Sequencer.cc (9467:8da5ee073b92) Sequencer.cc (9499:b03b556a8fbb)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55 return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59 : RubyPort(p), deadlockCheckEvent(this)
60{
61 m_store_waiting_on_load_cycles = 0;
62 m_store_waiting_on_store_cycles = 0;
63 m_load_waiting_on_store_cycles = 0;
64 m_load_waiting_on_load_cycles = 0;
65
66 m_outstanding_count = 0;
67
68 m_instCache_ptr = p->icache;
69 m_dataCache_ptr = p->dcache;
70 m_max_outstanding_requests = p->max_outstanding_requests;
71 m_deadlock_threshold = p->deadlock_threshold;
72
73 assert(m_max_outstanding_requests > 0);
74 assert(m_deadlock_threshold > 0);
75 assert(m_instCache_ptr != NULL);
76 assert(m_dataCache_ptr != NULL);
77
78 m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88 assert(getDrainState() != Drainable::Draining);
89
90 // Check for deadlock of any of the requests
91 Time current_time = curCycle();
92
93 // Check across all outstanding requests
94 int total_outstanding = 0;
95
96 RequestTable::iterator read = m_readRequestTable.begin();
97 RequestTable::iterator read_end = m_readRequestTable.end();
98 for (; read != read_end; ++read) {
99 SequencerRequest* request = read->second;
100 if (current_time - request->issue_time < m_deadlock_threshold)
101 continue;
102
103 panic("Possible Deadlock detected. Aborting!\n"
104 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
105 "current time: %u issue_time: %d difference: %d\n", m_version,
106 Address(request->pkt->getAddr()), m_readRequestTable.size(),
107 current_time * clockPeriod(), request->issue_time * clockPeriod(),
108 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
109 }
110
111 RequestTable::iterator write = m_writeRequestTable.begin();
112 RequestTable::iterator write_end = m_writeRequestTable.end();
113 for (; write != write_end; ++write) {
114 SequencerRequest* request = write->second;
115 if (current_time - request->issue_time < m_deadlock_threshold)
116 continue;
117
118 panic("Possible Deadlock detected. Aborting!\n"
119 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
120 "current time: %u issue_time: %d difference: %d\n", m_version,
121 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
122 current_time * clockPeriod(), request->issue_time * clockPeriod(),
123 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
124 }
125
126 total_outstanding += m_writeRequestTable.size();
127 total_outstanding += m_readRequestTable.size();
128
129 assert(m_outstanding_count == total_outstanding);
130
131 if (m_outstanding_count > 0) {
132 // If there are still outstanding requests, keep checking
133 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
134 }
135}
136
137void
138Sequencer::printStats(ostream & out) const
139{
140 out << "Sequencer: " << m_name << endl
141 << " store_waiting_on_load_cycles: "
142 << m_store_waiting_on_load_cycles << endl
143 << " store_waiting_on_store_cycles: "
144 << m_store_waiting_on_store_cycles << endl
145 << " load_waiting_on_load_cycles: "
146 << m_load_waiting_on_load_cycles << endl
147 << " load_waiting_on_store_cycles: "
148 << m_load_waiting_on_store_cycles << endl;
149}
150
151void
152Sequencer::printProgress(ostream& out) const
153{
154#if 0
155 int total_demand = 0;
156 out << "Sequencer Stats Version " << m_version << endl;
157 out << "Current time = " << g_system_ptr->getTime() << endl;
158 out << "---------------" << endl;
159 out << "outstanding requests" << endl;
160
161 out << "proc " << m_Read
162 << " version Requests = " << m_readRequestTable.size() << endl;
163
164 // print the request table
165 RequestTable::iterator read = m_readRequestTable.begin();
166 RequestTable::iterator read_end = m_readRequestTable.end();
167 for (; read != read_end; ++read) {
168 SequencerRequest* request = read->second;
169 out << "\tRequest[ " << i << " ] = " << request->type
170 << " Address " << rkeys[i]
171 << " Posted " << request->issue_time
172 << " PF " << PrefetchBit_No << endl;
173 total_demand++;
174 }
175
176 out << "proc " << m_version
177 << " Write Requests = " << m_writeRequestTable.size << endl;
178
179 // print the request table
180 RequestTable::iterator write = m_writeRequestTable.begin();
181 RequestTable::iterator write_end = m_writeRequestTable.end();
182 for (; write != write_end; ++write) {
183 SequencerRequest* request = write->second;
184 out << "\tRequest[ " << i << " ] = " << request.getType()
185 << " Address " << wkeys[i]
186 << " Posted " << request.getTime()
187 << " PF " << request.getPrefetch() << endl;
188 if (request.getPrefetch() == PrefetchBit_No) {
189 total_demand++;
190 }
191 }
192
193 out << endl;
194
195 out << "Total Number Outstanding: " << m_outstanding_count << endl
196 << "Total Number Demand : " << total_demand << endl
197 << "Total Number Prefetches : " << m_outstanding_count - total_demand
198 << endl << endl << endl;
199#endif
200}
201
202// Insert the request on the correct request table. Return true if
203// the entry was already present.
204RequestStatus
205Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
206{
207 assert(m_outstanding_count ==
208 (m_writeRequestTable.size() + m_readRequestTable.size()));
209
210 // See if we should schedule a deadlock check
211 if (!deadlockCheckEvent.scheduled() &&
212 getDrainState() != Drainable::Draining) {
213 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
214 }
215
216 Address line_addr(pkt->getAddr());
217 line_addr.makeLineAddress();
218 // Create a default entry, mapping the address to NULL, the cast is
219 // there to make gcc 4.4 happy
220 RequestTable::value_type default_entry(line_addr,
221 (SequencerRequest*) NULL);
222
223 if ((request_type == RubyRequestType_ST) ||
224 (request_type == RubyRequestType_RMW_Read) ||
225 (request_type == RubyRequestType_RMW_Write) ||
226 (request_type == RubyRequestType_Load_Linked) ||
227 (request_type == RubyRequestType_Store_Conditional) ||
228 (request_type == RubyRequestType_Locked_RMW_Read) ||
229 (request_type == RubyRequestType_Locked_RMW_Write) ||
230 (request_type == RubyRequestType_FLUSH)) {
231
232 // Check if there is any outstanding read request for the same
233 // cache line.
234 if (m_readRequestTable.count(line_addr) > 0) {
235 m_store_waiting_on_load_cycles++;
236 return RequestStatus_Aliased;
237 }
238
239 pair<RequestTable::iterator, bool> r =
240 m_writeRequestTable.insert(default_entry);
241 if (r.second) {
242 RequestTable::iterator i = r.first;
243 i->second = new SequencerRequest(pkt, request_type, curCycle());
244 m_outstanding_count++;
245 } else {
246 // There is an outstanding write request for the cache line
247 m_store_waiting_on_store_cycles++;
248 return RequestStatus_Aliased;
249 }
250 } else {
251 // Check if there is any outstanding write request for the same
252 // cache line.
253 if (m_writeRequestTable.count(line_addr) > 0) {
254 m_load_waiting_on_store_cycles++;
255 return RequestStatus_Aliased;
256 }
257
258 pair<RequestTable::iterator, bool> r =
259 m_readRequestTable.insert(default_entry);
260
261 if (r.second) {
262 RequestTable::iterator i = r.first;
263 i->second = new SequencerRequest(pkt, request_type, curCycle());
264 m_outstanding_count++;
265 } else {
266 // There is an outstanding read request for the cache line
267 m_load_waiting_on_load_cycles++;
268 return RequestStatus_Aliased;
269 }
270 }
271
272 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
273 assert(m_outstanding_count ==
274 (m_writeRequestTable.size() + m_readRequestTable.size()));
275
276 return RequestStatus_Ready;
277}
278
279void
280Sequencer::markRemoved()
281{
282 m_outstanding_count--;
283 assert(m_outstanding_count ==
284 m_writeRequestTable.size() + m_readRequestTable.size());
285}
286
287void
288Sequencer::removeRequest(SequencerRequest* srequest)
289{
290 assert(m_outstanding_count ==
291 m_writeRequestTable.size() + m_readRequestTable.size());
292
293 Address line_addr(srequest->pkt->getAddr());
294 line_addr.makeLineAddress();
295 if ((srequest->m_type == RubyRequestType_ST) ||
296 (srequest->m_type == RubyRequestType_RMW_Read) ||
297 (srequest->m_type == RubyRequestType_RMW_Write) ||
298 (srequest->m_type == RubyRequestType_Load_Linked) ||
299 (srequest->m_type == RubyRequestType_Store_Conditional) ||
300 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
301 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
302 m_writeRequestTable.erase(line_addr);
303 } else {
304 m_readRequestTable.erase(line_addr);
305 }
306
307 markRemoved();
308}
309
310bool
311Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
312{
313 //
314 // The success flag indicates whether the LLSC operation was successful.
315 // LL ops will always succeed, but SC may fail if the cache line is no
316 // longer locked.
317 //
318 bool success = true;
319 if (request->m_type == RubyRequestType_Store_Conditional) {
320 if (!m_dataCache_ptr->isLocked(address, m_version)) {
321 //
322 // For failed SC requests, indicate the failure to the cpu by
323 // setting the extra data to zero.
324 //
325 request->pkt->req->setExtraData(0);
326 success = false;
327 } else {
328 //
329 // For successful SC requests, indicate the success to the cpu by
330 // setting the extra data to one.
331 //
332 request->pkt->req->setExtraData(1);
333 }
334 //
335 // Independent of success, all SC operations must clear the lock
336 //
337 m_dataCache_ptr->clearLocked(address);
338 } else if (request->m_type == RubyRequestType_Load_Linked) {
339 //
340 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
341 // previously locked cache lines?
342 //
343 m_dataCache_ptr->setLocked(address, m_version);
344 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
345 (m_dataCache_ptr->isLocked(address, m_version))) {
346 //
347 // Normal writes should clear the locked address
348 //
349 m_dataCache_ptr->clearLocked(address);
350 }
351 return success;
352}
353
354void
355Sequencer::writeCallback(const Address& address, DataBlock& data)
356{
357 writeCallback(address, GenericMachineType_NULL, data);
358}
359
360void
361Sequencer::writeCallback(const Address& address,
362 GenericMachineType mach,
363 DataBlock& data)
364{
365 writeCallback(address, mach, data, 0, 0, 0);
366}
367
368void
369Sequencer::writeCallback(const Address& address,
370 GenericMachineType mach,
371 DataBlock& data,
372 Time initialRequestTime,
373 Time forwardRequestTime,
374 Time firstResponseTime)
375{
376 assert(address == line_address(address));
377 assert(m_writeRequestTable.count(line_address(address)));
378
379 RequestTable::iterator i = m_writeRequestTable.find(address);
380 assert(i != m_writeRequestTable.end());
381 SequencerRequest* request = i->second;
382
383 m_writeRequestTable.erase(i);
384 markRemoved();
385
386 assert((request->m_type == RubyRequestType_ST) ||
387 (request->m_type == RubyRequestType_ATOMIC) ||
388 (request->m_type == RubyRequestType_RMW_Read) ||
389 (request->m_type == RubyRequestType_RMW_Write) ||
390 (request->m_type == RubyRequestType_Load_Linked) ||
391 (request->m_type == RubyRequestType_Store_Conditional) ||
392 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
393 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
394 (request->m_type == RubyRequestType_FLUSH));
395
396
397 //
398 // For Alpha, properly handle LL, SC, and write requests with respect to
399 // locked cache blocks.
400 //
401 // Not valid for Network_test protocl
402 //
403 bool success = true;
404 if(!m_usingNetworkTester)
405 success = handleLlsc(address, request);
406
407 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
408 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
409 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
410 m_controller->unblock(address);
411 }
412
413 hitCallback(request, mach, data, success,
414 initialRequestTime, forwardRequestTime, firstResponseTime);
415}
416
417void
418Sequencer::readCallback(const Address& address, DataBlock& data)
419{
420 readCallback(address, GenericMachineType_NULL, data);
421}
422
423void
424Sequencer::readCallback(const Address& address,
425 GenericMachineType mach,
426 DataBlock& data)
427{
428 readCallback(address, mach, data, 0, 0, 0);
429}
430
431void
432Sequencer::readCallback(const Address& address,
433 GenericMachineType mach,
434 DataBlock& data,
435 Time initialRequestTime,
436 Time forwardRequestTime,
437 Time firstResponseTime)
438{
439 assert(address == line_address(address));
440 assert(m_readRequestTable.count(line_address(address)));
441
442 RequestTable::iterator i = m_readRequestTable.find(address);
443 assert(i != m_readRequestTable.end());
444 SequencerRequest* request = i->second;
445
446 m_readRequestTable.erase(i);
447 markRemoved();
448
449 assert((request->m_type == RubyRequestType_LD) ||
450 (request->m_type == RubyRequestType_IFETCH));
451
452 hitCallback(request, mach, data, true,
453 initialRequestTime, forwardRequestTime, firstResponseTime);
454}
455
456void
457Sequencer::hitCallback(SequencerRequest* srequest,
458 GenericMachineType mach,
459 DataBlock& data,
460 bool success,
461 Time initialRequestTime,
462 Time forwardRequestTime,
463 Time firstResponseTime)
464{
465 PacketPtr pkt = srequest->pkt;
466 Address request_address(pkt->getAddr());
467 Address request_line_address(pkt->getAddr());
468 request_line_address.makeLineAddress();
469 RubyRequestType type = srequest->m_type;
470 Time issued_time = srequest->issue_time;
471
472 // Set this cache entry to the most recently used
473 if (type == RubyRequestType_IFETCH) {
474 m_instCache_ptr->setMRU(request_line_address);
475 } else {
476 m_dataCache_ptr->setMRU(request_line_address);
477 }
478
479 assert(curCycle() >= issued_time);
480 Time miss_latency = curCycle() - issued_time;
481
482 // Profile the miss latency for all non-zero demand misses
483 if (miss_latency != 0) {
484 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
485
486 if (mach == GenericMachineType_L1Cache_wCC) {
487 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
488 initialRequestTime, forwardRequestTime,
489 firstResponseTime, curCycle());
490 }
491
492 if (mach == GenericMachineType_Directory) {
493 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
494 initialRequestTime, forwardRequestTime,
495 firstResponseTime, curCycle());
496 }
497
498 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
499 curTick(), m_version, "Seq",
500 success ? "Done" : "SC_Failed", "", "",
501 request_address, miss_latency);
502 }
503
504 // update the data
505 if (g_system_ptr->m_warmup_enabled) {
506 assert(pkt->getPtr<uint8_t>(false) != NULL);
507 data.setData(pkt->getPtr<uint8_t>(false),
508 request_address.getOffset(), pkt->getSize());
509 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
510 if ((type == RubyRequestType_LD) ||
511 (type == RubyRequestType_IFETCH) ||
512 (type == RubyRequestType_RMW_Read) ||
513 (type == RubyRequestType_Locked_RMW_Read) ||
514 (type == RubyRequestType_Load_Linked)) {
515 memcpy(pkt->getPtr<uint8_t>(true),
516 data.getData(request_address.getOffset(), pkt->getSize()),
517 pkt->getSize());
518 } else {
519 data.setData(pkt->getPtr<uint8_t>(true),
520 request_address.getOffset(), pkt->getSize());
521 }
522 } else {
523 DPRINTF(MemoryAccess,
524 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
525 RubyRequestType_to_string(type));
526 }
527
528 // If using the RubyTester, update the RubyTester sender state's
529 // subBlock with the recieved data. The tester will later access
530 // this state.
531 // Note: RubyPort will access it's sender state before the
532 // RubyTester.
533 if (m_usingRubyTester) {
534 RubyPort::SenderState *requestSenderState =
535 safe_cast<RubyPort::SenderState*>(pkt->senderState);
536 RubyTester::SenderState* testerSenderState =
537 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
538 testerSenderState->subBlock->mergeFrom(data);
539 }
540
541 delete srequest;
542
543 if (g_system_ptr->m_warmup_enabled) {
544 delete pkt;
545 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
546 } else if (g_system_ptr->m_cooldown_enabled) {
547 delete pkt;
548 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
549 } else {
550 ruby_hit_callback(pkt);
551 }
552}
553
554bool
555Sequencer::empty() const
556{
557 return m_writeRequestTable.empty() && m_readRequestTable.empty();
558}
559
560RequestStatus
561Sequencer::makeRequest(PacketPtr pkt)
562{
563 if (m_outstanding_count >= m_max_outstanding_requests) {
564 return RequestStatus_BufferFull;
565 }
566
567 RubyRequestType primary_type = RubyRequestType_NULL;
568 RubyRequestType secondary_type = RubyRequestType_NULL;
569
570 if (pkt->isLLSC()) {
571 //
572 // Alpha LL/SC instructions need to be handled carefully by the cache
573 // coherence protocol to ensure they follow the proper semantics. In
574 // particular, by identifying the operations as atomic, the protocol
575 // should understand that migratory sharing optimizations should not
576 // be performed (i.e. a load between the LL and SC should not steal
577 // away exclusive permission).
578 //
579 if (pkt->isWrite()) {
580 DPRINTF(RubySequencer, "Issuing SC\n");
581 primary_type = RubyRequestType_Store_Conditional;
582 } else {
583 DPRINTF(RubySequencer, "Issuing LL\n");
584 assert(pkt->isRead());
585 primary_type = RubyRequestType_Load_Linked;
586 }
587 secondary_type = RubyRequestType_ATOMIC;
588 } else if (pkt->req->isLocked()) {
589 //
590 // x86 locked instructions are translated to store cache coherence
591 // requests because these requests should always be treated as read
592 // exclusive operations and should leverage any migratory sharing
593 // optimization built into the protocol.
594 //
595 if (pkt->isWrite()) {
596 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
597 primary_type = RubyRequestType_Locked_RMW_Write;
598 } else {
599 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
600 assert(pkt->isRead());
601 primary_type = RubyRequestType_Locked_RMW_Read;
602 }
603 secondary_type = RubyRequestType_ST;
604 } else {
605 if (pkt->isRead()) {
606 if (pkt->req->isInstFetch()) {
607 primary_type = secondary_type = RubyRequestType_IFETCH;
608 } else {
609#if THE_ISA == X86_ISA
610 uint32_t flags = pkt->req->getFlags();
611 bool storeCheck = flags &
612 (TheISA::StoreCheck << TheISA::FlagShift);
613#else
614 bool storeCheck = false;
615#endif // X86_ISA
616 if (storeCheck) {
617 primary_type = RubyRequestType_RMW_Read;
618 secondary_type = RubyRequestType_ST;
619 } else {
620 primary_type = secondary_type = RubyRequestType_LD;
621 }
622 }
623 } else if (pkt->isWrite()) {
624 //
625 // Note: M5 packets do not differentiate ST from RMW_Write
626 //
627 primary_type = secondary_type = RubyRequestType_ST;
628 } else if (pkt->isFlush()) {
629 primary_type = secondary_type = RubyRequestType_FLUSH;
630 } else {
631 panic("Unsupported ruby packet type\n");
632 }
633 }
634
635 RequestStatus status = insertRequest(pkt, primary_type);
636 if (status != RequestStatus_Ready)
637 return status;
638
639 issueRequest(pkt, secondary_type);
640
641 // TODO: issue hardware prefetches here
642 return RequestStatus_Issued;
643}
644
645void
646Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
647{
648 assert(pkt != NULL);
649 int proc_id = -1;
650 if (pkt->req->hasContextId()) {
651 proc_id = pkt->req->contextId();
652 }
653
654 // If valid, copy the pc to the ruby request
655 Addr pc = 0;
656 if (pkt->req->hasPC()) {
657 pc = pkt->req->getPC();
658 }
659
660 RubyRequest *msg = new RubyRequest(curCycle(), pkt->getAddr(),
661 pkt->getPtr<uint8_t>(true),
662 pkt->getSize(), pc, secondary_type,
663 RubyAccessMode_Supervisor, pkt,
664 PrefetchBit_No, proc_id);
665
666 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
667 curTick(), m_version, "Seq", "Begin", "", "",
668 msg->getPhysicalAddress(),
669 RubyRequestType_to_string(secondary_type));
670
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55 return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59 : RubyPort(p), deadlockCheckEvent(this)
60{
61 m_store_waiting_on_load_cycles = 0;
62 m_store_waiting_on_store_cycles = 0;
63 m_load_waiting_on_store_cycles = 0;
64 m_load_waiting_on_load_cycles = 0;
65
66 m_outstanding_count = 0;
67
68 m_instCache_ptr = p->icache;
69 m_dataCache_ptr = p->dcache;
70 m_max_outstanding_requests = p->max_outstanding_requests;
71 m_deadlock_threshold = p->deadlock_threshold;
72
73 assert(m_max_outstanding_requests > 0);
74 assert(m_deadlock_threshold > 0);
75 assert(m_instCache_ptr != NULL);
76 assert(m_dataCache_ptr != NULL);
77
78 m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88 assert(getDrainState() != Drainable::Draining);
89
90 // Check for deadlock of any of the requests
91 Time current_time = curCycle();
92
93 // Check across all outstanding requests
94 int total_outstanding = 0;
95
96 RequestTable::iterator read = m_readRequestTable.begin();
97 RequestTable::iterator read_end = m_readRequestTable.end();
98 for (; read != read_end; ++read) {
99 SequencerRequest* request = read->second;
100 if (current_time - request->issue_time < m_deadlock_threshold)
101 continue;
102
103 panic("Possible Deadlock detected. Aborting!\n"
104 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
105 "current time: %u issue_time: %d difference: %d\n", m_version,
106 Address(request->pkt->getAddr()), m_readRequestTable.size(),
107 current_time * clockPeriod(), request->issue_time * clockPeriod(),
108 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
109 }
110
111 RequestTable::iterator write = m_writeRequestTable.begin();
112 RequestTable::iterator write_end = m_writeRequestTable.end();
113 for (; write != write_end; ++write) {
114 SequencerRequest* request = write->second;
115 if (current_time - request->issue_time < m_deadlock_threshold)
116 continue;
117
118 panic("Possible Deadlock detected. Aborting!\n"
119 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
120 "current time: %u issue_time: %d difference: %d\n", m_version,
121 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
122 current_time * clockPeriod(), request->issue_time * clockPeriod(),
123 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
124 }
125
126 total_outstanding += m_writeRequestTable.size();
127 total_outstanding += m_readRequestTable.size();
128
129 assert(m_outstanding_count == total_outstanding);
130
131 if (m_outstanding_count > 0) {
132 // If there are still outstanding requests, keep checking
133 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
134 }
135}
136
137void
138Sequencer::printStats(ostream & out) const
139{
140 out << "Sequencer: " << m_name << endl
141 << " store_waiting_on_load_cycles: "
142 << m_store_waiting_on_load_cycles << endl
143 << " store_waiting_on_store_cycles: "
144 << m_store_waiting_on_store_cycles << endl
145 << " load_waiting_on_load_cycles: "
146 << m_load_waiting_on_load_cycles << endl
147 << " load_waiting_on_store_cycles: "
148 << m_load_waiting_on_store_cycles << endl;
149}
150
151void
152Sequencer::printProgress(ostream& out) const
153{
154#if 0
155 int total_demand = 0;
156 out << "Sequencer Stats Version " << m_version << endl;
157 out << "Current time = " << g_system_ptr->getTime() << endl;
158 out << "---------------" << endl;
159 out << "outstanding requests" << endl;
160
161 out << "proc " << m_Read
162 << " version Requests = " << m_readRequestTable.size() << endl;
163
164 // print the request table
165 RequestTable::iterator read = m_readRequestTable.begin();
166 RequestTable::iterator read_end = m_readRequestTable.end();
167 for (; read != read_end; ++read) {
168 SequencerRequest* request = read->second;
169 out << "\tRequest[ " << i << " ] = " << request->type
170 << " Address " << rkeys[i]
171 << " Posted " << request->issue_time
172 << " PF " << PrefetchBit_No << endl;
173 total_demand++;
174 }
175
176 out << "proc " << m_version
177 << " Write Requests = " << m_writeRequestTable.size << endl;
178
179 // print the request table
180 RequestTable::iterator write = m_writeRequestTable.begin();
181 RequestTable::iterator write_end = m_writeRequestTable.end();
182 for (; write != write_end; ++write) {
183 SequencerRequest* request = write->second;
184 out << "\tRequest[ " << i << " ] = " << request.getType()
185 << " Address " << wkeys[i]
186 << " Posted " << request.getTime()
187 << " PF " << request.getPrefetch() << endl;
188 if (request.getPrefetch() == PrefetchBit_No) {
189 total_demand++;
190 }
191 }
192
193 out << endl;
194
195 out << "Total Number Outstanding: " << m_outstanding_count << endl
196 << "Total Number Demand : " << total_demand << endl
197 << "Total Number Prefetches : " << m_outstanding_count - total_demand
198 << endl << endl << endl;
199#endif
200}
201
202// Insert the request on the correct request table. Return true if
203// the entry was already present.
204RequestStatus
205Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
206{
207 assert(m_outstanding_count ==
208 (m_writeRequestTable.size() + m_readRequestTable.size()));
209
210 // See if we should schedule a deadlock check
211 if (!deadlockCheckEvent.scheduled() &&
212 getDrainState() != Drainable::Draining) {
213 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
214 }
215
216 Address line_addr(pkt->getAddr());
217 line_addr.makeLineAddress();
218 // Create a default entry, mapping the address to NULL, the cast is
219 // there to make gcc 4.4 happy
220 RequestTable::value_type default_entry(line_addr,
221 (SequencerRequest*) NULL);
222
223 if ((request_type == RubyRequestType_ST) ||
224 (request_type == RubyRequestType_RMW_Read) ||
225 (request_type == RubyRequestType_RMW_Write) ||
226 (request_type == RubyRequestType_Load_Linked) ||
227 (request_type == RubyRequestType_Store_Conditional) ||
228 (request_type == RubyRequestType_Locked_RMW_Read) ||
229 (request_type == RubyRequestType_Locked_RMW_Write) ||
230 (request_type == RubyRequestType_FLUSH)) {
231
232 // Check if there is any outstanding read request for the same
233 // cache line.
234 if (m_readRequestTable.count(line_addr) > 0) {
235 m_store_waiting_on_load_cycles++;
236 return RequestStatus_Aliased;
237 }
238
239 pair<RequestTable::iterator, bool> r =
240 m_writeRequestTable.insert(default_entry);
241 if (r.second) {
242 RequestTable::iterator i = r.first;
243 i->second = new SequencerRequest(pkt, request_type, curCycle());
244 m_outstanding_count++;
245 } else {
246 // There is an outstanding write request for the cache line
247 m_store_waiting_on_store_cycles++;
248 return RequestStatus_Aliased;
249 }
250 } else {
251 // Check if there is any outstanding write request for the same
252 // cache line.
253 if (m_writeRequestTable.count(line_addr) > 0) {
254 m_load_waiting_on_store_cycles++;
255 return RequestStatus_Aliased;
256 }
257
258 pair<RequestTable::iterator, bool> r =
259 m_readRequestTable.insert(default_entry);
260
261 if (r.second) {
262 RequestTable::iterator i = r.first;
263 i->second = new SequencerRequest(pkt, request_type, curCycle());
264 m_outstanding_count++;
265 } else {
266 // There is an outstanding read request for the cache line
267 m_load_waiting_on_load_cycles++;
268 return RequestStatus_Aliased;
269 }
270 }
271
272 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
273 assert(m_outstanding_count ==
274 (m_writeRequestTable.size() + m_readRequestTable.size()));
275
276 return RequestStatus_Ready;
277}
278
279void
280Sequencer::markRemoved()
281{
282 m_outstanding_count--;
283 assert(m_outstanding_count ==
284 m_writeRequestTable.size() + m_readRequestTable.size());
285}
286
287void
288Sequencer::removeRequest(SequencerRequest* srequest)
289{
290 assert(m_outstanding_count ==
291 m_writeRequestTable.size() + m_readRequestTable.size());
292
293 Address line_addr(srequest->pkt->getAddr());
294 line_addr.makeLineAddress();
295 if ((srequest->m_type == RubyRequestType_ST) ||
296 (srequest->m_type == RubyRequestType_RMW_Read) ||
297 (srequest->m_type == RubyRequestType_RMW_Write) ||
298 (srequest->m_type == RubyRequestType_Load_Linked) ||
299 (srequest->m_type == RubyRequestType_Store_Conditional) ||
300 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
301 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
302 m_writeRequestTable.erase(line_addr);
303 } else {
304 m_readRequestTable.erase(line_addr);
305 }
306
307 markRemoved();
308}
309
310bool
311Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
312{
313 //
314 // The success flag indicates whether the LLSC operation was successful.
315 // LL ops will always succeed, but SC may fail if the cache line is no
316 // longer locked.
317 //
318 bool success = true;
319 if (request->m_type == RubyRequestType_Store_Conditional) {
320 if (!m_dataCache_ptr->isLocked(address, m_version)) {
321 //
322 // For failed SC requests, indicate the failure to the cpu by
323 // setting the extra data to zero.
324 //
325 request->pkt->req->setExtraData(0);
326 success = false;
327 } else {
328 //
329 // For successful SC requests, indicate the success to the cpu by
330 // setting the extra data to one.
331 //
332 request->pkt->req->setExtraData(1);
333 }
334 //
335 // Independent of success, all SC operations must clear the lock
336 //
337 m_dataCache_ptr->clearLocked(address);
338 } else if (request->m_type == RubyRequestType_Load_Linked) {
339 //
340 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
341 // previously locked cache lines?
342 //
343 m_dataCache_ptr->setLocked(address, m_version);
344 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
345 (m_dataCache_ptr->isLocked(address, m_version))) {
346 //
347 // Normal writes should clear the locked address
348 //
349 m_dataCache_ptr->clearLocked(address);
350 }
351 return success;
352}
353
354void
355Sequencer::writeCallback(const Address& address, DataBlock& data)
356{
357 writeCallback(address, GenericMachineType_NULL, data);
358}
359
360void
361Sequencer::writeCallback(const Address& address,
362 GenericMachineType mach,
363 DataBlock& data)
364{
365 writeCallback(address, mach, data, 0, 0, 0);
366}
367
368void
369Sequencer::writeCallback(const Address& address,
370 GenericMachineType mach,
371 DataBlock& data,
372 Time initialRequestTime,
373 Time forwardRequestTime,
374 Time firstResponseTime)
375{
376 assert(address == line_address(address));
377 assert(m_writeRequestTable.count(line_address(address)));
378
379 RequestTable::iterator i = m_writeRequestTable.find(address);
380 assert(i != m_writeRequestTable.end());
381 SequencerRequest* request = i->second;
382
383 m_writeRequestTable.erase(i);
384 markRemoved();
385
386 assert((request->m_type == RubyRequestType_ST) ||
387 (request->m_type == RubyRequestType_ATOMIC) ||
388 (request->m_type == RubyRequestType_RMW_Read) ||
389 (request->m_type == RubyRequestType_RMW_Write) ||
390 (request->m_type == RubyRequestType_Load_Linked) ||
391 (request->m_type == RubyRequestType_Store_Conditional) ||
392 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
393 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
394 (request->m_type == RubyRequestType_FLUSH));
395
396
397 //
398 // For Alpha, properly handle LL, SC, and write requests with respect to
399 // locked cache blocks.
400 //
401 // Not valid for Network_test protocl
402 //
403 bool success = true;
404 if(!m_usingNetworkTester)
405 success = handleLlsc(address, request);
406
407 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
408 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
409 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
410 m_controller->unblock(address);
411 }
412
413 hitCallback(request, mach, data, success,
414 initialRequestTime, forwardRequestTime, firstResponseTime);
415}
416
417void
418Sequencer::readCallback(const Address& address, DataBlock& data)
419{
420 readCallback(address, GenericMachineType_NULL, data);
421}
422
423void
424Sequencer::readCallback(const Address& address,
425 GenericMachineType mach,
426 DataBlock& data)
427{
428 readCallback(address, mach, data, 0, 0, 0);
429}
430
431void
432Sequencer::readCallback(const Address& address,
433 GenericMachineType mach,
434 DataBlock& data,
435 Time initialRequestTime,
436 Time forwardRequestTime,
437 Time firstResponseTime)
438{
439 assert(address == line_address(address));
440 assert(m_readRequestTable.count(line_address(address)));
441
442 RequestTable::iterator i = m_readRequestTable.find(address);
443 assert(i != m_readRequestTable.end());
444 SequencerRequest* request = i->second;
445
446 m_readRequestTable.erase(i);
447 markRemoved();
448
449 assert((request->m_type == RubyRequestType_LD) ||
450 (request->m_type == RubyRequestType_IFETCH));
451
452 hitCallback(request, mach, data, true,
453 initialRequestTime, forwardRequestTime, firstResponseTime);
454}
455
456void
457Sequencer::hitCallback(SequencerRequest* srequest,
458 GenericMachineType mach,
459 DataBlock& data,
460 bool success,
461 Time initialRequestTime,
462 Time forwardRequestTime,
463 Time firstResponseTime)
464{
465 PacketPtr pkt = srequest->pkt;
466 Address request_address(pkt->getAddr());
467 Address request_line_address(pkt->getAddr());
468 request_line_address.makeLineAddress();
469 RubyRequestType type = srequest->m_type;
470 Time issued_time = srequest->issue_time;
471
472 // Set this cache entry to the most recently used
473 if (type == RubyRequestType_IFETCH) {
474 m_instCache_ptr->setMRU(request_line_address);
475 } else {
476 m_dataCache_ptr->setMRU(request_line_address);
477 }
478
479 assert(curCycle() >= issued_time);
480 Time miss_latency = curCycle() - issued_time;
481
482 // Profile the miss latency for all non-zero demand misses
483 if (miss_latency != 0) {
484 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
485
486 if (mach == GenericMachineType_L1Cache_wCC) {
487 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
488 initialRequestTime, forwardRequestTime,
489 firstResponseTime, curCycle());
490 }
491
492 if (mach == GenericMachineType_Directory) {
493 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
494 initialRequestTime, forwardRequestTime,
495 firstResponseTime, curCycle());
496 }
497
498 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
499 curTick(), m_version, "Seq",
500 success ? "Done" : "SC_Failed", "", "",
501 request_address, miss_latency);
502 }
503
504 // update the data
505 if (g_system_ptr->m_warmup_enabled) {
506 assert(pkt->getPtr<uint8_t>(false) != NULL);
507 data.setData(pkt->getPtr<uint8_t>(false),
508 request_address.getOffset(), pkt->getSize());
509 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
510 if ((type == RubyRequestType_LD) ||
511 (type == RubyRequestType_IFETCH) ||
512 (type == RubyRequestType_RMW_Read) ||
513 (type == RubyRequestType_Locked_RMW_Read) ||
514 (type == RubyRequestType_Load_Linked)) {
515 memcpy(pkt->getPtr<uint8_t>(true),
516 data.getData(request_address.getOffset(), pkt->getSize()),
517 pkt->getSize());
518 } else {
519 data.setData(pkt->getPtr<uint8_t>(true),
520 request_address.getOffset(), pkt->getSize());
521 }
522 } else {
523 DPRINTF(MemoryAccess,
524 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
525 RubyRequestType_to_string(type));
526 }
527
528 // If using the RubyTester, update the RubyTester sender state's
529 // subBlock with the recieved data. The tester will later access
530 // this state.
531 // Note: RubyPort will access it's sender state before the
532 // RubyTester.
533 if (m_usingRubyTester) {
534 RubyPort::SenderState *requestSenderState =
535 safe_cast<RubyPort::SenderState*>(pkt->senderState);
536 RubyTester::SenderState* testerSenderState =
537 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
538 testerSenderState->subBlock->mergeFrom(data);
539 }
540
541 delete srequest;
542
543 if (g_system_ptr->m_warmup_enabled) {
544 delete pkt;
545 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
546 } else if (g_system_ptr->m_cooldown_enabled) {
547 delete pkt;
548 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
549 } else {
550 ruby_hit_callback(pkt);
551 }
552}
553
554bool
555Sequencer::empty() const
556{
557 return m_writeRequestTable.empty() && m_readRequestTable.empty();
558}
559
560RequestStatus
561Sequencer::makeRequest(PacketPtr pkt)
562{
563 if (m_outstanding_count >= m_max_outstanding_requests) {
564 return RequestStatus_BufferFull;
565 }
566
567 RubyRequestType primary_type = RubyRequestType_NULL;
568 RubyRequestType secondary_type = RubyRequestType_NULL;
569
570 if (pkt->isLLSC()) {
571 //
572 // Alpha LL/SC instructions need to be handled carefully by the cache
573 // coherence protocol to ensure they follow the proper semantics. In
574 // particular, by identifying the operations as atomic, the protocol
575 // should understand that migratory sharing optimizations should not
576 // be performed (i.e. a load between the LL and SC should not steal
577 // away exclusive permission).
578 //
579 if (pkt->isWrite()) {
580 DPRINTF(RubySequencer, "Issuing SC\n");
581 primary_type = RubyRequestType_Store_Conditional;
582 } else {
583 DPRINTF(RubySequencer, "Issuing LL\n");
584 assert(pkt->isRead());
585 primary_type = RubyRequestType_Load_Linked;
586 }
587 secondary_type = RubyRequestType_ATOMIC;
588 } else if (pkt->req->isLocked()) {
589 //
590 // x86 locked instructions are translated to store cache coherence
591 // requests because these requests should always be treated as read
592 // exclusive operations and should leverage any migratory sharing
593 // optimization built into the protocol.
594 //
595 if (pkt->isWrite()) {
596 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
597 primary_type = RubyRequestType_Locked_RMW_Write;
598 } else {
599 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
600 assert(pkt->isRead());
601 primary_type = RubyRequestType_Locked_RMW_Read;
602 }
603 secondary_type = RubyRequestType_ST;
604 } else {
605 if (pkt->isRead()) {
606 if (pkt->req->isInstFetch()) {
607 primary_type = secondary_type = RubyRequestType_IFETCH;
608 } else {
609#if THE_ISA == X86_ISA
610 uint32_t flags = pkt->req->getFlags();
611 bool storeCheck = flags &
612 (TheISA::StoreCheck << TheISA::FlagShift);
613#else
614 bool storeCheck = false;
615#endif // X86_ISA
616 if (storeCheck) {
617 primary_type = RubyRequestType_RMW_Read;
618 secondary_type = RubyRequestType_ST;
619 } else {
620 primary_type = secondary_type = RubyRequestType_LD;
621 }
622 }
623 } else if (pkt->isWrite()) {
624 //
625 // Note: M5 packets do not differentiate ST from RMW_Write
626 //
627 primary_type = secondary_type = RubyRequestType_ST;
628 } else if (pkt->isFlush()) {
629 primary_type = secondary_type = RubyRequestType_FLUSH;
630 } else {
631 panic("Unsupported ruby packet type\n");
632 }
633 }
634
635 RequestStatus status = insertRequest(pkt, primary_type);
636 if (status != RequestStatus_Ready)
637 return status;
638
639 issueRequest(pkt, secondary_type);
640
641 // TODO: issue hardware prefetches here
642 return RequestStatus_Issued;
643}
644
645void
646Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
647{
648 assert(pkt != NULL);
649 int proc_id = -1;
650 if (pkt->req->hasContextId()) {
651 proc_id = pkt->req->contextId();
652 }
653
654 // If valid, copy the pc to the ruby request
655 Addr pc = 0;
656 if (pkt->req->hasPC()) {
657 pc = pkt->req->getPC();
658 }
659
660 RubyRequest *msg = new RubyRequest(curCycle(), pkt->getAddr(),
661 pkt->getPtr<uint8_t>(true),
662 pkt->getSize(), pc, secondary_type,
663 RubyAccessMode_Supervisor, pkt,
664 PrefetchBit_No, proc_id);
665
666 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
667 curTick(), m_version, "Seq", "Begin", "", "",
668 msg->getPhysicalAddress(),
669 RubyRequestType_to_string(secondary_type));
670
671 Time latency = 0; // initialzed to an null value
671 Cycles latency(0); // initialzed to an null value
672
673 if (secondary_type == RubyRequestType_IFETCH)
674 latency = m_instCache_ptr->getLatency();
675 else
676 latency = m_dataCache_ptr->getLatency();
677
678 // Send the message to the cache controller
679 assert(latency > 0);
680
681 assert(m_mandatory_q_ptr != NULL);
682 m_mandatory_q_ptr->enqueue(msg, latency);
683}
684
685template <class KEY, class VALUE>
686std::ostream &
687operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
688{
689 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
690 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
691
692 out << "[";
693 for (; i != end; ++i)
694 out << " " << i->first << "=" << i->second;
695 out << " ]";
696
697 return out;
698}
699
700void
701Sequencer::print(ostream& out) const
702{
703 out << "[Sequencer: " << m_version
704 << ", outstanding requests: " << m_outstanding_count
705 << ", read request table: " << m_readRequestTable
706 << ", write request table: " << m_writeRequestTable
707 << "]";
708}
709
710// this can be called from setState whenever coherence permissions are
711// upgraded when invoked, coherence violations will be checked for the
712// given block
713void
714Sequencer::checkCoherence(const Address& addr)
715{
716#ifdef CHECK_COHERENCE
717 g_system_ptr->checkGlobalCoherenceInvariant(addr);
718#endif
719}
720
721void
722Sequencer::recordRequestType(SequencerRequestType requestType) {
723 DPRINTF(RubyStats, "Recorded statistic: %s\n",
724 SequencerRequestType_to_string(requestType));
725}
726
727
728void
729Sequencer::evictionCallback(const Address& address)
730{
731 ruby_eviction_callback(address);
732}
672
673 if (secondary_type == RubyRequestType_IFETCH)
674 latency = m_instCache_ptr->getLatency();
675 else
676 latency = m_dataCache_ptr->getLatency();
677
678 // Send the message to the cache controller
679 assert(latency > 0);
680
681 assert(m_mandatory_q_ptr != NULL);
682 m_mandatory_q_ptr->enqueue(msg, latency);
683}
684
685template <class KEY, class VALUE>
686std::ostream &
687operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
688{
689 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
690 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
691
692 out << "[";
693 for (; i != end; ++i)
694 out << " " << i->first << "=" << i->second;
695 out << " ]";
696
697 return out;
698}
699
700void
701Sequencer::print(ostream& out) const
702{
703 out << "[Sequencer: " << m_version
704 << ", outstanding requests: " << m_outstanding_count
705 << ", read request table: " << m_readRequestTable
706 << ", write request table: " << m_writeRequestTable
707 << "]";
708}
709
710// this can be called from setState whenever coherence permissions are
711// upgraded when invoked, coherence violations will be checked for the
712// given block
713void
714Sequencer::checkCoherence(const Address& addr)
715{
716#ifdef CHECK_COHERENCE
717 g_system_ptr->checkGlobalCoherenceInvariant(addr);
718#endif
719}
720
721void
722Sequencer::recordRequestType(SequencerRequestType requestType) {
723 DPRINTF(RubyStats, "Recorded statistic: %s\n",
724 SequencerRequestType_to_string(requestType));
725}
726
727
728void
729Sequencer::evictionCallback(const Address& address)
730{
731 ruby_eviction_callback(address);
732}