297 (srequest->m_type == RubyRequestType_RMW_Write) ||
298 (srequest->m_type == RubyRequestType_Load_Linked) ||
299 (srequest->m_type == RubyRequestType_Store_Conditional) ||
300 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
301 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
302 m_writeRequestTable.erase(line_addr);
303 } else {
304 m_readRequestTable.erase(line_addr);
305 }
306
307 markRemoved();
308}
309
310bool
311Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
312{
313 //
314 // The success flag indicates whether the LLSC operation was successful.
315 // LL ops will always succeed, but SC may fail if the cache line is no
316 // longer locked.
317 //
318 bool success = true;
319 if (request->m_type == RubyRequestType_Store_Conditional) {
320 if (!m_dataCache_ptr->isLocked(address, m_version)) {
321 //
322 // For failed SC requests, indicate the failure to the cpu by
323 // setting the extra data to zero.
324 //
325 request->pkt->req->setExtraData(0);
326 success = false;
327 } else {
328 //
329 // For successful SC requests, indicate the success to the cpu by
330 // setting the extra data to one.
331 //
332 request->pkt->req->setExtraData(1);
333 }
334 //
335 // Independent of success, all SC operations must clear the lock
336 //
337 m_dataCache_ptr->clearLocked(address);
338 } else if (request->m_type == RubyRequestType_Load_Linked) {
339 //
340 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
341 // previously locked cache lines?
342 //
343 m_dataCache_ptr->setLocked(address, m_version);
344 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
345 (m_dataCache_ptr->isLocked(address, m_version))) {
346 //
347 // Normal writes should clear the locked address
348 //
349 m_dataCache_ptr->clearLocked(address);
350 }
351 return success;
352}
353
354void
355Sequencer::writeCallback(const Address& address, DataBlock& data)
356{
357 writeCallback(address, GenericMachineType_NULL, data);
358}
359
360void
361Sequencer::writeCallback(const Address& address,
362 GenericMachineType mach,
363 DataBlock& data)
364{
365 writeCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
366}
367
368void
369Sequencer::writeCallback(const Address& address,
370 GenericMachineType mach,
371 DataBlock& data,
372 Cycles initialRequestTime,
373 Cycles forwardRequestTime,
374 Cycles firstResponseTime)
375{
376 assert(address == line_address(address));
377 assert(m_writeRequestTable.count(line_address(address)));
378
379 RequestTable::iterator i = m_writeRequestTable.find(address);
380 assert(i != m_writeRequestTable.end());
381 SequencerRequest* request = i->second;
382
383 m_writeRequestTable.erase(i);
384 markRemoved();
385
386 assert((request->m_type == RubyRequestType_ST) ||
387 (request->m_type == RubyRequestType_ATOMIC) ||
388 (request->m_type == RubyRequestType_RMW_Read) ||
389 (request->m_type == RubyRequestType_RMW_Write) ||
390 (request->m_type == RubyRequestType_Load_Linked) ||
391 (request->m_type == RubyRequestType_Store_Conditional) ||
392 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
393 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
394 (request->m_type == RubyRequestType_FLUSH));
395
396
397 //
398 // For Alpha, properly handle LL, SC, and write requests with respect to
399 // locked cache blocks.
400 //
401 // Not valid for Network_test protocl
402 //
403 bool success = true;
404 if(!m_usingNetworkTester)
405 success = handleLlsc(address, request);
406
407 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
408 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
409 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
410 m_controller->unblock(address);
411 }
412
413 hitCallback(request, mach, data, success,
414 initialRequestTime, forwardRequestTime, firstResponseTime);
415}
416
417void
418Sequencer::readCallback(const Address& address, DataBlock& data)
419{
420 readCallback(address, GenericMachineType_NULL, data);
421}
422
423void
424Sequencer::readCallback(const Address& address,
425 GenericMachineType mach,
426 DataBlock& data)
427{
428 readCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
429}
430
431void
432Sequencer::readCallback(const Address& address,
433 GenericMachineType mach,
434 DataBlock& data,
435 Cycles initialRequestTime,
436 Cycles forwardRequestTime,
437 Cycles firstResponseTime)
438{
439 assert(address == line_address(address));
440 assert(m_readRequestTable.count(line_address(address)));
441
442 RequestTable::iterator i = m_readRequestTable.find(address);
443 assert(i != m_readRequestTable.end());
444 SequencerRequest* request = i->second;
445
446 m_readRequestTable.erase(i);
447 markRemoved();
448
449 assert((request->m_type == RubyRequestType_LD) ||
450 (request->m_type == RubyRequestType_IFETCH));
451
452 hitCallback(request, mach, data, true,
453 initialRequestTime, forwardRequestTime, firstResponseTime);
454}
455
456void
457Sequencer::hitCallback(SequencerRequest* srequest,
458 GenericMachineType mach,
459 DataBlock& data,
460 bool success,
461 Cycles initialRequestTime,
462 Cycles forwardRequestTime,
463 Cycles firstResponseTime)
464{
465 PacketPtr pkt = srequest->pkt;
466 Address request_address(pkt->getAddr());
467 Address request_line_address(pkt->getAddr());
468 request_line_address.makeLineAddress();
469 RubyRequestType type = srequest->m_type;
470 Cycles issued_time = srequest->issue_time;
471
472 // Set this cache entry to the most recently used
473 if (type == RubyRequestType_IFETCH) {
474 m_instCache_ptr->setMRU(request_line_address);
475 } else {
476 m_dataCache_ptr->setMRU(request_line_address);
477 }
478
479 assert(curCycle() >= issued_time);
480 Cycles miss_latency = curCycle() - issued_time;
481
482 // Profile the miss latency for all non-zero demand misses
483 if (miss_latency != 0) {
484 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
485
486 if (mach == GenericMachineType_L1Cache_wCC) {
487 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
488 initialRequestTime, forwardRequestTime,
489 firstResponseTime, curCycle());
490 }
491
492 if (mach == GenericMachineType_Directory) {
493 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
494 initialRequestTime, forwardRequestTime,
495 firstResponseTime, curCycle());
496 }
497
498 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
499 curTick(), m_version, "Seq",
500 success ? "Done" : "SC_Failed", "", "",
501 request_address, miss_latency);
502 }
503
504 // update the data
505 if (g_system_ptr->m_warmup_enabled) {
506 assert(pkt->getPtr<uint8_t>(false) != NULL);
507 data.setData(pkt->getPtr<uint8_t>(false),
508 request_address.getOffset(), pkt->getSize());
509 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
510 if ((type == RubyRequestType_LD) ||
511 (type == RubyRequestType_IFETCH) ||
512 (type == RubyRequestType_RMW_Read) ||
513 (type == RubyRequestType_Locked_RMW_Read) ||
514 (type == RubyRequestType_Load_Linked)) {
515 memcpy(pkt->getPtr<uint8_t>(true),
516 data.getData(request_address.getOffset(), pkt->getSize()),
517 pkt->getSize());
518 } else {
519 data.setData(pkt->getPtr<uint8_t>(true),
520 request_address.getOffset(), pkt->getSize());
521 }
522 } else {
523 DPRINTF(MemoryAccess,
524 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
525 RubyRequestType_to_string(type));
526 }
527
528 // If using the RubyTester, update the RubyTester sender state's
529 // subBlock with the recieved data. The tester will later access
530 // this state.
531 // Note: RubyPort will access it's sender state before the
532 // RubyTester.
533 if (m_usingRubyTester) {
534 RubyPort::SenderState *requestSenderState =
535 safe_cast<RubyPort::SenderState*>(pkt->senderState);
536 RubyTester::SenderState* testerSenderState =
537 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
538 testerSenderState->subBlock->mergeFrom(data);
539 }
540
541 delete srequest;
542
543 if (g_system_ptr->m_warmup_enabled) {
544 delete pkt;
545 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
546 } else if (g_system_ptr->m_cooldown_enabled) {
547 delete pkt;
548 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
549 } else {
550 ruby_hit_callback(pkt);
551 }
552}
553
554bool
555Sequencer::empty() const
556{
557 return m_writeRequestTable.empty() && m_readRequestTable.empty();
558}
559
560RequestStatus
561Sequencer::makeRequest(PacketPtr pkt)
562{
563 if (m_outstanding_count >= m_max_outstanding_requests) {
564 return RequestStatus_BufferFull;
565 }
566
567 RubyRequestType primary_type = RubyRequestType_NULL;
568 RubyRequestType secondary_type = RubyRequestType_NULL;
569
570 if (pkt->isLLSC()) {
571 //
572 // Alpha LL/SC instructions need to be handled carefully by the cache
573 // coherence protocol to ensure they follow the proper semantics. In
574 // particular, by identifying the operations as atomic, the protocol
575 // should understand that migratory sharing optimizations should not
576 // be performed (i.e. a load between the LL and SC should not steal
577 // away exclusive permission).
578 //
579 if (pkt->isWrite()) {
580 DPRINTF(RubySequencer, "Issuing SC\n");
581 primary_type = RubyRequestType_Store_Conditional;
582 } else {
583 DPRINTF(RubySequencer, "Issuing LL\n");
584 assert(pkt->isRead());
585 primary_type = RubyRequestType_Load_Linked;
586 }
587 secondary_type = RubyRequestType_ATOMIC;
588 } else if (pkt->req->isLocked()) {
589 //
590 // x86 locked instructions are translated to store cache coherence
591 // requests because these requests should always be treated as read
592 // exclusive operations and should leverage any migratory sharing
593 // optimization built into the protocol.
594 //
595 if (pkt->isWrite()) {
596 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
597 primary_type = RubyRequestType_Locked_RMW_Write;
598 } else {
599 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
600 assert(pkt->isRead());
601 primary_type = RubyRequestType_Locked_RMW_Read;
602 }
603 secondary_type = RubyRequestType_ST;
604 } else {
605 if (pkt->isRead()) {
606 if (pkt->req->isInstFetch()) {
607 primary_type = secondary_type = RubyRequestType_IFETCH;
608 } else {
609#if THE_ISA == X86_ISA
610 uint32_t flags = pkt->req->getFlags();
611 bool storeCheck = flags &
612 (TheISA::StoreCheck << TheISA::FlagShift);
613#else
614 bool storeCheck = false;
615#endif // X86_ISA
616 if (storeCheck) {
617 primary_type = RubyRequestType_RMW_Read;
618 secondary_type = RubyRequestType_ST;
619 } else {
620 primary_type = secondary_type = RubyRequestType_LD;
621 }
622 }
623 } else if (pkt->isWrite()) {
624 //
625 // Note: M5 packets do not differentiate ST from RMW_Write
626 //
627 primary_type = secondary_type = RubyRequestType_ST;
628 } else if (pkt->isFlush()) {
629 primary_type = secondary_type = RubyRequestType_FLUSH;
630 } else {
631 panic("Unsupported ruby packet type\n");
632 }
633 }
634
635 RequestStatus status = insertRequest(pkt, primary_type);
636 if (status != RequestStatus_Ready)
637 return status;
638
639 issueRequest(pkt, secondary_type);
640
641 // TODO: issue hardware prefetches here
642 return RequestStatus_Issued;
643}
644
645void
646Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
647{
648 assert(pkt != NULL);
649 int proc_id = -1;
650 if (pkt->req->hasContextId()) {
651 proc_id = pkt->req->contextId();
652 }
653
654 // If valid, copy the pc to the ruby request
655 Addr pc = 0;
656 if (pkt->req->hasPC()) {
657 pc = pkt->req->getPC();
658 }
659
42#include "mem/ruby/common/Global.hh"
43#include "mem/ruby/profiler/Profiler.hh"
44#include "mem/ruby/slicc_interface/RubyRequest.hh"
45#include "mem/ruby/system/Sequencer.hh"
46#include "mem/ruby/system/System.hh"
47#include "mem/packet.hh"
48
49using namespace std;
50
51Sequencer *
52RubySequencerParams::create()
53{
54 return new Sequencer(this);
55}
56
57Sequencer::Sequencer(const Params *p)
58 : RubyPort(p), deadlockCheckEvent(this)
59{
60 m_store_waiting_on_load_cycles = 0;
61 m_store_waiting_on_store_cycles = 0;
62 m_load_waiting_on_store_cycles = 0;
63 m_load_waiting_on_load_cycles = 0;
64
65 m_outstanding_count = 0;
66
67 m_instCache_ptr = p->icache;
68 m_dataCache_ptr = p->dcache;
69 m_max_outstanding_requests = p->max_outstanding_requests;
70 m_deadlock_threshold = p->deadlock_threshold;
71
72 assert(m_max_outstanding_requests > 0);
73 assert(m_deadlock_threshold > 0);
74 assert(m_instCache_ptr != NULL);
75 assert(m_dataCache_ptr != NULL);
76
77 m_usingNetworkTester = p->using_network_tester;
78}
79
80Sequencer::~Sequencer()
81{
82}
83
84void
85Sequencer::wakeup()
86{
87 assert(getDrainState() != Drainable::Draining);
88
89 // Check for deadlock of any of the requests
90 Cycles current_time = curCycle();
91
92 // Check across all outstanding requests
93 int total_outstanding = 0;
94
95 RequestTable::iterator read = m_readRequestTable.begin();
96 RequestTable::iterator read_end = m_readRequestTable.end();
97 for (; read != read_end; ++read) {
98 SequencerRequest* request = read->second;
99 if (current_time - request->issue_time < m_deadlock_threshold)
100 continue;
101
102 panic("Possible Deadlock detected. Aborting!\n"
103 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
104 "current time: %u issue_time: %d difference: %d\n", m_version,
105 Address(request->pkt->getAddr()), m_readRequestTable.size(),
106 current_time * clockPeriod(), request->issue_time * clockPeriod(),
107 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
108 }
109
110 RequestTable::iterator write = m_writeRequestTable.begin();
111 RequestTable::iterator write_end = m_writeRequestTable.end();
112 for (; write != write_end; ++write) {
113 SequencerRequest* request = write->second;
114 if (current_time - request->issue_time < m_deadlock_threshold)
115 continue;
116
117 panic("Possible Deadlock detected. Aborting!\n"
118 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
119 "current time: %u issue_time: %d difference: %d\n", m_version,
120 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
121 current_time * clockPeriod(), request->issue_time * clockPeriod(),
122 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
123 }
124
125 total_outstanding += m_writeRequestTable.size();
126 total_outstanding += m_readRequestTable.size();
127
128 assert(m_outstanding_count == total_outstanding);
129
130 if (m_outstanding_count > 0) {
131 // If there are still outstanding requests, keep checking
132 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
133 }
134}
135
136void
137Sequencer::printStats(ostream & out) const
138{
139 out << "Sequencer: " << m_name << endl
140 << " store_waiting_on_load_cycles: "
141 << m_store_waiting_on_load_cycles << endl
142 << " store_waiting_on_store_cycles: "
143 << m_store_waiting_on_store_cycles << endl
144 << " load_waiting_on_load_cycles: "
145 << m_load_waiting_on_load_cycles << endl
146 << " load_waiting_on_store_cycles: "
147 << m_load_waiting_on_store_cycles << endl;
148}
149
150void
151Sequencer::printProgress(ostream& out) const
152{
153#if 0
154 int total_demand = 0;
155 out << "Sequencer Stats Version " << m_version << endl;
156 out << "Current time = " << g_system_ptr->getTime() << endl;
157 out << "---------------" << endl;
158 out << "outstanding requests" << endl;
159
160 out << "proc " << m_Read
161 << " version Requests = " << m_readRequestTable.size() << endl;
162
163 // print the request table
164 RequestTable::iterator read = m_readRequestTable.begin();
165 RequestTable::iterator read_end = m_readRequestTable.end();
166 for (; read != read_end; ++read) {
167 SequencerRequest* request = read->second;
168 out << "\tRequest[ " << i << " ] = " << request->type
169 << " Address " << rkeys[i]
170 << " Posted " << request->issue_time
171 << " PF " << PrefetchBit_No << endl;
172 total_demand++;
173 }
174
175 out << "proc " << m_version
176 << " Write Requests = " << m_writeRequestTable.size << endl;
177
178 // print the request table
179 RequestTable::iterator write = m_writeRequestTable.begin();
180 RequestTable::iterator write_end = m_writeRequestTable.end();
181 for (; write != write_end; ++write) {
182 SequencerRequest* request = write->second;
183 out << "\tRequest[ " << i << " ] = " << request.getType()
184 << " Address " << wkeys[i]
185 << " Posted " << request.getTime()
186 << " PF " << request.getPrefetch() << endl;
187 if (request.getPrefetch() == PrefetchBit_No) {
188 total_demand++;
189 }
190 }
191
192 out << endl;
193
194 out << "Total Number Outstanding: " << m_outstanding_count << endl
195 << "Total Number Demand : " << total_demand << endl
196 << "Total Number Prefetches : " << m_outstanding_count - total_demand
197 << endl << endl << endl;
198#endif
199}
200
201// Insert the request on the correct request table. Return true if
202// the entry was already present.
203RequestStatus
204Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
205{
206 assert(m_outstanding_count ==
207 (m_writeRequestTable.size() + m_readRequestTable.size()));
208
209 // See if we should schedule a deadlock check
210 if (!deadlockCheckEvent.scheduled() &&
211 getDrainState() != Drainable::Draining) {
212 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
213 }
214
215 Address line_addr(pkt->getAddr());
216 line_addr.makeLineAddress();
217 // Create a default entry, mapping the address to NULL, the cast is
218 // there to make gcc 4.4 happy
219 RequestTable::value_type default_entry(line_addr,
220 (SequencerRequest*) NULL);
221
222 if ((request_type == RubyRequestType_ST) ||
223 (request_type == RubyRequestType_RMW_Read) ||
224 (request_type == RubyRequestType_RMW_Write) ||
225 (request_type == RubyRequestType_Load_Linked) ||
226 (request_type == RubyRequestType_Store_Conditional) ||
227 (request_type == RubyRequestType_Locked_RMW_Read) ||
228 (request_type == RubyRequestType_Locked_RMW_Write) ||
229 (request_type == RubyRequestType_FLUSH)) {
230
231 // Check if there is any outstanding read request for the same
232 // cache line.
233 if (m_readRequestTable.count(line_addr) > 0) {
234 m_store_waiting_on_load_cycles++;
235 return RequestStatus_Aliased;
236 }
237
238 pair<RequestTable::iterator, bool> r =
239 m_writeRequestTable.insert(default_entry);
240 if (r.second) {
241 RequestTable::iterator i = r.first;
242 i->second = new SequencerRequest(pkt, request_type, curCycle());
243 m_outstanding_count++;
244 } else {
245 // There is an outstanding write request for the cache line
246 m_store_waiting_on_store_cycles++;
247 return RequestStatus_Aliased;
248 }
249 } else {
250 // Check if there is any outstanding write request for the same
251 // cache line.
252 if (m_writeRequestTable.count(line_addr) > 0) {
253 m_load_waiting_on_store_cycles++;
254 return RequestStatus_Aliased;
255 }
256
257 pair<RequestTable::iterator, bool> r =
258 m_readRequestTable.insert(default_entry);
259
260 if (r.second) {
261 RequestTable::iterator i = r.first;
262 i->second = new SequencerRequest(pkt, request_type, curCycle());
263 m_outstanding_count++;
264 } else {
265 // There is an outstanding read request for the cache line
266 m_load_waiting_on_load_cycles++;
267 return RequestStatus_Aliased;
268 }
269 }
270
271 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
272 assert(m_outstanding_count ==
273 (m_writeRequestTable.size() + m_readRequestTable.size()));
274
275 return RequestStatus_Ready;
276}
277
278void
279Sequencer::markRemoved()
280{
281 m_outstanding_count--;
282 assert(m_outstanding_count ==
283 m_writeRequestTable.size() + m_readRequestTable.size());
284}
285
286void
287Sequencer::removeRequest(SequencerRequest* srequest)
288{
289 assert(m_outstanding_count ==
290 m_writeRequestTable.size() + m_readRequestTable.size());
291
292 Address line_addr(srequest->pkt->getAddr());
293 line_addr.makeLineAddress();
294 if ((srequest->m_type == RubyRequestType_ST) ||
295 (srequest->m_type == RubyRequestType_RMW_Read) ||
296 (srequest->m_type == RubyRequestType_RMW_Write) ||
297 (srequest->m_type == RubyRequestType_Load_Linked) ||
298 (srequest->m_type == RubyRequestType_Store_Conditional) ||
299 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
300 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
301 m_writeRequestTable.erase(line_addr);
302 } else {
303 m_readRequestTable.erase(line_addr);
304 }
305
306 markRemoved();
307}
308
309bool
310Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
311{
312 //
313 // The success flag indicates whether the LLSC operation was successful.
314 // LL ops will always succeed, but SC may fail if the cache line is no
315 // longer locked.
316 //
317 bool success = true;
318 if (request->m_type == RubyRequestType_Store_Conditional) {
319 if (!m_dataCache_ptr->isLocked(address, m_version)) {
320 //
321 // For failed SC requests, indicate the failure to the cpu by
322 // setting the extra data to zero.
323 //
324 request->pkt->req->setExtraData(0);
325 success = false;
326 } else {
327 //
328 // For successful SC requests, indicate the success to the cpu by
329 // setting the extra data to one.
330 //
331 request->pkt->req->setExtraData(1);
332 }
333 //
334 // Independent of success, all SC operations must clear the lock
335 //
336 m_dataCache_ptr->clearLocked(address);
337 } else if (request->m_type == RubyRequestType_Load_Linked) {
338 //
339 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
340 // previously locked cache lines?
341 //
342 m_dataCache_ptr->setLocked(address, m_version);
343 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
344 (m_dataCache_ptr->isLocked(address, m_version))) {
345 //
346 // Normal writes should clear the locked address
347 //
348 m_dataCache_ptr->clearLocked(address);
349 }
350 return success;
351}
352
353void
354Sequencer::writeCallback(const Address& address, DataBlock& data)
355{
356 writeCallback(address, GenericMachineType_NULL, data);
357}
358
359void
360Sequencer::writeCallback(const Address& address,
361 GenericMachineType mach,
362 DataBlock& data)
363{
364 writeCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
365}
366
367void
368Sequencer::writeCallback(const Address& address,
369 GenericMachineType mach,
370 DataBlock& data,
371 Cycles initialRequestTime,
372 Cycles forwardRequestTime,
373 Cycles firstResponseTime)
374{
375 assert(address == line_address(address));
376 assert(m_writeRequestTable.count(line_address(address)));
377
378 RequestTable::iterator i = m_writeRequestTable.find(address);
379 assert(i != m_writeRequestTable.end());
380 SequencerRequest* request = i->second;
381
382 m_writeRequestTable.erase(i);
383 markRemoved();
384
385 assert((request->m_type == RubyRequestType_ST) ||
386 (request->m_type == RubyRequestType_ATOMIC) ||
387 (request->m_type == RubyRequestType_RMW_Read) ||
388 (request->m_type == RubyRequestType_RMW_Write) ||
389 (request->m_type == RubyRequestType_Load_Linked) ||
390 (request->m_type == RubyRequestType_Store_Conditional) ||
391 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
392 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
393 (request->m_type == RubyRequestType_FLUSH));
394
395
396 //
397 // For Alpha, properly handle LL, SC, and write requests with respect to
398 // locked cache blocks.
399 //
400 // Not valid for Network_test protocl
401 //
402 bool success = true;
403 if(!m_usingNetworkTester)
404 success = handleLlsc(address, request);
405
406 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
407 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
408 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
409 m_controller->unblock(address);
410 }
411
412 hitCallback(request, mach, data, success,
413 initialRequestTime, forwardRequestTime, firstResponseTime);
414}
415
416void
417Sequencer::readCallback(const Address& address, DataBlock& data)
418{
419 readCallback(address, GenericMachineType_NULL, data);
420}
421
422void
423Sequencer::readCallback(const Address& address,
424 GenericMachineType mach,
425 DataBlock& data)
426{
427 readCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
428}
429
430void
431Sequencer::readCallback(const Address& address,
432 GenericMachineType mach,
433 DataBlock& data,
434 Cycles initialRequestTime,
435 Cycles forwardRequestTime,
436 Cycles firstResponseTime)
437{
438 assert(address == line_address(address));
439 assert(m_readRequestTable.count(line_address(address)));
440
441 RequestTable::iterator i = m_readRequestTable.find(address);
442 assert(i != m_readRequestTable.end());
443 SequencerRequest* request = i->second;
444
445 m_readRequestTable.erase(i);
446 markRemoved();
447
448 assert((request->m_type == RubyRequestType_LD) ||
449 (request->m_type == RubyRequestType_IFETCH));
450
451 hitCallback(request, mach, data, true,
452 initialRequestTime, forwardRequestTime, firstResponseTime);
453}
454
455void
456Sequencer::hitCallback(SequencerRequest* srequest,
457 GenericMachineType mach,
458 DataBlock& data,
459 bool success,
460 Cycles initialRequestTime,
461 Cycles forwardRequestTime,
462 Cycles firstResponseTime)
463{
464 PacketPtr pkt = srequest->pkt;
465 Address request_address(pkt->getAddr());
466 Address request_line_address(pkt->getAddr());
467 request_line_address.makeLineAddress();
468 RubyRequestType type = srequest->m_type;
469 Cycles issued_time = srequest->issue_time;
470
471 // Set this cache entry to the most recently used
472 if (type == RubyRequestType_IFETCH) {
473 m_instCache_ptr->setMRU(request_line_address);
474 } else {
475 m_dataCache_ptr->setMRU(request_line_address);
476 }
477
478 assert(curCycle() >= issued_time);
479 Cycles miss_latency = curCycle() - issued_time;
480
481 // Profile the miss latency for all non-zero demand misses
482 if (miss_latency != 0) {
483 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
484
485 if (mach == GenericMachineType_L1Cache_wCC) {
486 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
487 initialRequestTime, forwardRequestTime,
488 firstResponseTime, curCycle());
489 }
490
491 if (mach == GenericMachineType_Directory) {
492 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
493 initialRequestTime, forwardRequestTime,
494 firstResponseTime, curCycle());
495 }
496
497 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
498 curTick(), m_version, "Seq",
499 success ? "Done" : "SC_Failed", "", "",
500 request_address, miss_latency);
501 }
502
503 // update the data
504 if (g_system_ptr->m_warmup_enabled) {
505 assert(pkt->getPtr<uint8_t>(false) != NULL);
506 data.setData(pkt->getPtr<uint8_t>(false),
507 request_address.getOffset(), pkt->getSize());
508 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
509 if ((type == RubyRequestType_LD) ||
510 (type == RubyRequestType_IFETCH) ||
511 (type == RubyRequestType_RMW_Read) ||
512 (type == RubyRequestType_Locked_RMW_Read) ||
513 (type == RubyRequestType_Load_Linked)) {
514 memcpy(pkt->getPtr<uint8_t>(true),
515 data.getData(request_address.getOffset(), pkt->getSize()),
516 pkt->getSize());
517 } else {
518 data.setData(pkt->getPtr<uint8_t>(true),
519 request_address.getOffset(), pkt->getSize());
520 }
521 } else {
522 DPRINTF(MemoryAccess,
523 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
524 RubyRequestType_to_string(type));
525 }
526
527 // If using the RubyTester, update the RubyTester sender state's
528 // subBlock with the recieved data. The tester will later access
529 // this state.
530 // Note: RubyPort will access it's sender state before the
531 // RubyTester.
532 if (m_usingRubyTester) {
533 RubyPort::SenderState *requestSenderState =
534 safe_cast<RubyPort::SenderState*>(pkt->senderState);
535 RubyTester::SenderState* testerSenderState =
536 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
537 testerSenderState->subBlock->mergeFrom(data);
538 }
539
540 delete srequest;
541
542 if (g_system_ptr->m_warmup_enabled) {
543 delete pkt;
544 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
545 } else if (g_system_ptr->m_cooldown_enabled) {
546 delete pkt;
547 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
548 } else {
549 ruby_hit_callback(pkt);
550 }
551}
552
553bool
554Sequencer::empty() const
555{
556 return m_writeRequestTable.empty() && m_readRequestTable.empty();
557}
558
559RequestStatus
560Sequencer::makeRequest(PacketPtr pkt)
561{
562 if (m_outstanding_count >= m_max_outstanding_requests) {
563 return RequestStatus_BufferFull;
564 }
565
566 RubyRequestType primary_type = RubyRequestType_NULL;
567 RubyRequestType secondary_type = RubyRequestType_NULL;
568
569 if (pkt->isLLSC()) {
570 //
571 // Alpha LL/SC instructions need to be handled carefully by the cache
572 // coherence protocol to ensure they follow the proper semantics. In
573 // particular, by identifying the operations as atomic, the protocol
574 // should understand that migratory sharing optimizations should not
575 // be performed (i.e. a load between the LL and SC should not steal
576 // away exclusive permission).
577 //
578 if (pkt->isWrite()) {
579 DPRINTF(RubySequencer, "Issuing SC\n");
580 primary_type = RubyRequestType_Store_Conditional;
581 } else {
582 DPRINTF(RubySequencer, "Issuing LL\n");
583 assert(pkt->isRead());
584 primary_type = RubyRequestType_Load_Linked;
585 }
586 secondary_type = RubyRequestType_ATOMIC;
587 } else if (pkt->req->isLocked()) {
588 //
589 // x86 locked instructions are translated to store cache coherence
590 // requests because these requests should always be treated as read
591 // exclusive operations and should leverage any migratory sharing
592 // optimization built into the protocol.
593 //
594 if (pkt->isWrite()) {
595 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
596 primary_type = RubyRequestType_Locked_RMW_Write;
597 } else {
598 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
599 assert(pkt->isRead());
600 primary_type = RubyRequestType_Locked_RMW_Read;
601 }
602 secondary_type = RubyRequestType_ST;
603 } else {
604 if (pkt->isRead()) {
605 if (pkt->req->isInstFetch()) {
606 primary_type = secondary_type = RubyRequestType_IFETCH;
607 } else {
608#if THE_ISA == X86_ISA
609 uint32_t flags = pkt->req->getFlags();
610 bool storeCheck = flags &
611 (TheISA::StoreCheck << TheISA::FlagShift);
612#else
613 bool storeCheck = false;
614#endif // X86_ISA
615 if (storeCheck) {
616 primary_type = RubyRequestType_RMW_Read;
617 secondary_type = RubyRequestType_ST;
618 } else {
619 primary_type = secondary_type = RubyRequestType_LD;
620 }
621 }
622 } else if (pkt->isWrite()) {
623 //
624 // Note: M5 packets do not differentiate ST from RMW_Write
625 //
626 primary_type = secondary_type = RubyRequestType_ST;
627 } else if (pkt->isFlush()) {
628 primary_type = secondary_type = RubyRequestType_FLUSH;
629 } else {
630 panic("Unsupported ruby packet type\n");
631 }
632 }
633
634 RequestStatus status = insertRequest(pkt, primary_type);
635 if (status != RequestStatus_Ready)
636 return status;
637
638 issueRequest(pkt, secondary_type);
639
640 // TODO: issue hardware prefetches here
641 return RequestStatus_Issued;
642}
643
644void
645Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
646{
647 assert(pkt != NULL);
648 int proc_id = -1;
649 if (pkt->req->hasContextId()) {
650 proc_id = pkt->req->contextId();
651 }
652
653 // If valid, copy the pc to the ruby request
654 Addr pc = 0;
655 if (pkt->req->hasPC()) {
656 pc = pkt->req->getPC();
657 }
658
660 RubyRequest *msg = new RubyRequest(curCycle(), pkt->getAddr(),
659 RubyRequest *msg = new RubyRequest(clockEdge(), pkt->getAddr(),
661 pkt->getPtr<uint8_t>(true),
662 pkt->getSize(), pc, secondary_type,
663 RubyAccessMode_Supervisor, pkt,
664 PrefetchBit_No, proc_id);
665
666 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
667 curTick(), m_version, "Seq", "Begin", "", "",
668 msg->getPhysicalAddress(),
669 RubyRequestType_to_string(secondary_type));
670
671 Cycles latency(0); // initialzed to an null value
672
673 if (secondary_type == RubyRequestType_IFETCH)
674 latency = m_instCache_ptr->getLatency();
675 else
676 latency = m_dataCache_ptr->getLatency();
677
678 // Send the message to the cache controller
679 assert(latency > 0);
680
681 assert(m_mandatory_q_ptr != NULL);
682 m_mandatory_q_ptr->enqueue(msg, latency);
683}
684
685template <class KEY, class VALUE>
686std::ostream &
687operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
688{
689 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
690 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
691
692 out << "[";
693 for (; i != end; ++i)
694 out << " " << i->first << "=" << i->second;
695 out << " ]";
696
697 return out;
698}
699
700void
701Sequencer::print(ostream& out) const
702{
703 out << "[Sequencer: " << m_version
704 << ", outstanding requests: " << m_outstanding_count
705 << ", read request table: " << m_readRequestTable
706 << ", write request table: " << m_writeRequestTable
707 << "]";
708}
709
710// this can be called from setState whenever coherence permissions are
711// upgraded when invoked, coherence violations will be checked for the
712// given block
713void
714Sequencer::checkCoherence(const Address& addr)
715{
716#ifdef CHECK_COHERENCE
717 g_system_ptr->checkGlobalCoherenceInvariant(addr);
718#endif
719}
720
721void
722Sequencer::recordRequestType(SequencerRequestType requestType) {
723 DPRINTF(RubyStats, "Recorded statistic: %s\n",
724 SequencerRequestType_to_string(requestType));
725}
726
727
728void
729Sequencer::evictionCallback(const Address& address)
730{
731 ruby_eviction_callback(address);
732}
660 pkt->getPtr<uint8_t>(true),
661 pkt->getSize(), pc, secondary_type,
662 RubyAccessMode_Supervisor, pkt,
663 PrefetchBit_No, proc_id);
664
665 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
666 curTick(), m_version, "Seq", "Begin", "", "",
667 msg->getPhysicalAddress(),
668 RubyRequestType_to_string(secondary_type));
669
670 Cycles latency(0); // initialzed to an null value
671
672 if (secondary_type == RubyRequestType_IFETCH)
673 latency = m_instCache_ptr->getLatency();
674 else
675 latency = m_dataCache_ptr->getLatency();
676
677 // Send the message to the cache controller
678 assert(latency > 0);
679
680 assert(m_mandatory_q_ptr != NULL);
681 m_mandatory_q_ptr->enqueue(msg, latency);
682}
683
684template <class KEY, class VALUE>
685std::ostream &
686operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
687{
688 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
689 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
690
691 out << "[";
692 for (; i != end; ++i)
693 out << " " << i->first << "=" << i->second;
694 out << " ]";
695
696 return out;
697}
698
699void
700Sequencer::print(ostream& out) const
701{
702 out << "[Sequencer: " << m_version
703 << ", outstanding requests: " << m_outstanding_count
704 << ", read request table: " << m_readRequestTable
705 << ", write request table: " << m_writeRequestTable
706 << "]";
707}
708
709// this can be called from setState whenever coherence permissions are
710// upgraded when invoked, coherence violations will be checked for the
711// given block
712void
713Sequencer::checkCoherence(const Address& addr)
714{
715#ifdef CHECK_COHERENCE
716 g_system_ptr->checkGlobalCoherenceInvariant(addr);
717#endif
718}
719
720void
721Sequencer::recordRequestType(SequencerRequestType requestType) {
722 DPRINTF(RubyStats, "Recorded statistic: %s\n",
723 SequencerRequestType_to_string(requestType));
724}
725
726
727void
728Sequencer::evictionCallback(const Address& address)
729{
730 ruby_eviction_callback(address);
731}