Deleted Added
sdiff udiff text old ( 6165:2d26c346f1be ) new ( 6285:ce086eca1ede )
full compact
1
2/*
3 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/*
31 * $Id: Sequencer.C 1.131 2006/11/06 17:41:01-06:00 bobba@gratiano.cs.wisc.edu $
32 *
33 */
34
35#include "mem/ruby/common/Global.hh"
36#include "mem/ruby/system/Sequencer.hh"
37#include "mem/ruby/system/System.hh"
38#include "mem/protocol/Protocol.hh"
39#include "mem/ruby/profiler/Profiler.hh"
40#include "mem/ruby/system/CacheMemory.hh"
41#include "mem/ruby/config/RubyConfig.hh"
42//#include "mem/ruby/recorder/Tracer.hh"
43#include "mem/ruby/slicc_interface/AbstractChip.hh"
44#include "mem/protocol/Chip.hh"
45#include "mem/ruby/tester/Tester.hh"
46#include "mem/ruby/common/SubBlock.hh"
47#include "mem/protocol/Protocol.hh"
48#include "mem/gems_common/Map.hh"
49#include "mem/packet.hh"
50
51Sequencer::Sequencer(AbstractChip* chip_ptr, int version) {
52 m_chip_ptr = chip_ptr;
53 m_version = version;
54
55 m_deadlock_check_scheduled = false;
56 m_outstanding_count = 0;
57
58 int smt_threads = RubyConfig::numberofSMTThreads();
59 m_writeRequestTable_ptr = new Map<Address, CacheMsg>*[smt_threads];
60 m_readRequestTable_ptr = new Map<Address, CacheMsg>*[smt_threads];
61
62 m_packetTable_ptr = new Map<Address, Packet*>;
63
64 for(int p=0; p < smt_threads; ++p){
65 m_writeRequestTable_ptr[p] = new Map<Address, CacheMsg>;
66 m_readRequestTable_ptr[p] = new Map<Address, CacheMsg>;
67 }
68
69}
70
71Sequencer::~Sequencer() {
72 int smt_threads = RubyConfig::numberofSMTThreads();
73 for(int i=0; i < smt_threads; ++i){
74 if(m_writeRequestTable_ptr[i]){
75 delete m_writeRequestTable_ptr[i];
76 }
77 if(m_readRequestTable_ptr[i]){
78 delete m_readRequestTable_ptr[i];
79 }
80 }
81 if(m_writeRequestTable_ptr){
82 delete [] m_writeRequestTable_ptr;
83 }
84 if(m_readRequestTable_ptr){
85 delete [] m_readRequestTable_ptr;
86 }
87}
88
89void Sequencer::wakeup() {
90 // Check for deadlock of any of the requests
91 Time current_time = g_eventQueue_ptr->getTime();
92 bool deadlock = false;
93
94 // Check across all outstanding requests
95 int smt_threads = RubyConfig::numberofSMTThreads();
96 int total_outstanding = 0;
97 for(int p=0; p < smt_threads; ++p){
98 Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
99 for (int i=0; i<keys.size(); i++) {
100 CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
101 if (current_time - request.getTime() >= g_DEADLOCK_THRESHOLD) {
102 WARN_MSG("Possible Deadlock detected");
103 WARN_EXPR(request);
104 WARN_EXPR(m_chip_ptr->getID());
105 WARN_EXPR(m_version);
106 WARN_EXPR(keys.size());
107 WARN_EXPR(current_time);
108 WARN_EXPR(request.getTime());
109 WARN_EXPR(current_time - request.getTime());
110 WARN_EXPR(*m_readRequestTable_ptr[p]);
111 ERROR_MSG("Aborting");
112 deadlock = true;
113 }
114 }
115
116 keys = m_writeRequestTable_ptr[p]->keys();
117 for (int i=0; i<keys.size(); i++) {
118 CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
119 if (current_time - request.getTime() >= g_DEADLOCK_THRESHOLD) {
120 WARN_MSG("Possible Deadlock detected");
121 WARN_EXPR(request);
122 WARN_EXPR(m_chip_ptr->getID());
123 WARN_EXPR(m_version);
124 WARN_EXPR(current_time);
125 WARN_EXPR(request.getTime());
126 WARN_EXPR(current_time - request.getTime());
127 WARN_EXPR(keys.size());
128 WARN_EXPR(*m_writeRequestTable_ptr[p]);
129 ERROR_MSG("Aborting");
130 deadlock = true;
131 }
132 }
133 total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
134 } // across all request tables
135 assert(m_outstanding_count == total_outstanding);
136
137 if (m_outstanding_count > 0) { // If there are still outstanding requests, keep checking
138 g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
139 } else {
140 m_deadlock_check_scheduled = false;
141 }
142}
143
144//returns the total number of requests
145int Sequencer::getNumberOutstanding(){
146 return m_outstanding_count;
147}
148
149// returns the total number of demand requests
150int Sequencer::getNumberOutstandingDemand(){
151 int smt_threads = RubyConfig::numberofSMTThreads();
152 int total_demand = 0;
153 for(int p=0; p < smt_threads; ++p){
154 Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
155 for (int i=0; i< keys.size(); i++) {
156 CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
157 if(request.getPrefetch() == PrefetchBit_No){
158 total_demand++;
159 }
160 }
161
162 keys = m_writeRequestTable_ptr[p]->keys();
163 for (int i=0; i< keys.size(); i++) {
164 CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
165 if(request.getPrefetch() == PrefetchBit_No){
166 total_demand++;
167 }
168 }
169 }
170
171 return total_demand;
172}
173
174int Sequencer::getNumberOutstandingPrefetch(){
175 int smt_threads = RubyConfig::numberofSMTThreads();
176 int total_prefetch = 0;
177 for(int p=0; p < smt_threads; ++p){
178 Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
179 for (int i=0; i< keys.size(); i++) {
180 CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
181 if(request.getPrefetch() == PrefetchBit_Yes){
182 total_prefetch++;
183 }
184 }
185
186 keys = m_writeRequestTable_ptr[p]->keys();
187 for (int i=0; i< keys.size(); i++) {
188 CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
189 if(request.getPrefetch() == PrefetchBit_Yes){
190 total_prefetch++;
191 }
192 }
193 }
194
195 return total_prefetch;
196}
197
198bool Sequencer::isPrefetchRequest(const Address & lineaddr){
199 int smt_threads = RubyConfig::numberofSMTThreads();
200 for(int p=0; p < smt_threads; ++p){
201 // check load requests
202 Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
203 for (int i=0; i< keys.size(); i++) {
204 CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
205 if(line_address(request.getAddress()) == lineaddr){
206 if(request.getPrefetch() == PrefetchBit_Yes){
207 return true;
208 }
209 else{
210 return false;
211 }
212 }
213 }
214
215 // check store requests
216 keys = m_writeRequestTable_ptr[p]->keys();
217 for (int i=0; i< keys.size(); i++) {
218 CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
219 if(line_address(request.getAddress()) == lineaddr){
220 if(request.getPrefetch() == PrefetchBit_Yes){
221 return true;
222 }
223 else{
224 return false;
225 }
226 }
227 }
228 }
229 // we should've found a matching request
230 cout << "isRequestPrefetch() ERROR request NOT FOUND : " << lineaddr << endl;
231 printProgress(cout);
232 assert(0);
233}
234
235AccessModeType Sequencer::getAccessModeOfRequest(Address addr, int thread){
236 if(m_readRequestTable_ptr[thread]->exist(line_address(addr))){
237 CacheMsg& request = m_readRequestTable_ptr[thread]->lookup(addr);
238 return request.getAccessMode();
239 } else if(m_writeRequestTable_ptr[thread]->exist(line_address(addr))){
240 CacheMsg& request = m_writeRequestTable_ptr[thread]->lookup(addr);
241 return request.getAccessMode();
242 } else {
243 printProgress(cout);
244 ERROR_MSG("Request not found in RequestTables");
245 }
246}
247
248Address Sequencer::getLogicalAddressOfRequest(Address addr, int thread){
249 assert(thread >= 0);
250 if(m_readRequestTable_ptr[thread]->exist(line_address(addr))){
251 CacheMsg& request = m_readRequestTable_ptr[thread]->lookup(addr);
252 return request.getLogicalAddress();
253 } else if(m_writeRequestTable_ptr[thread]->exist(line_address(addr))){
254 CacheMsg& request = m_writeRequestTable_ptr[thread]->lookup(addr);
255 return request.getLogicalAddress();
256 } else {
257 printProgress(cout);
258 WARN_MSG("Request not found in RequestTables");
259 WARN_MSG(addr);
260 WARN_MSG(thread);
261 ASSERT(0);
262 }
263}
264
265// returns the ThreadID of the request
266int Sequencer::getRequestThreadID(const Address & addr){
267 int smt_threads = RubyConfig::numberofSMTThreads();
268 int thread = -1;
269 int num_found = 0;
270 for(int p=0; p < smt_threads; ++p){
271 if(m_readRequestTable_ptr[p]->exist(addr)){
272 num_found++;
273 thread = p;
274 }
275 if(m_writeRequestTable_ptr[p]->exist(addr)){
276 num_found++;
277 thread = p;
278 }
279 }
280 if(num_found != 1){
281 cout << "getRequestThreadID ERROR too many matching requests addr = " << addr << endl;
282 printProgress(cout);
283 }
284 ASSERT(num_found == 1);
285 ASSERT(thread != -1);
286
287 return thread;
288}
289
290// given a line address, return the request's physical address
291Address Sequencer::getRequestPhysicalAddress(const Address & lineaddr){
292 int smt_threads = RubyConfig::numberofSMTThreads();
293 Address physaddr;
294 int num_found = 0;
295 for(int p=0; p < smt_threads; ++p){
296 if(m_readRequestTable_ptr[p]->exist(lineaddr)){
297 num_found++;
298 physaddr = (m_readRequestTable_ptr[p]->lookup(lineaddr)).getAddress();
299 }
300 if(m_writeRequestTable_ptr[p]->exist(lineaddr)){
301 num_found++;
302 physaddr = (m_writeRequestTable_ptr[p]->lookup(lineaddr)).getAddress();
303 }
304 }
305 if(num_found != 1){
306 cout << "getRequestPhysicalAddress ERROR too many matching requests addr = " << lineaddr << endl;
307 printProgress(cout);
308 }
309 ASSERT(num_found == 1);
310
311 return physaddr;
312}
313
314void Sequencer::printProgress(ostream& out) const{
315
316 int total_demand = 0;
317 out << "Sequencer Stats Version " << m_version << endl;
318 out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
319 out << "---------------" << endl;
320 out << "outstanding requests" << endl;
321
322 int smt_threads = RubyConfig::numberofSMTThreads();
323 for(int p=0; p < smt_threads; ++p){
324 Vector<Address> rkeys = m_readRequestTable_ptr[p]->keys();
325 int read_size = rkeys.size();
326 out << "proc " << m_chip_ptr->getID() << " thread " << p << " Read Requests = " << read_size << endl;
327 // print the request table
328 for(int i=0; i < read_size; ++i){
329 CacheMsg & request = m_readRequestTable_ptr[p]->lookup(rkeys[i]);
330 out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << rkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl;
331 if( request.getPrefetch() == PrefetchBit_No ){
332 total_demand++;
333 }
334 }
335
336 Vector<Address> wkeys = m_writeRequestTable_ptr[p]->keys();
337 int write_size = wkeys.size();
338 out << "proc " << m_chip_ptr->getID() << " thread " << p << " Write Requests = " << write_size << endl;
339 // print the request table
340 for(int i=0; i < write_size; ++i){
341 CacheMsg & request = m_writeRequestTable_ptr[p]->lookup(wkeys[i]);
342 out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << wkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl;
343 if( request.getPrefetch() == PrefetchBit_No ){
344 total_demand++;
345 }
346 }
347
348 out << endl;
349 }
350 out << "Total Number Outstanding: " << m_outstanding_count << endl;
351 out << "Total Number Demand : " << total_demand << endl;
352 out << "Total Number Prefetches : " << m_outstanding_count - total_demand << endl;
353 out << endl;
354 out << endl;
355
356}
357
358void Sequencer::printConfig(ostream& out) {
359 if (TSO) {
360 out << "sequencer: Sequencer - TSO" << endl;
361 } else {
362 out << "sequencer: Sequencer - SC" << endl;
363 }
364 out << " max_outstanding_requests: " << g_SEQUENCER_OUTSTANDING_REQUESTS << endl;
365}
366
367bool Sequencer::empty() const {
368 return m_outstanding_count == 0;
369}
370
371// Insert the request on the correct request table. Return true if
372// the entry was already present.
373bool Sequencer::insertRequest(const CacheMsg& request) {
374 int thread = request.getThreadID();
375 assert(thread >= 0);
376 int total_outstanding = 0;
377 int smt_threads = RubyConfig::numberofSMTThreads();
378 for(int p=0; p < smt_threads; ++p){
379 total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
380 }
381 assert(m_outstanding_count == total_outstanding);
382
383 // See if we should schedule a deadlock check
384 if (m_deadlock_check_scheduled == false) {
385 g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
386 m_deadlock_check_scheduled = true;
387 }
388
389 if ((request.getType() == CacheRequestType_ST) ||
390 (request.getType() == CacheRequestType_ATOMIC)) {
391 if (m_writeRequestTable_ptr[thread]->exist(line_address(request.getAddress()))) {
392 m_writeRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
393 return true;
394 }
395 m_writeRequestTable_ptr[thread]->allocate(line_address(request.getAddress()));
396 m_writeRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
397 m_outstanding_count++;
398 } else {
399 if (m_readRequestTable_ptr[thread]->exist(line_address(request.getAddress()))) {
400 m_readRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
401 return true;
402 }
403 m_readRequestTable_ptr[thread]->allocate(line_address(request.getAddress()));
404 m_readRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
405 m_outstanding_count++;
406 }
407
408 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
409
410 total_outstanding = 0;
411 for(int p=0; p < smt_threads; ++p){
412 total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
413 }
414
415 assert(m_outstanding_count == total_outstanding);
416 return false;
417}
418
419void Sequencer::removeRequest(const CacheMsg& request) {
420 int thread = request.getThreadID();
421 assert(thread >= 0);
422 int total_outstanding = 0;
423 int smt_threads = RubyConfig::numberofSMTThreads();
424 for(int p=0; p < smt_threads; ++p){
425 total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
426 }
427 assert(m_outstanding_count == total_outstanding);
428
429 if ((request.getType() == CacheRequestType_ST) ||
430 (request.getType() == CacheRequestType_ATOMIC)) {
431 m_writeRequestTable_ptr[thread]->deallocate(line_address(request.getAddress()));
432 } else {
433 m_readRequestTable_ptr[thread]->deallocate(line_address(request.getAddress()));
434 }
435 m_outstanding_count--;
436
437 total_outstanding = 0;
438 for(int p=0; p < smt_threads; ++p){
439 total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
440 }
441 assert(m_outstanding_count == total_outstanding);
442}
443
444void Sequencer::writeCallback(const Address& address) {
445 DataBlock data;
446 writeCallback(address, data);
447}
448
449void Sequencer::writeCallback(const Address& address, DataBlock& data) {
450 // process oldest thread first
451 int thread = -1;
452 Time oldest_time = 0;
453 int smt_threads = RubyConfig::numberofSMTThreads();
454 for(int t=0; t < smt_threads; ++t){
455 if(m_writeRequestTable_ptr[t]->exist(address)){
456 CacheMsg & request = m_writeRequestTable_ptr[t]->lookup(address);
457 if(thread == -1 || (request.getTime() < oldest_time) ){
458 thread = t;
459 oldest_time = request.getTime();
460 }
461 }
462 }
463 // make sure we found an oldest thread
464 ASSERT(thread != -1);
465
466 CacheMsg & request = m_writeRequestTable_ptr[thread]->lookup(address);
467
468 writeCallback(address, data, GenericMachineType_NULL, PrefetchBit_No, thread);
469}
470
471void Sequencer::writeCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, PrefetchBit pf, int thread) {
472
473 assert(address == line_address(address));
474 assert(thread >= 0);
475 assert(m_writeRequestTable_ptr[thread]->exist(line_address(address)));
476
477 writeCallback(address, data, respondingMach, thread);
478
479}
480
481void Sequencer::writeCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, int thread) {
482 assert(address == line_address(address));
483 assert(m_writeRequestTable_ptr[thread]->exist(line_address(address)));
484 CacheMsg request = m_writeRequestTable_ptr[thread]->lookup(address);
485 assert( request.getThreadID() == thread);
486 removeRequest(request);
487
488 assert((request.getType() == CacheRequestType_ST) ||
489 (request.getType() == CacheRequestType_ATOMIC));
490
491 hitCallback(request, data, respondingMach, thread);
492
493}
494
495void Sequencer::readCallback(const Address& address) {
496 DataBlock data;
497 readCallback(address, data);
498}
499
500void Sequencer::readCallback(const Address& address, DataBlock& data) {
501 // process oldest thread first
502 int thread = -1;
503 Time oldest_time = 0;
504 int smt_threads = RubyConfig::numberofSMTThreads();
505 for(int t=0; t < smt_threads; ++t){
506 if(m_readRequestTable_ptr[t]->exist(address)){
507 CacheMsg & request = m_readRequestTable_ptr[t]->lookup(address);
508 if(thread == -1 || (request.getTime() < oldest_time) ){
509 thread = t;
510 oldest_time = request.getTime();
511 }
512 }
513 }
514 // make sure we found an oldest thread
515 ASSERT(thread != -1);
516
517 CacheMsg & request = m_readRequestTable_ptr[thread]->lookup(address);
518
519 readCallback(address, data, GenericMachineType_NULL, PrefetchBit_No, thread);
520}
521
522void Sequencer::readCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, PrefetchBit pf, int thread) {
523
524 assert(address == line_address(address));
525 assert(m_readRequestTable_ptr[thread]->exist(line_address(address)));
526
527 readCallback(address, data, respondingMach, thread);
528}
529
530void Sequencer::readCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, int thread) {
531 assert(address == line_address(address));
532 assert(m_readRequestTable_ptr[thread]->exist(line_address(address)));
533
534 CacheMsg request = m_readRequestTable_ptr[thread]->lookup(address);
535 assert( request.getThreadID() == thread );
536 removeRequest(request);
537
538 assert((request.getType() == CacheRequestType_LD) ||
539 (request.getType() == CacheRequestType_IFETCH)
540 );
541
542 hitCallback(request, data, respondingMach, thread);
543}
544
545void Sequencer::hitCallback(const CacheMsg& request, DataBlock& data, GenericMachineType respondingMach, int thread) {
546 int size = request.getSize();
547 Address request_address = request.getAddress();
548 Address request_logical_address = request.getLogicalAddress();
549 Address request_line_address = line_address(request_address);
550 CacheRequestType type = request.getType();
551 int threadID = request.getThreadID();
552 Time issued_time = request.getTime();
553 int logical_proc_no = ((m_chip_ptr->getID() * RubyConfig::numberOfProcsPerChip()) + m_version) * RubyConfig::numberofSMTThreads() + threadID;
554
555 DEBUG_MSG(SEQUENCER_COMP, MedPrio, size);
556
557 // Set this cache entry to the most recently used
558 if (type == CacheRequestType_IFETCH) {
559 if (Protocol::m_TwoLevelCache) {
560 if (m_chip_ptr->m_L1Cache_L1IcacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
561 m_chip_ptr->m_L1Cache_L1IcacheMemory_vec[m_version]->setMRU(request_line_address);
562 }
563 }
564 else {
565 if (m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
566 m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->setMRU(request_line_address);
567 }
568 }
569 } else {
570 if (Protocol::m_TwoLevelCache) {
571 if (m_chip_ptr->m_L1Cache_L1DcacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
572 m_chip_ptr->m_L1Cache_L1DcacheMemory_vec[m_version]->setMRU(request_line_address);
573 }
574 }
575 else {
576 if (m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
577 m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->setMRU(request_line_address);
578 }
579 }
580 }
581
582 assert(g_eventQueue_ptr->getTime() >= issued_time);
583 Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
584
585 if (PROTOCOL_DEBUG_TRACE) {
586 g_system_ptr->getProfiler()->profileTransition("Seq", (m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version), -1, request.getAddress(), "", "Done", "",
587 int_to_string(miss_latency)+" cycles "+GenericMachineType_to_string(respondingMach)+" "+CacheRequestType_to_string(request.getType())+" "+PrefetchBit_to_string(request.getPrefetch()));
588 }
589
590 DEBUG_MSG(SEQUENCER_COMP, MedPrio, request_address);
591 DEBUG_MSG(SEQUENCER_COMP, MedPrio, request.getPrefetch());
592 if (request.getPrefetch() == PrefetchBit_Yes) {
593 DEBUG_MSG(SEQUENCER_COMP, MedPrio, "return");
594 g_system_ptr->getProfiler()->swPrefetchLatency(miss_latency, type, respondingMach);
595 return; // Ignore the software prefetch, don't callback the driver
596 }
597
598 // Profile the miss latency for all non-zero demand misses
599 if (miss_latency != 0) {
600 g_system_ptr->getProfiler()->missLatency(miss_latency, type, respondingMach);
601
602 }
603
604 bool write =
605 (type == CacheRequestType_ST) ||
606 (type == CacheRequestType_ATOMIC);
607
608 if (TSO && write) {
609 m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->callBack(line_address(request.getAddress()), data,
610 m_packetTable_ptr->lookup(request.getAddress()));
611 } else {
612
613 // Copy the correct bytes out of the cache line into the subblock
614 SubBlock subblock(request_address, request_logical_address, size);
615 subblock.mergeFrom(data); // copy the correct bytes from DataBlock in the SubBlock
616
617 // Scan the store buffer to see if there are any outstanding stores we need to collect
618 if (TSO) {
619 m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->updateSubBlock(subblock);
620 }
621
622 // Call into the Driver and let it read and/or modify the sub-block
623 Packet* pkt = m_packetTable_ptr->lookup(request.getAddress());
624
625 // update data if this is a store/atomic
626
627 /*
628 if (pkt->req->isCondSwap()) {
629 L1Cache_Entry entry = m_L1Cache_vec[m_version]->lookup(Address(pkt->req->physAddr()));
630 DataBlk datablk = entry->getDataBlk();
631 uint8_t *orig_data = datablk.getArray();
632 if ( datablk.equal(pkt->req->getExtraData()) )
633 datablk->setArray(pkt->getData());
634 pkt->setData(orig_data);
635 }
636 */
637
638 g_system_ptr->getDriver()->hitCallback(pkt);
639 m_packetTable_ptr->remove(request.getAddress());
640
641 // If the request was a Store or Atomic, apply the changes in the SubBlock to the DataBlock
642 // (This is only triggered for the non-TSO case)
643 if (write) {
644 assert(!TSO);
645 subblock.mergeTo(data); // copy the correct bytes from SubBlock into the DataBlock
646 }
647 }
648}
649
650void Sequencer::printDebug(){
651 //notify driver of debug
652 g_system_ptr->getDriver()->printDebug();
653}
654
655//dsm: breaks build, delayed
656// Returns true if the sequencer already has a load or store outstanding
657bool
658Sequencer::isReady(const Packet* pkt) const
659{
660
661 int cpu_number = pkt->req->contextId();
662 la_t logical_addr = pkt->req->getVaddr();
663 pa_t physical_addr = pkt->req->getPaddr();
664 CacheRequestType type_of_request;
665 if ( pkt->req->isInstFetch() ) {
666 type_of_request = CacheRequestType_IFETCH;
667 } else if ( pkt->req->isLocked() || pkt->req->isSwap() ) {
668 type_of_request = CacheRequestType_ATOMIC;
669 } else if ( pkt->isRead() ) {
670 type_of_request = CacheRequestType_LD;
671 } else if ( pkt->isWrite() ) {
672 type_of_request = CacheRequestType_ST;
673 } else {
674 assert(false);
675 }
676 int thread = pkt->req->threadId();
677
678 CacheMsg request(Address( physical_addr ),
679 Address( physical_addr ),
680 type_of_request,
681 Address(0),
682 AccessModeType_UserMode, // User/supervisor mode
683 0, // Size in bytes of request
684 PrefetchBit_No, // Not a prefetch
685 0, // Version number
686 Address(logical_addr), // Virtual Address
687 thread // SMT thread
688 );
689 return isReady(request);
690}
691
692bool
693Sequencer::isReady(const CacheMsg& request) const
694{
695 if (m_outstanding_count >= g_SEQUENCER_OUTSTANDING_REQUESTS) {
696 //cout << "TOO MANY OUTSTANDING: " << m_outstanding_count << " " << g_SEQUENCER_OUTSTANDING_REQUESTS << " VER " << m_version << endl;
697 //printProgress(cout);
698 return false;
699 }
700
701 // This code allows reads to be performed even when we have a write
702 // request outstanding for the line
703 bool write =
704 (request.getType() == CacheRequestType_ST) ||
705 (request.getType() == CacheRequestType_ATOMIC);
706
707 // LUKE - disallow more than one request type per address
708 // INVARIANT: at most one request type per address, per processor
709 int smt_threads = RubyConfig::numberofSMTThreads();
710 for(int p=0; p < smt_threads; ++p){
711 if( m_writeRequestTable_ptr[p]->exist(line_address(request.getAddress())) ||
712 m_readRequestTable_ptr[p]->exist(line_address(request.getAddress())) ){
713 //cout << "OUTSTANDING REQUEST EXISTS " << p << " VER " << m_version << endl;
714 //printProgress(cout);
715 return false;
716 }
717 }
718
719 if (TSO) {
720 return m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->isReady();
721 }
722 return true;
723}
724
725//dsm: breaks build, delayed
726// Called by Driver (Simics or Tester).
727void
728Sequencer::makeRequest(Packet* pkt)
729{
730 int cpu_number = pkt->req->contextId();
731 la_t logical_addr = pkt->req->getVaddr();
732 pa_t physical_addr = pkt->req->getPaddr();
733 int request_size = pkt->getSize();
734 CacheRequestType type_of_request;
735 PrefetchBit prefetch;
736 bool write = false;
737 if ( pkt->req->isInstFetch() ) {
738 type_of_request = CacheRequestType_IFETCH;
739 } else if ( pkt->req->isLocked() || pkt->req->isSwap() ) {
740 type_of_request = CacheRequestType_ATOMIC;
741 write = true;
742 } else if ( pkt->isRead() ) {
743 type_of_request = CacheRequestType_LD;
744 } else if ( pkt->isWrite() ) {
745 type_of_request = CacheRequestType_ST;
746 write = true;
747 } else {
748 assert(false);
749 }
750 if (pkt->req->isPrefetch()) {
751 prefetch = PrefetchBit_Yes;
752 } else {
753 prefetch = PrefetchBit_No;
754 }
755 la_t virtual_pc = pkt->req->getPC();
756 int isPriv = false; // TODO: get permission data
757 int thread = pkt->req->threadId();
758
759 AccessModeType access_mode = AccessModeType_UserMode; // TODO: get actual permission
760
761 CacheMsg request(Address( physical_addr ),
762 Address( physical_addr ),
763 type_of_request,
764 Address(virtual_pc),
765 access_mode, // User/supervisor mode
766 request_size, // Size in bytes of request
767 prefetch,
768 0, // Version number
769 Address(logical_addr), // Virtual Address
770 thread // SMT thread
771 );
772
773 if ( TSO && write && !pkt->req->isPrefetch() ) {
774 assert(m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->isReady());
775 m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->insertStore(pkt, request);
776 return;
777 }
778
779 m_packetTable_ptr->insert(Address( physical_addr ), pkt);
780
781 doRequest(request);
782}
783
784bool Sequencer::doRequest(const CacheMsg& request) {
785 bool hit = false;
786 // Check the fast path
787 DataBlock* data_ptr;
788
789 int thread = request.getThreadID();
790
791 hit = tryCacheAccess(line_address(request.getAddress()),
792 request.getType(),
793 request.getProgramCounter(),
794 request.getAccessMode(),
795 request.getSize(),
796 data_ptr);
797
798 if (hit && (request.getType() == CacheRequestType_IFETCH || !REMOVE_SINGLE_CYCLE_DCACHE_FAST_PATH) ) {
799 DEBUG_MSG(SEQUENCER_COMP, MedPrio, "Fast path hit");
800 hitCallback(request, *data_ptr, GenericMachineType_L1Cache, thread);
801 return true;
802 }
803
804 if (TSO && (request.getType() == CacheRequestType_LD || request.getType() == CacheRequestType_IFETCH)) {
805
806 // See if we can satisfy the load entirely from the store buffer
807 SubBlock subblock(line_address(request.getAddress()), request.getSize());
808 if (m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->trySubBlock(subblock)) {
809 DataBlock dummy;
810 hitCallback(request, dummy, GenericMachineType_NULL, thread); // Call with an 'empty' datablock, since the data is in the store buffer
811 return true;
812 }
813 }
814
815 DEBUG_MSG(SEQUENCER_COMP, MedPrio, "Fast path miss");
816 issueRequest(request);
817 return hit;
818}
819
820void Sequencer::issueRequest(const CacheMsg& request) {
821 bool found = insertRequest(request);
822
823 if (!found) {
824 CacheMsg msg = request;
825 msg.getAddress() = line_address(request.getAddress()); // Make line address
826
827 // Fast Path L1 misses are profiled here - all non-fast path misses are profiled within the generated protocol code
828 if (!REMOVE_SINGLE_CYCLE_DCACHE_FAST_PATH) {
829 g_system_ptr->getProfiler()->addPrimaryStatSample(msg, m_chip_ptr->getID());
830 }
831
832 if (PROTOCOL_DEBUG_TRACE) {
833 g_system_ptr->getProfiler()->profileTransition("Seq", (m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip() + m_version), -1, msg.getAddress(),"", "Begin", "", CacheRequestType_to_string(request.getType()));
834 }
835
836#if 0
837 // Commented out by nate binkert because I removed the trace stuff
838 if (g_system_ptr->getTracer()->traceEnabled()) {
839 g_system_ptr->getTracer()->traceRequest((m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version), msg.getAddress(), msg.getProgramCounter(),
840 msg.getType(), g_eventQueue_ptr->getTime());
841 }
842#endif
843
844 Time latency = 0; // initialzed to an null value
845
846 latency = SEQUENCER_TO_CONTROLLER_LATENCY;
847
848 // Send the message to the cache controller
849 assert(latency > 0);
850 m_chip_ptr->m_L1Cache_mandatoryQueue_vec[m_version]->enqueue(msg, latency);
851
852 } // !found
853}
854
855bool Sequencer::tryCacheAccess(const Address& addr, CacheRequestType type,
856 const Address& pc, AccessModeType access_mode,
857 int size, DataBlock*& data_ptr) {
858 if (type == CacheRequestType_IFETCH) {
859 if (Protocol::m_TwoLevelCache) {
860 return m_chip_ptr->m_L1Cache_L1IcacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
861 }
862 else {
863 return m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
864 }
865 } else {
866 if (Protocol::m_TwoLevelCache) {
867 return m_chip_ptr->m_L1Cache_L1DcacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
868 }
869 else {
870 return m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
871 }
872 }
873}
874
875void Sequencer::resetRequestTime(const Address& addr, int thread){
876 assert(thread >= 0);
877 //reset both load and store requests, if they exist
878 if(m_readRequestTable_ptr[thread]->exist(line_address(addr))){
879 CacheMsg& request = m_readRequestTable_ptr[thread]->lookup(addr);
880 if( request.m_AccessMode != AccessModeType_UserMode){
881 cout << "resetRequestType ERROR read request addr = " << addr << " thread = "<< thread << " is SUPERVISOR MODE" << endl;
882 printProgress(cout);
883 }
884 //ASSERT(request.m_AccessMode == AccessModeType_UserMode);
885 request.setTime(g_eventQueue_ptr->getTime());
886 }
887 if(m_writeRequestTable_ptr[thread]->exist(line_address(addr))){
888 CacheMsg& request = m_writeRequestTable_ptr[thread]->lookup(addr);
889 if( request.m_AccessMode != AccessModeType_UserMode){
890 cout << "resetRequestType ERROR write request addr = " << addr << " thread = "<< thread << " is SUPERVISOR MODE" << endl;
891 printProgress(cout);
892 }
893 //ASSERT(request.m_AccessMode == AccessModeType_UserMode);
894 request.setTime(g_eventQueue_ptr->getTime());
895 }
896}
897
898// removes load request from queue
899void Sequencer::removeLoadRequest(const Address & addr, int thread){
900 removeRequest(getReadRequest(addr, thread));
901}
902
903void Sequencer::removeStoreRequest(const Address & addr, int thread){
904 removeRequest(getWriteRequest(addr, thread));
905}
906
907// returns the read CacheMsg
908CacheMsg & Sequencer::getReadRequest( const Address & addr, int thread ){
909 Address temp = addr;
910 assert(thread >= 0);
911 assert(temp == line_address(temp));
912 assert(m_readRequestTable_ptr[thread]->exist(addr));
913 return m_readRequestTable_ptr[thread]->lookup(addr);
914}
915
916CacheMsg & Sequencer::getWriteRequest( const Address & addr, int thread){
917 Address temp = addr;
918 assert(thread >= 0);
919 assert(temp == line_address(temp));
920 assert(m_writeRequestTable_ptr[thread]->exist(addr));
921 return m_writeRequestTable_ptr[thread]->lookup(addr);
922}
923
924void Sequencer::print(ostream& out) const {
925 out << "[Sequencer: " << m_chip_ptr->getID()
926 << ", outstanding requests: " << m_outstanding_count;
927
928 int smt_threads = RubyConfig::numberofSMTThreads();
929 for(int p=0; p < smt_threads; ++p){
930 out << ", read request table[ " << p << " ]: " << *m_readRequestTable_ptr[p]
931 << ", write request table[ " << p << " ]: " << *m_writeRequestTable_ptr[p];
932 }
933 out << "]";
934}
935
936// this can be called from setState whenever coherence permissions are upgraded
937// when invoked, coherence violations will be checked for the given block
938void Sequencer::checkCoherence(const Address& addr) {
939#ifdef CHECK_COHERENCE
940 g_system_ptr->checkGlobalCoherenceInvariant(addr);
941#endif
942}
943
944bool Sequencer::getRubyMemoryValue(const Address& addr, char* value,
945 unsigned int size_in_bytes ) {
946 for(unsigned int i=0; i < size_in_bytes; i++) {
947 std::cerr << __FILE__ << "(" << __LINE__ << "): Not implemented. " << std::endl;
948 value[i] = 0; // _read_physical_memory( m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version,
949 // addr.getAddress() + i, 1 );
950 }
951 return false; // Do nothing?
952}
953
954bool Sequencer::setRubyMemoryValue(const Address& addr, char *value,
955 unsigned int size_in_bytes) {
956 char test_buffer[64];
957
958 return false; // Do nothing?
959}
960