Sequencer.cc (6510:336a194c8500) Sequencer.cc (6763:5a879a3513dc)
1
2/*
3 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include "mem/ruby/common/Global.hh"
31#include "mem/ruby/system/Sequencer.hh"
32#include "mem/ruby/system/System.hh"
33#include "mem/protocol/Protocol.hh"
34#include "mem/ruby/profiler/Profiler.hh"
35#include "mem/ruby/system/CacheMemory.hh"
36#include "mem/protocol/CacheMsg.hh"
37#include "mem/ruby/recorder/Tracer.hh"
38#include "mem/ruby/common/SubBlock.hh"
39#include "mem/protocol/Protocol.hh"
40#include "mem/gems_common/Map.hh"
41#include "mem/ruby/buffers/MessageBuffer.hh"
42#include "mem/ruby/slicc_interface/AbstractController.hh"
43
44//Sequencer::Sequencer(int core_id, MessageBuffer* mandatory_q)
45
46#define LLSC_FAIL -2
1
2/*
3 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include "mem/ruby/common/Global.hh"
31#include "mem/ruby/system/Sequencer.hh"
32#include "mem/ruby/system/System.hh"
33#include "mem/protocol/Protocol.hh"
34#include "mem/ruby/profiler/Profiler.hh"
35#include "mem/ruby/system/CacheMemory.hh"
36#include "mem/protocol/CacheMsg.hh"
37#include "mem/ruby/recorder/Tracer.hh"
38#include "mem/ruby/common/SubBlock.hh"
39#include "mem/protocol/Protocol.hh"
40#include "mem/gems_common/Map.hh"
41#include "mem/ruby/buffers/MessageBuffer.hh"
42#include "mem/ruby/slicc_interface/AbstractController.hh"
43
44//Sequencer::Sequencer(int core_id, MessageBuffer* mandatory_q)
45
46#define LLSC_FAIL -2
47ostream& operator<<(std::ostream& out, const SequencerRequest& obj) {
48 out << obj.ruby_request << flush;
49 return out;
50}
47
48Sequencer::Sequencer(const string & name)
49 :RubyPort(name)
50{
51}
52
53void Sequencer::init(const vector<string> & argv)
54{
55 m_deadlock_check_scheduled = false;
56 m_outstanding_count = 0;
57
58 m_max_outstanding_requests = 0;
59 m_deadlock_threshold = 0;
60 m_version = -1;
61 m_instCache_ptr = NULL;
62 m_dataCache_ptr = NULL;
63 m_controller = NULL;
64 m_servicing_atomic = -1;
65 m_atomics_counter = 0;
66 for (size_t i=0; i<argv.size(); i+=2) {
67 if ( argv[i] == "controller") {
68 m_controller = RubySystem::getController(argv[i+1]); // args[i] = "L1Cache"
69 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
70 } else if ( argv[i] == "icache")
71 m_instCache_ptr = RubySystem::getCache(argv[i+1]);
72 else if ( argv[i] == "dcache")
73 m_dataCache_ptr = RubySystem::getCache(argv[i+1]);
74 else if ( argv[i] == "version")
75 m_version = atoi(argv[i+1].c_str());
76 else if ( argv[i] == "max_outstanding_requests")
77 m_max_outstanding_requests = atoi(argv[i+1].c_str());
78 else if ( argv[i] == "deadlock_threshold")
79 m_deadlock_threshold = atoi(argv[i+1].c_str());
80 else {
81 cerr << "WARNING: Sequencer: Unkown configuration parameter: " << argv[i] << endl;
82 assert(false);
83 }
84 }
85 assert(m_max_outstanding_requests > 0);
86 assert(m_deadlock_threshold > 0);
87 assert(m_version > -1);
88 assert(m_instCache_ptr != NULL);
89 assert(m_dataCache_ptr != NULL);
90 assert(m_controller != NULL);
91}
92
93Sequencer::~Sequencer() {
94
95}
96
97void Sequencer::wakeup() {
98 // Check for deadlock of any of the requests
99 Time current_time = g_eventQueue_ptr->getTime();
100
101 // Check across all outstanding requests
102 int total_outstanding = 0;
103
104 Vector<Address> keys = m_readRequestTable.keys();
105 for (int i=0; i<keys.size(); i++) {
106 SequencerRequest* request = m_readRequestTable.lookup(keys[i]);
107 if (current_time - request->issue_time >= m_deadlock_threshold) {
108 WARN_MSG("Possible Deadlock detected");
51
52Sequencer::Sequencer(const string & name)
53 :RubyPort(name)
54{
55}
56
57void Sequencer::init(const vector<string> & argv)
58{
59 m_deadlock_check_scheduled = false;
60 m_outstanding_count = 0;
61
62 m_max_outstanding_requests = 0;
63 m_deadlock_threshold = 0;
64 m_version = -1;
65 m_instCache_ptr = NULL;
66 m_dataCache_ptr = NULL;
67 m_controller = NULL;
68 m_servicing_atomic = -1;
69 m_atomics_counter = 0;
70 for (size_t i=0; i<argv.size(); i+=2) {
71 if ( argv[i] == "controller") {
72 m_controller = RubySystem::getController(argv[i+1]); // args[i] = "L1Cache"
73 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
74 } else if ( argv[i] == "icache")
75 m_instCache_ptr = RubySystem::getCache(argv[i+1]);
76 else if ( argv[i] == "dcache")
77 m_dataCache_ptr = RubySystem::getCache(argv[i+1]);
78 else if ( argv[i] == "version")
79 m_version = atoi(argv[i+1].c_str());
80 else if ( argv[i] == "max_outstanding_requests")
81 m_max_outstanding_requests = atoi(argv[i+1].c_str());
82 else if ( argv[i] == "deadlock_threshold")
83 m_deadlock_threshold = atoi(argv[i+1].c_str());
84 else {
85 cerr << "WARNING: Sequencer: Unkown configuration parameter: " << argv[i] << endl;
86 assert(false);
87 }
88 }
89 assert(m_max_outstanding_requests > 0);
90 assert(m_deadlock_threshold > 0);
91 assert(m_version > -1);
92 assert(m_instCache_ptr != NULL);
93 assert(m_dataCache_ptr != NULL);
94 assert(m_controller != NULL);
95}
96
97Sequencer::~Sequencer() {
98
99}
100
101void Sequencer::wakeup() {
102 // Check for deadlock of any of the requests
103 Time current_time = g_eventQueue_ptr->getTime();
104
105 // Check across all outstanding requests
106 int total_outstanding = 0;
107
108 Vector<Address> keys = m_readRequestTable.keys();
109 for (int i=0; i<keys.size(); i++) {
110 SequencerRequest* request = m_readRequestTable.lookup(keys[i]);
111 if (current_time - request->issue_time >= m_deadlock_threshold) {
112 WARN_MSG("Possible Deadlock detected");
109 WARN_EXPR(request);
113 WARN_EXPR(request->ruby_request);
110 WARN_EXPR(m_version);
111 WARN_EXPR(keys.size());
112 WARN_EXPR(current_time);
113 WARN_EXPR(request->issue_time);
114 WARN_EXPR(current_time - request->issue_time);
115 ERROR_MSG("Aborting");
116 }
117 }
118
119 keys = m_writeRequestTable.keys();
120 for (int i=0; i<keys.size(); i++) {
121 SequencerRequest* request = m_writeRequestTable.lookup(keys[i]);
122 if (current_time - request->issue_time >= m_deadlock_threshold) {
123 WARN_MSG("Possible Deadlock detected");
114 WARN_EXPR(m_version);
115 WARN_EXPR(keys.size());
116 WARN_EXPR(current_time);
117 WARN_EXPR(request->issue_time);
118 WARN_EXPR(current_time - request->issue_time);
119 ERROR_MSG("Aborting");
120 }
121 }
122
123 keys = m_writeRequestTable.keys();
124 for (int i=0; i<keys.size(); i++) {
125 SequencerRequest* request = m_writeRequestTable.lookup(keys[i]);
126 if (current_time - request->issue_time >= m_deadlock_threshold) {
127 WARN_MSG("Possible Deadlock detected");
124 WARN_EXPR(request);
128 WARN_EXPR(request->ruby_request);
125 WARN_EXPR(m_version);
126 WARN_EXPR(current_time);
127 WARN_EXPR(request->issue_time);
128 WARN_EXPR(current_time - request->issue_time);
129 WARN_EXPR(keys.size());
130 ERROR_MSG("Aborting");
131 }
132 }
133 total_outstanding += m_writeRequestTable.size() + m_readRequestTable.size();
134
135 assert(m_outstanding_count == total_outstanding);
136
137 if (m_outstanding_count > 0) { // If there are still outstanding requests, keep checking
138 g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold);
139 } else {
140 m_deadlock_check_scheduled = false;
141 }
142}
143
144void Sequencer::printProgress(ostream& out) const{
145 /*
146 int total_demand = 0;
147 out << "Sequencer Stats Version " << m_version << endl;
148 out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
149 out << "---------------" << endl;
150 out << "outstanding requests" << endl;
151
152 Vector<Address> rkeys = m_readRequestTable.keys();
153 int read_size = rkeys.size();
154 out << "proc " << m_version << " Read Requests = " << read_size << endl;
155 // print the request table
156 for(int i=0; i < read_size; ++i){
157 SequencerRequest * request = m_readRequestTable.lookup(rkeys[i]);
158 out << "\tRequest[ " << i << " ] = " << request->type << " Address " << rkeys[i] << " Posted " << request->issue_time << " PF " << PrefetchBit_No << endl;
159 total_demand++;
160 }
161
162 Vector<Address> wkeys = m_writeRequestTable.keys();
163 int write_size = wkeys.size();
164 out << "proc " << m_version << " Write Requests = " << write_size << endl;
165 // print the request table
166 for(int i=0; i < write_size; ++i){
167 CacheMsg & request = m_writeRequestTable.lookup(wkeys[i]);
168 out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << wkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl;
169 if( request.getPrefetch() == PrefetchBit_No ){
170 total_demand++;
171 }
172 }
173
174 out << endl;
175
176 out << "Total Number Outstanding: " << m_outstanding_count << endl;
177 out << "Total Number Demand : " << total_demand << endl;
178 out << "Total Number Prefetches : " << m_outstanding_count - total_demand << endl;
179 out << endl;
180 out << endl;
181 */
182}
183
184void Sequencer::printConfig(ostream& out) const {
185 out << "Seqeuncer config: " << m_name << endl;
186 out << " controller: " << m_controller->getName() << endl;
187 out << " version: " << m_version << endl;
188 out << " max_outstanding_requests: " << m_max_outstanding_requests << endl;
189 out << " deadlock_threshold: " << m_deadlock_threshold << endl;
190}
191
192// Insert the request on the correct request table. Return true if
193// the entry was already present.
194bool Sequencer::insertRequest(SequencerRequest* request) {
195 int total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
196
197 assert(m_outstanding_count == total_outstanding);
198
199 // See if we should schedule a deadlock check
200 if (m_deadlock_check_scheduled == false) {
201 g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold);
202 m_deadlock_check_scheduled = true;
203 }
204
205 Address line_addr(request->ruby_request.paddr);
206 line_addr.makeLineAddress();
207 if ((request->ruby_request.type == RubyRequestType_ST) ||
208 (request->ruby_request.type == RubyRequestType_RMW_Read) ||
209 (request->ruby_request.type == RubyRequestType_RMW_Write) ||
210 (request->ruby_request.type == RubyRequestType_Locked_Read) ||
211 (request->ruby_request.type == RubyRequestType_Locked_Write)) {
212 if (m_writeRequestTable.exist(line_addr)) {
213 m_writeRequestTable.lookup(line_addr) = request;
214 // return true;
215 assert(0); // drh5: isn't this an error? do you lose the initial request?
216 }
217 m_writeRequestTable.allocate(line_addr);
218 m_writeRequestTable.lookup(line_addr) = request;
219 m_outstanding_count++;
220 } else {
221 if (m_readRequestTable.exist(line_addr)) {
222 m_readRequestTable.lookup(line_addr) = request;
223 // return true;
224 assert(0); // drh5: isn't this an error? do you lose the initial request?
225 }
226 m_readRequestTable.allocate(line_addr);
227 m_readRequestTable.lookup(line_addr) = request;
228 m_outstanding_count++;
229 }
230
231 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
232
233 total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
234 assert(m_outstanding_count == total_outstanding);
235
236 return false;
237}
238
239void Sequencer::removeRequest(SequencerRequest* srequest) {
240
241 assert(m_outstanding_count == m_writeRequestTable.size() + m_readRequestTable.size());
242
243 const RubyRequest & ruby_request = srequest->ruby_request;
244 Address line_addr(ruby_request.paddr);
245 line_addr.makeLineAddress();
246 if ((ruby_request.type == RubyRequestType_ST) ||
247 (ruby_request.type == RubyRequestType_RMW_Read) ||
248 (ruby_request.type == RubyRequestType_RMW_Write) ||
249 (ruby_request.type == RubyRequestType_Locked_Read) ||
250 (ruby_request.type == RubyRequestType_Locked_Write)) {
251 m_writeRequestTable.deallocate(line_addr);
252 } else {
253 m_readRequestTable.deallocate(line_addr);
254 }
255 m_outstanding_count--;
256
257 assert(m_outstanding_count == m_writeRequestTable.size() + m_readRequestTable.size());
258}
259
260void Sequencer::writeCallback(const Address& address, DataBlock& data) {
261
262 assert(address == line_address(address));
263 assert(m_writeRequestTable.exist(line_address(address)));
264
265 SequencerRequest* request = m_writeRequestTable.lookup(address);
266 removeRequest(request);
267
268 assert((request->ruby_request.type == RubyRequestType_ST) ||
269 (request->ruby_request.type == RubyRequestType_RMW_Read) ||
270 (request->ruby_request.type == RubyRequestType_RMW_Write) ||
271 (request->ruby_request.type == RubyRequestType_Locked_Read) ||
272 (request->ruby_request.type == RubyRequestType_Locked_Write));
273 // POLINA: the assumption is that atomics are only on data cache and not instruction cache
274 if (request->ruby_request.type == RubyRequestType_Locked_Read) {
275 m_dataCache_ptr->setLocked(address, m_version);
276 }
277 else if (request->ruby_request.type == RubyRequestType_RMW_Read) {
278 m_controller->set_atomic(address);
279 }
280 else if (request->ruby_request.type == RubyRequestType_RMW_Write) {
281 m_controller->clear_atomic();
282 }
283
284 hitCallback(request, data);
285}
286
287void Sequencer::readCallback(const Address& address, DataBlock& data) {
288
289 assert(address == line_address(address));
290 assert(m_readRequestTable.exist(line_address(address)));
291
292 SequencerRequest* request = m_readRequestTable.lookup(address);
293 removeRequest(request);
294
295 assert((request->ruby_request.type == RubyRequestType_LD) ||
296 (request->ruby_request.type == RubyRequestType_RMW_Read) ||
297 (request->ruby_request.type == RubyRequestType_IFETCH));
298
299 hitCallback(request, data);
300}
301
302void Sequencer::hitCallback(SequencerRequest* srequest, DataBlock& data) {
303 const RubyRequest & ruby_request = srequest->ruby_request;
304 Address request_address(ruby_request.paddr);
305 Address request_line_address(ruby_request.paddr);
306 request_line_address.makeLineAddress();
307 RubyRequestType type = ruby_request.type;
308 Time issued_time = srequest->issue_time;
309
310 // Set this cache entry to the most recently used
311 if (type == RubyRequestType_IFETCH) {
312 if (m_instCache_ptr->isTagPresent(request_line_address) )
313 m_instCache_ptr->setMRU(request_line_address);
314 } else {
315 if (m_dataCache_ptr->isTagPresent(request_line_address) )
316 m_dataCache_ptr->setMRU(request_line_address);
317 }
318
319 assert(g_eventQueue_ptr->getTime() >= issued_time);
320 Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
321
322 // Profile the miss latency for all non-zero demand misses
323 if (miss_latency != 0) {
324 g_system_ptr->getProfiler()->missLatency(miss_latency, type);
325
326 if (Debug::getProtocolTrace()) {
327 g_system_ptr->getProfiler()->profileTransition("Seq", m_version, Address(ruby_request.paddr),
328 "", "Done", "", int_to_string(miss_latency)+" cycles");
329 }
330 }
331 /*
332 if (request.getPrefetch() == PrefetchBit_Yes) {
333 return; // Ignore the prefetch
334 }
335 */
336
337 // update the data
338 if (ruby_request.data != NULL) {
339 if ((type == RubyRequestType_LD) ||
340 (type == RubyRequestType_IFETCH) ||
341 (type == RubyRequestType_RMW_Read)) {
342 memcpy(ruby_request.data, data.getData(request_address.getOffset(), ruby_request.len), ruby_request.len);
343 } else {
344 data.setData(ruby_request.data, request_address.getOffset(), ruby_request.len);
345 }
346 }
347
348 m_hit_callback(srequest->id);
349 delete srequest;
350}
351
352// Returns true if the sequencer already has a load or store outstanding
353bool Sequencer::isReady(const RubyRequest& request) {
354 // POLINA: check if we are currently flushing the write buffer, if so Ruby is returned as not ready
355 // to simulate stalling of the front-end
356 // Do we stall all the sequencers? If it is atomic instruction - yes!
357 if (m_outstanding_count >= m_max_outstanding_requests) {
358 return false;
359 }
360
361 if( m_writeRequestTable.exist(line_address(Address(request.paddr))) ||
362 m_readRequestTable.exist(line_address(Address(request.paddr))) ){
363 //cout << "OUTSTANDING REQUEST EXISTS " << p << " VER " << m_version << endl;
364 //printProgress(cout);
365 return false;
366 }
367
368 if (m_servicing_atomic != -1 && m_servicing_atomic != (int)request.proc_id) {
369 assert(m_atomics_counter > 0);
370 return false;
371 }
372 else {
373 if (request.type == RubyRequestType_RMW_Read) {
374 if (m_servicing_atomic == -1) {
375 assert(m_atomics_counter == 0);
376 m_servicing_atomic = (int)request.proc_id;
377 }
378 else {
379 assert(m_servicing_atomic == (int)request.proc_id);
380 }
381 m_atomics_counter++;
382 }
383 else if (request.type == RubyRequestType_RMW_Write) {
384 assert(m_servicing_atomic == (int)request.proc_id);
385 assert(m_atomics_counter > 0);
386 m_atomics_counter--;
387 if (m_atomics_counter == 0) {
388 m_servicing_atomic = -1;
389 }
390 }
391 }
392
393 return true;
394}
395
396bool Sequencer::empty() const {
397 return (m_writeRequestTable.size() == 0) && (m_readRequestTable.size() == 0);
398}
399
400
401int64_t Sequencer::makeRequest(const RubyRequest & request)
402{
403 assert(Address(request.paddr).getOffset() + request.len <= RubySystem::getBlockSizeBytes());
404 if (isReady(request)) {
405 int64_t id = makeUniqueRequestID();
406 SequencerRequest *srequest = new SequencerRequest(request, id, g_eventQueue_ptr->getTime());
407 bool found = insertRequest(srequest);
408 if (!found)
409 if (request.type == RubyRequestType_Locked_Write) {
410 // NOTE: it is OK to check the locked flag here as the mandatory queue will be checked first
411 // ensuring that nothing comes between checking the flag and servicing the store
412 if (!m_dataCache_ptr->isLocked(line_address(Address(request.paddr)), m_version)) {
413 return LLSC_FAIL;
414 }
415 else {
416 m_dataCache_ptr->clearLocked(line_address(Address(request.paddr)));
417 }
418 }
419 if (request.type == RubyRequestType_RMW_Write) {
420 m_controller->started_writes();
421 }
422 issueRequest(request);
423
424 // TODO: issue hardware prefetches here
425 return id;
426 }
427 else {
428 return -1;
429 }
430}
431
432void Sequencer::issueRequest(const RubyRequest& request) {
433
434 // TODO: get rid of CacheMsg, CacheRequestType, and AccessModeTYpe, & have SLICC use RubyRequest and subtypes natively
435 CacheRequestType ctype;
436 switch(request.type) {
437 case RubyRequestType_IFETCH:
438 ctype = CacheRequestType_IFETCH;
439 break;
440 case RubyRequestType_LD:
441 ctype = CacheRequestType_LD;
442 break;
443 case RubyRequestType_ST:
444 ctype = CacheRequestType_ST;
445 break;
446 case RubyRequestType_Locked_Read:
447 ctype = CacheRequestType_ST;
448 break;
449 case RubyRequestType_Locked_Write:
450 ctype = CacheRequestType_ST;
451 break;
452 case RubyRequestType_RMW_Read:
453 ctype = CacheRequestType_ATOMIC;
454 break;
455 case RubyRequestType_RMW_Write:
456 ctype = CacheRequestType_ATOMIC;
457 break;
458 default:
459 assert(0);
460 }
461 AccessModeType amtype;
462 switch(request.access_mode){
463 case RubyAccessMode_User:
464 amtype = AccessModeType_UserMode;
465 break;
466 case RubyAccessMode_Supervisor:
467 amtype = AccessModeType_SupervisorMode;
468 break;
469 case RubyAccessMode_Device:
470 amtype = AccessModeType_UserMode;
471 break;
472 default:
473 assert(0);
474 }
475 Address line_addr(request.paddr);
476 line_addr.makeLineAddress();
477 CacheMsg msg(line_addr, Address(request.paddr), ctype, Address(request.pc), amtype, request.len, PrefetchBit_No, request.proc_id);
478
479 if (Debug::getProtocolTrace()) {
480 g_system_ptr->getProfiler()->profileTransition("Seq", m_version, Address(request.paddr),
481 "", "Begin", "", RubyRequestType_to_string(request.type));
482 }
483
484 if (g_system_ptr->getTracer()->traceEnabled()) {
485 g_system_ptr->getTracer()->traceRequest(m_name, line_addr, Address(request.pc),
486 request.type, g_eventQueue_ptr->getTime());
487 }
488
489 Time latency = 0; // initialzed to an null value
490
491 if (request.type == RubyRequestType_IFETCH)
492 latency = m_instCache_ptr->getLatency();
493 else
494 latency = m_dataCache_ptr->getLatency();
495
496 // Send the message to the cache controller
497 assert(latency > 0);
498
499
500 m_mandatory_q_ptr->enqueue(msg, latency);
501}
502/*
503bool Sequencer::tryCacheAccess(const Address& addr, CacheRequestType type,
504 AccessModeType access_mode,
505 int size, DataBlock*& data_ptr) {
506 if (type == CacheRequestType_IFETCH) {
507 return m_instCache_ptr->tryCacheAccess(line_address(addr), type, data_ptr);
508 } else {
509 return m_dataCache_ptr->tryCacheAccess(line_address(addr), type, data_ptr);
510 }
511}
512*/
513
514void Sequencer::print(ostream& out) const {
515 out << "[Sequencer: " << m_version
516 << ", outstanding requests: " << m_outstanding_count;
517
518 out << ", read request table: " << m_readRequestTable
519 << ", write request table: " << m_writeRequestTable;
520 out << "]";
521}
522
523// this can be called from setState whenever coherence permissions are upgraded
524// when invoked, coherence violations will be checked for the given block
525void Sequencer::checkCoherence(const Address& addr) {
526#ifdef CHECK_COHERENCE
527 g_system_ptr->checkGlobalCoherenceInvariant(addr);
528#endif
529}
530
129 WARN_EXPR(m_version);
130 WARN_EXPR(current_time);
131 WARN_EXPR(request->issue_time);
132 WARN_EXPR(current_time - request->issue_time);
133 WARN_EXPR(keys.size());
134 ERROR_MSG("Aborting");
135 }
136 }
137 total_outstanding += m_writeRequestTable.size() + m_readRequestTable.size();
138
139 assert(m_outstanding_count == total_outstanding);
140
141 if (m_outstanding_count > 0) { // If there are still outstanding requests, keep checking
142 g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold);
143 } else {
144 m_deadlock_check_scheduled = false;
145 }
146}
147
148void Sequencer::printProgress(ostream& out) const{
149 /*
150 int total_demand = 0;
151 out << "Sequencer Stats Version " << m_version << endl;
152 out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
153 out << "---------------" << endl;
154 out << "outstanding requests" << endl;
155
156 Vector<Address> rkeys = m_readRequestTable.keys();
157 int read_size = rkeys.size();
158 out << "proc " << m_version << " Read Requests = " << read_size << endl;
159 // print the request table
160 for(int i=0; i < read_size; ++i){
161 SequencerRequest * request = m_readRequestTable.lookup(rkeys[i]);
162 out << "\tRequest[ " << i << " ] = " << request->type << " Address " << rkeys[i] << " Posted " << request->issue_time << " PF " << PrefetchBit_No << endl;
163 total_demand++;
164 }
165
166 Vector<Address> wkeys = m_writeRequestTable.keys();
167 int write_size = wkeys.size();
168 out << "proc " << m_version << " Write Requests = " << write_size << endl;
169 // print the request table
170 for(int i=0; i < write_size; ++i){
171 CacheMsg & request = m_writeRequestTable.lookup(wkeys[i]);
172 out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << wkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl;
173 if( request.getPrefetch() == PrefetchBit_No ){
174 total_demand++;
175 }
176 }
177
178 out << endl;
179
180 out << "Total Number Outstanding: " << m_outstanding_count << endl;
181 out << "Total Number Demand : " << total_demand << endl;
182 out << "Total Number Prefetches : " << m_outstanding_count - total_demand << endl;
183 out << endl;
184 out << endl;
185 */
186}
187
188void Sequencer::printConfig(ostream& out) const {
189 out << "Seqeuncer config: " << m_name << endl;
190 out << " controller: " << m_controller->getName() << endl;
191 out << " version: " << m_version << endl;
192 out << " max_outstanding_requests: " << m_max_outstanding_requests << endl;
193 out << " deadlock_threshold: " << m_deadlock_threshold << endl;
194}
195
196// Insert the request on the correct request table. Return true if
197// the entry was already present.
198bool Sequencer::insertRequest(SequencerRequest* request) {
199 int total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
200
201 assert(m_outstanding_count == total_outstanding);
202
203 // See if we should schedule a deadlock check
204 if (m_deadlock_check_scheduled == false) {
205 g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold);
206 m_deadlock_check_scheduled = true;
207 }
208
209 Address line_addr(request->ruby_request.paddr);
210 line_addr.makeLineAddress();
211 if ((request->ruby_request.type == RubyRequestType_ST) ||
212 (request->ruby_request.type == RubyRequestType_RMW_Read) ||
213 (request->ruby_request.type == RubyRequestType_RMW_Write) ||
214 (request->ruby_request.type == RubyRequestType_Locked_Read) ||
215 (request->ruby_request.type == RubyRequestType_Locked_Write)) {
216 if (m_writeRequestTable.exist(line_addr)) {
217 m_writeRequestTable.lookup(line_addr) = request;
218 // return true;
219 assert(0); // drh5: isn't this an error? do you lose the initial request?
220 }
221 m_writeRequestTable.allocate(line_addr);
222 m_writeRequestTable.lookup(line_addr) = request;
223 m_outstanding_count++;
224 } else {
225 if (m_readRequestTable.exist(line_addr)) {
226 m_readRequestTable.lookup(line_addr) = request;
227 // return true;
228 assert(0); // drh5: isn't this an error? do you lose the initial request?
229 }
230 m_readRequestTable.allocate(line_addr);
231 m_readRequestTable.lookup(line_addr) = request;
232 m_outstanding_count++;
233 }
234
235 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
236
237 total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
238 assert(m_outstanding_count == total_outstanding);
239
240 return false;
241}
242
243void Sequencer::removeRequest(SequencerRequest* srequest) {
244
245 assert(m_outstanding_count == m_writeRequestTable.size() + m_readRequestTable.size());
246
247 const RubyRequest & ruby_request = srequest->ruby_request;
248 Address line_addr(ruby_request.paddr);
249 line_addr.makeLineAddress();
250 if ((ruby_request.type == RubyRequestType_ST) ||
251 (ruby_request.type == RubyRequestType_RMW_Read) ||
252 (ruby_request.type == RubyRequestType_RMW_Write) ||
253 (ruby_request.type == RubyRequestType_Locked_Read) ||
254 (ruby_request.type == RubyRequestType_Locked_Write)) {
255 m_writeRequestTable.deallocate(line_addr);
256 } else {
257 m_readRequestTable.deallocate(line_addr);
258 }
259 m_outstanding_count--;
260
261 assert(m_outstanding_count == m_writeRequestTable.size() + m_readRequestTable.size());
262}
263
264void Sequencer::writeCallback(const Address& address, DataBlock& data) {
265
266 assert(address == line_address(address));
267 assert(m_writeRequestTable.exist(line_address(address)));
268
269 SequencerRequest* request = m_writeRequestTable.lookup(address);
270 removeRequest(request);
271
272 assert((request->ruby_request.type == RubyRequestType_ST) ||
273 (request->ruby_request.type == RubyRequestType_RMW_Read) ||
274 (request->ruby_request.type == RubyRequestType_RMW_Write) ||
275 (request->ruby_request.type == RubyRequestType_Locked_Read) ||
276 (request->ruby_request.type == RubyRequestType_Locked_Write));
277 // POLINA: the assumption is that atomics are only on data cache and not instruction cache
278 if (request->ruby_request.type == RubyRequestType_Locked_Read) {
279 m_dataCache_ptr->setLocked(address, m_version);
280 }
281 else if (request->ruby_request.type == RubyRequestType_RMW_Read) {
282 m_controller->set_atomic(address);
283 }
284 else if (request->ruby_request.type == RubyRequestType_RMW_Write) {
285 m_controller->clear_atomic();
286 }
287
288 hitCallback(request, data);
289}
290
291void Sequencer::readCallback(const Address& address, DataBlock& data) {
292
293 assert(address == line_address(address));
294 assert(m_readRequestTable.exist(line_address(address)));
295
296 SequencerRequest* request = m_readRequestTable.lookup(address);
297 removeRequest(request);
298
299 assert((request->ruby_request.type == RubyRequestType_LD) ||
300 (request->ruby_request.type == RubyRequestType_RMW_Read) ||
301 (request->ruby_request.type == RubyRequestType_IFETCH));
302
303 hitCallback(request, data);
304}
305
306void Sequencer::hitCallback(SequencerRequest* srequest, DataBlock& data) {
307 const RubyRequest & ruby_request = srequest->ruby_request;
308 Address request_address(ruby_request.paddr);
309 Address request_line_address(ruby_request.paddr);
310 request_line_address.makeLineAddress();
311 RubyRequestType type = ruby_request.type;
312 Time issued_time = srequest->issue_time;
313
314 // Set this cache entry to the most recently used
315 if (type == RubyRequestType_IFETCH) {
316 if (m_instCache_ptr->isTagPresent(request_line_address) )
317 m_instCache_ptr->setMRU(request_line_address);
318 } else {
319 if (m_dataCache_ptr->isTagPresent(request_line_address) )
320 m_dataCache_ptr->setMRU(request_line_address);
321 }
322
323 assert(g_eventQueue_ptr->getTime() >= issued_time);
324 Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
325
326 // Profile the miss latency for all non-zero demand misses
327 if (miss_latency != 0) {
328 g_system_ptr->getProfiler()->missLatency(miss_latency, type);
329
330 if (Debug::getProtocolTrace()) {
331 g_system_ptr->getProfiler()->profileTransition("Seq", m_version, Address(ruby_request.paddr),
332 "", "Done", "", int_to_string(miss_latency)+" cycles");
333 }
334 }
335 /*
336 if (request.getPrefetch() == PrefetchBit_Yes) {
337 return; // Ignore the prefetch
338 }
339 */
340
341 // update the data
342 if (ruby_request.data != NULL) {
343 if ((type == RubyRequestType_LD) ||
344 (type == RubyRequestType_IFETCH) ||
345 (type == RubyRequestType_RMW_Read)) {
346 memcpy(ruby_request.data, data.getData(request_address.getOffset(), ruby_request.len), ruby_request.len);
347 } else {
348 data.setData(ruby_request.data, request_address.getOffset(), ruby_request.len);
349 }
350 }
351
352 m_hit_callback(srequest->id);
353 delete srequest;
354}
355
356// Returns true if the sequencer already has a load or store outstanding
357bool Sequencer::isReady(const RubyRequest& request) {
358 // POLINA: check if we are currently flushing the write buffer, if so Ruby is returned as not ready
359 // to simulate stalling of the front-end
360 // Do we stall all the sequencers? If it is atomic instruction - yes!
361 if (m_outstanding_count >= m_max_outstanding_requests) {
362 return false;
363 }
364
365 if( m_writeRequestTable.exist(line_address(Address(request.paddr))) ||
366 m_readRequestTable.exist(line_address(Address(request.paddr))) ){
367 //cout << "OUTSTANDING REQUEST EXISTS " << p << " VER " << m_version << endl;
368 //printProgress(cout);
369 return false;
370 }
371
372 if (m_servicing_atomic != -1 && m_servicing_atomic != (int)request.proc_id) {
373 assert(m_atomics_counter > 0);
374 return false;
375 }
376 else {
377 if (request.type == RubyRequestType_RMW_Read) {
378 if (m_servicing_atomic == -1) {
379 assert(m_atomics_counter == 0);
380 m_servicing_atomic = (int)request.proc_id;
381 }
382 else {
383 assert(m_servicing_atomic == (int)request.proc_id);
384 }
385 m_atomics_counter++;
386 }
387 else if (request.type == RubyRequestType_RMW_Write) {
388 assert(m_servicing_atomic == (int)request.proc_id);
389 assert(m_atomics_counter > 0);
390 m_atomics_counter--;
391 if (m_atomics_counter == 0) {
392 m_servicing_atomic = -1;
393 }
394 }
395 }
396
397 return true;
398}
399
400bool Sequencer::empty() const {
401 return (m_writeRequestTable.size() == 0) && (m_readRequestTable.size() == 0);
402}
403
404
405int64_t Sequencer::makeRequest(const RubyRequest & request)
406{
407 assert(Address(request.paddr).getOffset() + request.len <= RubySystem::getBlockSizeBytes());
408 if (isReady(request)) {
409 int64_t id = makeUniqueRequestID();
410 SequencerRequest *srequest = new SequencerRequest(request, id, g_eventQueue_ptr->getTime());
411 bool found = insertRequest(srequest);
412 if (!found)
413 if (request.type == RubyRequestType_Locked_Write) {
414 // NOTE: it is OK to check the locked flag here as the mandatory queue will be checked first
415 // ensuring that nothing comes between checking the flag and servicing the store
416 if (!m_dataCache_ptr->isLocked(line_address(Address(request.paddr)), m_version)) {
417 return LLSC_FAIL;
418 }
419 else {
420 m_dataCache_ptr->clearLocked(line_address(Address(request.paddr)));
421 }
422 }
423 if (request.type == RubyRequestType_RMW_Write) {
424 m_controller->started_writes();
425 }
426 issueRequest(request);
427
428 // TODO: issue hardware prefetches here
429 return id;
430 }
431 else {
432 return -1;
433 }
434}
435
436void Sequencer::issueRequest(const RubyRequest& request) {
437
438 // TODO: get rid of CacheMsg, CacheRequestType, and AccessModeTYpe, & have SLICC use RubyRequest and subtypes natively
439 CacheRequestType ctype;
440 switch(request.type) {
441 case RubyRequestType_IFETCH:
442 ctype = CacheRequestType_IFETCH;
443 break;
444 case RubyRequestType_LD:
445 ctype = CacheRequestType_LD;
446 break;
447 case RubyRequestType_ST:
448 ctype = CacheRequestType_ST;
449 break;
450 case RubyRequestType_Locked_Read:
451 ctype = CacheRequestType_ST;
452 break;
453 case RubyRequestType_Locked_Write:
454 ctype = CacheRequestType_ST;
455 break;
456 case RubyRequestType_RMW_Read:
457 ctype = CacheRequestType_ATOMIC;
458 break;
459 case RubyRequestType_RMW_Write:
460 ctype = CacheRequestType_ATOMIC;
461 break;
462 default:
463 assert(0);
464 }
465 AccessModeType amtype;
466 switch(request.access_mode){
467 case RubyAccessMode_User:
468 amtype = AccessModeType_UserMode;
469 break;
470 case RubyAccessMode_Supervisor:
471 amtype = AccessModeType_SupervisorMode;
472 break;
473 case RubyAccessMode_Device:
474 amtype = AccessModeType_UserMode;
475 break;
476 default:
477 assert(0);
478 }
479 Address line_addr(request.paddr);
480 line_addr.makeLineAddress();
481 CacheMsg msg(line_addr, Address(request.paddr), ctype, Address(request.pc), amtype, request.len, PrefetchBit_No, request.proc_id);
482
483 if (Debug::getProtocolTrace()) {
484 g_system_ptr->getProfiler()->profileTransition("Seq", m_version, Address(request.paddr),
485 "", "Begin", "", RubyRequestType_to_string(request.type));
486 }
487
488 if (g_system_ptr->getTracer()->traceEnabled()) {
489 g_system_ptr->getTracer()->traceRequest(m_name, line_addr, Address(request.pc),
490 request.type, g_eventQueue_ptr->getTime());
491 }
492
493 Time latency = 0; // initialzed to an null value
494
495 if (request.type == RubyRequestType_IFETCH)
496 latency = m_instCache_ptr->getLatency();
497 else
498 latency = m_dataCache_ptr->getLatency();
499
500 // Send the message to the cache controller
501 assert(latency > 0);
502
503
504 m_mandatory_q_ptr->enqueue(msg, latency);
505}
506/*
507bool Sequencer::tryCacheAccess(const Address& addr, CacheRequestType type,
508 AccessModeType access_mode,
509 int size, DataBlock*& data_ptr) {
510 if (type == CacheRequestType_IFETCH) {
511 return m_instCache_ptr->tryCacheAccess(line_address(addr), type, data_ptr);
512 } else {
513 return m_dataCache_ptr->tryCacheAccess(line_address(addr), type, data_ptr);
514 }
515}
516*/
517
518void Sequencer::print(ostream& out) const {
519 out << "[Sequencer: " << m_version
520 << ", outstanding requests: " << m_outstanding_count;
521
522 out << ", read request table: " << m_readRequestTable
523 << ", write request table: " << m_writeRequestTable;
524 out << "]";
525}
526
527// this can be called from setState whenever coherence permissions are upgraded
528// when invoked, coherence violations will be checked for the given block
529void Sequencer::checkCoherence(const Address& addr) {
530#ifdef CHECK_COHERENCE
531 g_system_ptr->checkGlobalCoherenceInvariant(addr);
532#endif
533}
534