Deleted Added
sdiff udiff text old ( 9224:b0539d08bda8 ) new ( 9245:e215ee9db617 )
full compact
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55 return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59 : RubyPort(p), deadlockCheckEvent(this)
60{
61 m_store_waiting_on_load_cycles = 0;
62 m_store_waiting_on_store_cycles = 0;
63 m_load_waiting_on_store_cycles = 0;
64 m_load_waiting_on_load_cycles = 0;
65
66 m_outstanding_count = 0;
67
68 m_instCache_ptr = p->icache;
69 m_dataCache_ptr = p->dcache;
70 m_max_outstanding_requests = p->max_outstanding_requests;
71 m_deadlock_threshold = p->deadlock_threshold;
72
73 assert(m_max_outstanding_requests > 0);
74 assert(m_deadlock_threshold > 0);
75 assert(m_instCache_ptr != NULL);
76 assert(m_dataCache_ptr != NULL);
77
78 m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88 // Check for deadlock of any of the requests
89 Time current_time = g_system_ptr->getTime();
90
91 // Check across all outstanding requests
92 int total_outstanding = 0;
93
94 RequestTable::iterator read = m_readRequestTable.begin();
95 RequestTable::iterator read_end = m_readRequestTable.end();
96 for (; read != read_end; ++read) {
97 SequencerRequest* request = read->second;
98 if (current_time - request->issue_time < m_deadlock_threshold)
99 continue;
100
101 panic("Possible Deadlock detected. Aborting!\n"
102 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
103 "current time: %u issue_time: %d difference: %d\n", m_version,
104 Address(request->pkt->getAddr()), m_readRequestTable.size(),
105 current_time, request->issue_time,
106 current_time - request->issue_time);
107 }
108
109 RequestTable::iterator write = m_writeRequestTable.begin();
110 RequestTable::iterator write_end = m_writeRequestTable.end();
111 for (; write != write_end; ++write) {
112 SequencerRequest* request = write->second;
113 if (current_time - request->issue_time < m_deadlock_threshold)
114 continue;
115
116 panic("Possible Deadlock detected. Aborting!\n"
117 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
118 "current time: %u issue_time: %d difference: %d\n", m_version,
119 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
120 current_time, request->issue_time,
121 current_time - request->issue_time);
122 }
123
124 total_outstanding += m_writeRequestTable.size();
125 total_outstanding += m_readRequestTable.size();
126
127 assert(m_outstanding_count == total_outstanding);
128
129 if (m_outstanding_count > 0) {
130 // If there are still outstanding requests, keep checking
131 schedule(deadlockCheckEvent,
132 g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
133 }
134}
135
136void
137Sequencer::printStats(ostream & out) const
138{
139 out << "Sequencer: " << m_name << endl
140 << " store_waiting_on_load_cycles: "
141 << m_store_waiting_on_load_cycles << endl
142 << " store_waiting_on_store_cycles: "
143 << m_store_waiting_on_store_cycles << endl
144 << " load_waiting_on_load_cycles: "
145 << m_load_waiting_on_load_cycles << endl
146 << " load_waiting_on_store_cycles: "
147 << m_load_waiting_on_store_cycles << endl;
148}
149
150void
151Sequencer::printProgress(ostream& out) const
152{
153#if 0
154 int total_demand = 0;
155 out << "Sequencer Stats Version " << m_version << endl;
156 out << "Current time = " << g_system_ptr->getTime() << endl;
157 out << "---------------" << endl;
158 out << "outstanding requests" << endl;
159
160 out << "proc " << m_Read
161 << " version Requests = " << m_readRequestTable.size() << endl;
162
163 // print the request table
164 RequestTable::iterator read = m_readRequestTable.begin();
165 RequestTable::iterator read_end = m_readRequestTable.end();
166 for (; read != read_end; ++read) {
167 SequencerRequest* request = read->second;
168 out << "\tRequest[ " << i << " ] = " << request->type
169 << " Address " << rkeys[i]
170 << " Posted " << request->issue_time
171 << " PF " << PrefetchBit_No << endl;
172 total_demand++;
173 }
174
175 out << "proc " << m_version
176 << " Write Requests = " << m_writeRequestTable.size << endl;
177
178 // print the request table
179 RequestTable::iterator write = m_writeRequestTable.begin();
180 RequestTable::iterator write_end = m_writeRequestTable.end();
181 for (; write != write_end; ++write) {
182 SequencerRequest* request = write->second;
183 out << "\tRequest[ " << i << " ] = " << request.getType()
184 << " Address " << wkeys[i]
185 << " Posted " << request.getTime()
186 << " PF " << request.getPrefetch() << endl;
187 if (request.getPrefetch() == PrefetchBit_No) {
188 total_demand++;
189 }
190 }
191
192 out << endl;
193
194 out << "Total Number Outstanding: " << m_outstanding_count << endl
195 << "Total Number Demand : " << total_demand << endl
196 << "Total Number Prefetches : " << m_outstanding_count - total_demand
197 << endl << endl << endl;
198#endif
199}
200
201// Insert the request on the correct request table. Return true if
202// the entry was already present.
203RequestStatus
204Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
205{
206 assert(m_outstanding_count ==
207 (m_writeRequestTable.size() + m_readRequestTable.size()));
208
209 // See if we should schedule a deadlock check
210 if (deadlockCheckEvent.scheduled() == false) {
211 schedule(deadlockCheckEvent,
212 g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
213 }
214
215 Address line_addr(pkt->getAddr());
216 line_addr.makeLineAddress();
217 // Create a default entry, mapping the address to NULL, the cast is
218 // there to make gcc 4.4 happy
219 RequestTable::value_type default_entry(line_addr,
220 (SequencerRequest*) NULL);
221
222 if ((request_type == RubyRequestType_ST) ||
223 (request_type == RubyRequestType_RMW_Read) ||
224 (request_type == RubyRequestType_RMW_Write) ||
225 (request_type == RubyRequestType_Load_Linked) ||
226 (request_type == RubyRequestType_Store_Conditional) ||
227 (request_type == RubyRequestType_Locked_RMW_Read) ||
228 (request_type == RubyRequestType_Locked_RMW_Write) ||
229 (request_type == RubyRequestType_FLUSH)) {
230
231 // Check if there is any outstanding read request for the same
232 // cache line.
233 if (m_readRequestTable.count(line_addr) > 0) {
234 m_store_waiting_on_load_cycles++;
235 return RequestStatus_Aliased;
236 }
237
238 pair<RequestTable::iterator, bool> r =
239 m_writeRequestTable.insert(default_entry);
240 if (r.second) {
241 RequestTable::iterator i = r.first;
242 i->second = new SequencerRequest(pkt, request_type,
243 g_system_ptr->getTime());
244 m_outstanding_count++;
245 } else {
246 // There is an outstanding write request for the cache line
247 m_store_waiting_on_store_cycles++;
248 return RequestStatus_Aliased;
249 }
250 } else {
251 // Check if there is any outstanding write request for the same
252 // cache line.
253 if (m_writeRequestTable.count(line_addr) > 0) {
254 m_load_waiting_on_store_cycles++;
255 return RequestStatus_Aliased;
256 }
257
258 pair<RequestTable::iterator, bool> r =
259 m_readRequestTable.insert(default_entry);
260
261 if (r.second) {
262 RequestTable::iterator i = r.first;
263 i->second = new SequencerRequest(pkt, request_type,
264 g_system_ptr->getTime());
265 m_outstanding_count++;
266 } else {
267 // There is an outstanding read request for the cache line
268 m_load_waiting_on_load_cycles++;
269 return RequestStatus_Aliased;
270 }
271 }
272
273 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
274 assert(m_outstanding_count ==
275 (m_writeRequestTable.size() + m_readRequestTable.size()));
276
277 return RequestStatus_Ready;
278}
279
280void
281Sequencer::markRemoved()
282{
283 m_outstanding_count--;
284 assert(m_outstanding_count ==
285 m_writeRequestTable.size() + m_readRequestTable.size());
286}
287
288void
289Sequencer::removeRequest(SequencerRequest* srequest)
290{
291 assert(m_outstanding_count ==
292 m_writeRequestTable.size() + m_readRequestTable.size());
293
294 Address line_addr(srequest->pkt->getAddr());
295 line_addr.makeLineAddress();
296 if ((srequest->m_type == RubyRequestType_ST) ||
297 (srequest->m_type == RubyRequestType_RMW_Read) ||
298 (srequest->m_type == RubyRequestType_RMW_Write) ||
299 (srequest->m_type == RubyRequestType_Load_Linked) ||
300 (srequest->m_type == RubyRequestType_Store_Conditional) ||
301 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
302 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
303 m_writeRequestTable.erase(line_addr);
304 } else {
305 m_readRequestTable.erase(line_addr);
306 }
307
308 markRemoved();
309}
310
311bool
312Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
313{
314 //
315 // The success flag indicates whether the LLSC operation was successful.
316 // LL ops will always succeed, but SC may fail if the cache line is no
317 // longer locked.
318 //
319 bool success = true;
320 if (request->m_type == RubyRequestType_Store_Conditional) {
321 if (!m_dataCache_ptr->isLocked(address, m_version)) {
322 //
323 // For failed SC requests, indicate the failure to the cpu by
324 // setting the extra data to zero.
325 //
326 request->pkt->req->setExtraData(0);
327 success = false;
328 } else {
329 //
330 // For successful SC requests, indicate the success to the cpu by
331 // setting the extra data to one.
332 //
333 request->pkt->req->setExtraData(1);
334 }
335 //
336 // Independent of success, all SC operations must clear the lock
337 //
338 m_dataCache_ptr->clearLocked(address);
339 } else if (request->m_type == RubyRequestType_Load_Linked) {
340 //
341 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
342 // previously locked cache lines?
343 //
344 m_dataCache_ptr->setLocked(address, m_version);
345 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
346 (m_dataCache_ptr->isLocked(address, m_version))) {
347 //
348 // Normal writes should clear the locked address
349 //
350 m_dataCache_ptr->clearLocked(address);
351 }
352 return success;
353}
354
355void
356Sequencer::writeCallback(const Address& address, DataBlock& data)
357{
358 writeCallback(address, GenericMachineType_NULL, data);
359}
360
361void
362Sequencer::writeCallback(const Address& address,
363 GenericMachineType mach,
364 DataBlock& data)
365{
366 writeCallback(address, mach, data, 0, 0, 0);
367}
368
369void
370Sequencer::writeCallback(const Address& address,
371 GenericMachineType mach,
372 DataBlock& data,
373 Time initialRequestTime,
374 Time forwardRequestTime,
375 Time firstResponseTime)
376{
377 assert(address == line_address(address));
378 assert(m_writeRequestTable.count(line_address(address)));
379
380 RequestTable::iterator i = m_writeRequestTable.find(address);
381 assert(i != m_writeRequestTable.end());
382 SequencerRequest* request = i->second;
383
384 m_writeRequestTable.erase(i);
385 markRemoved();
386
387 assert((request->m_type == RubyRequestType_ST) ||
388 (request->m_type == RubyRequestType_ATOMIC) ||
389 (request->m_type == RubyRequestType_RMW_Read) ||
390 (request->m_type == RubyRequestType_RMW_Write) ||
391 (request->m_type == RubyRequestType_Load_Linked) ||
392 (request->m_type == RubyRequestType_Store_Conditional) ||
393 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
394 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
395 (request->m_type == RubyRequestType_FLUSH));
396
397
398 //
399 // For Alpha, properly handle LL, SC, and write requests with respect to
400 // locked cache blocks.
401 //
402 // Not valid for Network_test protocl
403 //
404 bool success = true;
405 if(!m_usingNetworkTester)
406 success = handleLlsc(address, request);
407
408 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
409 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
410 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
411 m_controller->unblock(address);
412 }
413
414 hitCallback(request, mach, data, success,
415 initialRequestTime, forwardRequestTime, firstResponseTime);
416}
417
418void
419Sequencer::readCallback(const Address& address, DataBlock& data)
420{
421 readCallback(address, GenericMachineType_NULL, data);
422}
423
424void
425Sequencer::readCallback(const Address& address,
426 GenericMachineType mach,
427 DataBlock& data)
428{
429 readCallback(address, mach, data, 0, 0, 0);
430}
431
432void
433Sequencer::readCallback(const Address& address,
434 GenericMachineType mach,
435 DataBlock& data,
436 Time initialRequestTime,
437 Time forwardRequestTime,
438 Time firstResponseTime)
439{
440 assert(address == line_address(address));
441 assert(m_readRequestTable.count(line_address(address)));
442
443 RequestTable::iterator i = m_readRequestTable.find(address);
444 assert(i != m_readRequestTable.end());
445 SequencerRequest* request = i->second;
446
447 m_readRequestTable.erase(i);
448 markRemoved();
449
450 assert((request->m_type == RubyRequestType_LD) ||
451 (request->m_type == RubyRequestType_IFETCH));
452
453 hitCallback(request, mach, data, true,
454 initialRequestTime, forwardRequestTime, firstResponseTime);
455}
456
457void
458Sequencer::hitCallback(SequencerRequest* srequest,
459 GenericMachineType mach,
460 DataBlock& data,
461 bool success,
462 Time initialRequestTime,
463 Time forwardRequestTime,
464 Time firstResponseTime)
465{
466 PacketPtr pkt = srequest->pkt;
467 Address request_address(pkt->getAddr());
468 Address request_line_address(pkt->getAddr());
469 request_line_address.makeLineAddress();
470 RubyRequestType type = srequest->m_type;
471 Time issued_time = srequest->issue_time;
472
473 // Set this cache entry to the most recently used
474 if (type == RubyRequestType_IFETCH) {
475 m_instCache_ptr->setMRU(request_line_address);
476 } else {
477 m_dataCache_ptr->setMRU(request_line_address);
478 }
479
480 assert(g_system_ptr->getTime() >= issued_time);
481 Time miss_latency = g_system_ptr->getTime() - issued_time;
482
483 // Profile the miss latency for all non-zero demand misses
484 if (miss_latency != 0) {
485 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
486
487 if (mach == GenericMachineType_L1Cache_wCC) {
488 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
489 initialRequestTime,
490 forwardRequestTime,
491 firstResponseTime,
492 g_system_ptr->getTime());
493 }
494
495 if (mach == GenericMachineType_Directory) {
496 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
497 initialRequestTime,
498 forwardRequestTime,
499 firstResponseTime,
500 g_system_ptr->getTime());
501 }
502
503 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
504 curTick(), m_version, "Seq",
505 success ? "Done" : "SC_Failed", "", "",
506 request_address, miss_latency);
507 }
508
509 // update the data
510 if (g_system_ptr->m_warmup_enabled) {
511 assert(pkt->getPtr<uint8_t>(false) != NULL);
512 data.setData(pkt->getPtr<uint8_t>(false),
513 request_address.getOffset(), pkt->getSize());
514 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
515 if ((type == RubyRequestType_LD) ||
516 (type == RubyRequestType_IFETCH) ||
517 (type == RubyRequestType_RMW_Read) ||
518 (type == RubyRequestType_Locked_RMW_Read) ||
519 (type == RubyRequestType_Load_Linked)) {
520 memcpy(pkt->getPtr<uint8_t>(true),
521 data.getData(request_address.getOffset(), pkt->getSize()),
522 pkt->getSize());
523 } else {
524 data.setData(pkt->getPtr<uint8_t>(true),
525 request_address.getOffset(), pkt->getSize());
526 }
527 } else {
528 DPRINTF(MemoryAccess,
529 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
530 RubyRequestType_to_string(type));
531 }
532
533 // If using the RubyTester, update the RubyTester sender state's
534 // subBlock with the recieved data. The tester will later access
535 // this state.
536 // Note: RubyPort will access it's sender state before the
537 // RubyTester.
538 if (m_usingRubyTester) {
539 RubyPort::SenderState *requestSenderState =
540 safe_cast<RubyPort::SenderState*>(pkt->senderState);
541 RubyTester::SenderState* testerSenderState =
542 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
543 testerSenderState->subBlock->mergeFrom(data);
544 }
545
546 delete srequest;
547
548 if (g_system_ptr->m_warmup_enabled) {
549 delete pkt;
550 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
551 } else if (g_system_ptr->m_cooldown_enabled) {
552 delete pkt;
553 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
554 } else {
555 ruby_hit_callback(pkt);
556 }
557}
558
559bool
560Sequencer::empty() const
561{
562 return m_writeRequestTable.empty() && m_readRequestTable.empty();
563}
564
565RequestStatus
566Sequencer::makeRequest(PacketPtr pkt)
567{
568 if (m_outstanding_count >= m_max_outstanding_requests) {
569 return RequestStatus_BufferFull;
570 }
571
572 RubyRequestType primary_type = RubyRequestType_NULL;
573 RubyRequestType secondary_type = RubyRequestType_NULL;
574
575 if (pkt->isLLSC()) {
576 //
577 // Alpha LL/SC instructions need to be handled carefully by the cache
578 // coherence protocol to ensure they follow the proper semantics. In
579 // particular, by identifying the operations as atomic, the protocol
580 // should understand that migratory sharing optimizations should not
581 // be performed (i.e. a load between the LL and SC should not steal
582 // away exclusive permission).
583 //
584 if (pkt->isWrite()) {
585 DPRINTF(RubySequencer, "Issuing SC\n");
586 primary_type = RubyRequestType_Store_Conditional;
587 } else {
588 DPRINTF(RubySequencer, "Issuing LL\n");
589 assert(pkt->isRead());
590 primary_type = RubyRequestType_Load_Linked;
591 }
592 secondary_type = RubyRequestType_ATOMIC;
593 } else if (pkt->req->isLocked()) {
594 //
595 // x86 locked instructions are translated to store cache coherence
596 // requests because these requests should always be treated as read
597 // exclusive operations and should leverage any migratory sharing
598 // optimization built into the protocol.
599 //
600 if (pkt->isWrite()) {
601 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
602 primary_type = RubyRequestType_Locked_RMW_Write;
603 } else {
604 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
605 assert(pkt->isRead());
606 primary_type = RubyRequestType_Locked_RMW_Read;
607 }
608 secondary_type = RubyRequestType_ST;
609 } else {
610 if (pkt->isRead()) {
611 if (pkt->req->isInstFetch()) {
612 primary_type = secondary_type = RubyRequestType_IFETCH;
613 } else {
614#if THE_ISA == X86_ISA
615 uint32_t flags = pkt->req->getFlags();
616 bool storeCheck = flags &
617 (TheISA::StoreCheck << TheISA::FlagShift);
618#else
619 bool storeCheck = false;
620#endif // X86_ISA
621 if (storeCheck) {
622 primary_type = RubyRequestType_RMW_Read;
623 secondary_type = RubyRequestType_ST;
624 } else {
625 primary_type = secondary_type = RubyRequestType_LD;
626 }
627 }
628 } else if (pkt->isWrite()) {
629 //
630 // Note: M5 packets do not differentiate ST from RMW_Write
631 //
632 primary_type = secondary_type = RubyRequestType_ST;
633 } else if (pkt->isFlush()) {
634 primary_type = secondary_type = RubyRequestType_FLUSH;
635 } else {
636 panic("Unsupported ruby packet type\n");
637 }
638 }
639
640 RequestStatus status = insertRequest(pkt, primary_type);
641 if (status != RequestStatus_Ready)
642 return status;
643
644 issueRequest(pkt, secondary_type);
645
646 // TODO: issue hardware prefetches here
647 return RequestStatus_Issued;
648}
649
650void
651Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
652{
653 assert(pkt != NULL);
654 int proc_id = -1;
655 if (pkt->req->hasContextId()) {
656 proc_id = pkt->req->contextId();
657 }
658
659 // If valid, copy the pc to the ruby request
660 Addr pc = 0;
661 if (pkt->req->hasPC()) {
662 pc = pkt->req->getPC();
663 }
664
665 RubyRequest *msg = new RubyRequest(pkt->getAddr(),
666 pkt->getPtr<uint8_t>(true),
667 pkt->getSize(), pc, secondary_type,
668 RubyAccessMode_Supervisor, pkt,
669 PrefetchBit_No, proc_id);
670
671 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
672 curTick(), m_version, "Seq", "Begin", "", "",
673 msg->getPhysicalAddress(),
674 RubyRequestType_to_string(secondary_type));
675
676 Time latency = 0; // initialzed to an null value
677
678 if (secondary_type == RubyRequestType_IFETCH)
679 latency = m_instCache_ptr->getLatency();
680 else
681 latency = m_dataCache_ptr->getLatency();
682
683 // Send the message to the cache controller
684 assert(latency > 0);
685
686 assert(m_mandatory_q_ptr != NULL);
687 m_mandatory_q_ptr->enqueue(msg, latency);
688}
689
690template <class KEY, class VALUE>
691std::ostream &
692operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
693{
694 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
695 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
696
697 out << "[";
698 for (; i != end; ++i)
699 out << " " << i->first << "=" << i->second;
700 out << " ]";
701
702 return out;
703}
704
705void
706Sequencer::print(ostream& out) const
707{
708 out << "[Sequencer: " << m_version
709 << ", outstanding requests: " << m_outstanding_count
710 << ", read request table: " << m_readRequestTable
711 << ", write request table: " << m_writeRequestTable
712 << "]";
713}
714
715// this can be called from setState whenever coherence permissions are
716// upgraded when invoked, coherence violations will be checked for the
717// given block
718void
719Sequencer::checkCoherence(const Address& addr)
720{
721#ifdef CHECK_COHERENCE
722 g_system_ptr->checkGlobalCoherenceInvariant(addr);
723#endif
724}
725
726void
727Sequencer::recordRequestType(SequencerRequestType requestType) {
728 DPRINTF(RubyStats, "Recorded statistic: %s\n",
729 SequencerRequestType_to_string(requestType));
730}
731
732
733void
734Sequencer::evictionCallback(const Address& address)
735{
736 ruby_eviction_callback(address);
737}