Deleted Added
sdiff udiff text old ( 9507:d2ab6d889fc7 ) new ( 9508:dde110931867 )
full compact
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/common/Global.hh"
43#include "mem/ruby/profiler/Profiler.hh"
44#include "mem/ruby/slicc_interface/RubyRequest.hh"
45#include "mem/ruby/system/Sequencer.hh"
46#include "mem/ruby/system/System.hh"
47#include "mem/packet.hh"
48
49using namespace std;
50
51Sequencer *
52RubySequencerParams::create()
53{
54 return new Sequencer(this);
55}
56
57Sequencer::Sequencer(const Params *p)
58 : RubyPort(p), deadlockCheckEvent(this)
59{
60 m_store_waiting_on_load_cycles = 0;
61 m_store_waiting_on_store_cycles = 0;
62 m_load_waiting_on_store_cycles = 0;
63 m_load_waiting_on_load_cycles = 0;
64
65 m_outstanding_count = 0;
66
67 m_instCache_ptr = p->icache;
68 m_dataCache_ptr = p->dcache;
69 m_max_outstanding_requests = p->max_outstanding_requests;
70 m_deadlock_threshold = p->deadlock_threshold;
71
72 assert(m_max_outstanding_requests > 0);
73 assert(m_deadlock_threshold > 0);
74 assert(m_instCache_ptr != NULL);
75 assert(m_dataCache_ptr != NULL);
76
77 m_usingNetworkTester = p->using_network_tester;
78}
79
80Sequencer::~Sequencer()
81{
82}
83
84void
85Sequencer::wakeup()
86{
87 assert(getDrainState() != Drainable::Draining);
88
89 // Check for deadlock of any of the requests
90 Cycles current_time = curCycle();
91
92 // Check across all outstanding requests
93 int total_outstanding = 0;
94
95 RequestTable::iterator read = m_readRequestTable.begin();
96 RequestTable::iterator read_end = m_readRequestTable.end();
97 for (; read != read_end; ++read) {
98 SequencerRequest* request = read->second;
99 if (current_time - request->issue_time < m_deadlock_threshold)
100 continue;
101
102 panic("Possible Deadlock detected. Aborting!\n"
103 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
104 "current time: %u issue_time: %d difference: %d\n", m_version,
105 Address(request->pkt->getAddr()), m_readRequestTable.size(),
106 current_time * clockPeriod(), request->issue_time * clockPeriod(),
107 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
108 }
109
110 RequestTable::iterator write = m_writeRequestTable.begin();
111 RequestTable::iterator write_end = m_writeRequestTable.end();
112 for (; write != write_end; ++write) {
113 SequencerRequest* request = write->second;
114 if (current_time - request->issue_time < m_deadlock_threshold)
115 continue;
116
117 panic("Possible Deadlock detected. Aborting!\n"
118 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
119 "current time: %u issue_time: %d difference: %d\n", m_version,
120 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
121 current_time * clockPeriod(), request->issue_time * clockPeriod(),
122 (current_time * clockPeriod()) - (request->issue_time * clockPeriod()));
123 }
124
125 total_outstanding += m_writeRequestTable.size();
126 total_outstanding += m_readRequestTable.size();
127
128 assert(m_outstanding_count == total_outstanding);
129
130 if (m_outstanding_count > 0) {
131 // If there are still outstanding requests, keep checking
132 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
133 }
134}
135
136void
137Sequencer::printStats(ostream & out) const
138{
139 out << "Sequencer: " << m_name << endl
140 << " store_waiting_on_load_cycles: "
141 << m_store_waiting_on_load_cycles << endl
142 << " store_waiting_on_store_cycles: "
143 << m_store_waiting_on_store_cycles << endl
144 << " load_waiting_on_load_cycles: "
145 << m_load_waiting_on_load_cycles << endl
146 << " load_waiting_on_store_cycles: "
147 << m_load_waiting_on_store_cycles << endl;
148}
149
150void
151Sequencer::printProgress(ostream& out) const
152{
153#if 0
154 int total_demand = 0;
155 out << "Sequencer Stats Version " << m_version << endl;
156 out << "Current time = " << g_system_ptr->getTime() << endl;
157 out << "---------------" << endl;
158 out << "outstanding requests" << endl;
159
160 out << "proc " << m_Read
161 << " version Requests = " << m_readRequestTable.size() << endl;
162
163 // print the request table
164 RequestTable::iterator read = m_readRequestTable.begin();
165 RequestTable::iterator read_end = m_readRequestTable.end();
166 for (; read != read_end; ++read) {
167 SequencerRequest* request = read->second;
168 out << "\tRequest[ " << i << " ] = " << request->type
169 << " Address " << rkeys[i]
170 << " Posted " << request->issue_time
171 << " PF " << PrefetchBit_No << endl;
172 total_demand++;
173 }
174
175 out << "proc " << m_version
176 << " Write Requests = " << m_writeRequestTable.size << endl;
177
178 // print the request table
179 RequestTable::iterator write = m_writeRequestTable.begin();
180 RequestTable::iterator write_end = m_writeRequestTable.end();
181 for (; write != write_end; ++write) {
182 SequencerRequest* request = write->second;
183 out << "\tRequest[ " << i << " ] = " << request.getType()
184 << " Address " << wkeys[i]
185 << " Posted " << request.getTime()
186 << " PF " << request.getPrefetch() << endl;
187 if (request.getPrefetch() == PrefetchBit_No) {
188 total_demand++;
189 }
190 }
191
192 out << endl;
193
194 out << "Total Number Outstanding: " << m_outstanding_count << endl
195 << "Total Number Demand : " << total_demand << endl
196 << "Total Number Prefetches : " << m_outstanding_count - total_demand
197 << endl << endl << endl;
198#endif
199}
200
201// Insert the request on the correct request table. Return true if
202// the entry was already present.
203RequestStatus
204Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
205{
206 assert(m_outstanding_count ==
207 (m_writeRequestTable.size() + m_readRequestTable.size()));
208
209 // See if we should schedule a deadlock check
210 if (!deadlockCheckEvent.scheduled() &&
211 getDrainState() != Drainable::Draining) {
212 schedule(deadlockCheckEvent, clockEdge(m_deadlock_threshold));
213 }
214
215 Address line_addr(pkt->getAddr());
216 line_addr.makeLineAddress();
217 // Create a default entry, mapping the address to NULL, the cast is
218 // there to make gcc 4.4 happy
219 RequestTable::value_type default_entry(line_addr,
220 (SequencerRequest*) NULL);
221
222 if ((request_type == RubyRequestType_ST) ||
223 (request_type == RubyRequestType_RMW_Read) ||
224 (request_type == RubyRequestType_RMW_Write) ||
225 (request_type == RubyRequestType_Load_Linked) ||
226 (request_type == RubyRequestType_Store_Conditional) ||
227 (request_type == RubyRequestType_Locked_RMW_Read) ||
228 (request_type == RubyRequestType_Locked_RMW_Write) ||
229 (request_type == RubyRequestType_FLUSH)) {
230
231 // Check if there is any outstanding read request for the same
232 // cache line.
233 if (m_readRequestTable.count(line_addr) > 0) {
234 m_store_waiting_on_load_cycles++;
235 return RequestStatus_Aliased;
236 }
237
238 pair<RequestTable::iterator, bool> r =
239 m_writeRequestTable.insert(default_entry);
240 if (r.second) {
241 RequestTable::iterator i = r.first;
242 i->second = new SequencerRequest(pkt, request_type, curCycle());
243 m_outstanding_count++;
244 } else {
245 // There is an outstanding write request for the cache line
246 m_store_waiting_on_store_cycles++;
247 return RequestStatus_Aliased;
248 }
249 } else {
250 // Check if there is any outstanding write request for the same
251 // cache line.
252 if (m_writeRequestTable.count(line_addr) > 0) {
253 m_load_waiting_on_store_cycles++;
254 return RequestStatus_Aliased;
255 }
256
257 pair<RequestTable::iterator, bool> r =
258 m_readRequestTable.insert(default_entry);
259
260 if (r.second) {
261 RequestTable::iterator i = r.first;
262 i->second = new SequencerRequest(pkt, request_type, curCycle());
263 m_outstanding_count++;
264 } else {
265 // There is an outstanding read request for the cache line
266 m_load_waiting_on_load_cycles++;
267 return RequestStatus_Aliased;
268 }
269 }
270
271 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
272 assert(m_outstanding_count ==
273 (m_writeRequestTable.size() + m_readRequestTable.size()));
274
275 return RequestStatus_Ready;
276}
277
278void
279Sequencer::markRemoved()
280{
281 m_outstanding_count--;
282 assert(m_outstanding_count ==
283 m_writeRequestTable.size() + m_readRequestTable.size());
284}
285
286void
287Sequencer::removeRequest(SequencerRequest* srequest)
288{
289 assert(m_outstanding_count ==
290 m_writeRequestTable.size() + m_readRequestTable.size());
291
292 Address line_addr(srequest->pkt->getAddr());
293 line_addr.makeLineAddress();
294 if ((srequest->m_type == RubyRequestType_ST) ||
295 (srequest->m_type == RubyRequestType_RMW_Read) ||
296 (srequest->m_type == RubyRequestType_RMW_Write) ||
297 (srequest->m_type == RubyRequestType_Load_Linked) ||
298 (srequest->m_type == RubyRequestType_Store_Conditional) ||
299 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
300 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
301 m_writeRequestTable.erase(line_addr);
302 } else {
303 m_readRequestTable.erase(line_addr);
304 }
305
306 markRemoved();
307}
308
309bool
310Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
311{
312 //
313 // The success flag indicates whether the LLSC operation was successful.
314 // LL ops will always succeed, but SC may fail if the cache line is no
315 // longer locked.
316 //
317 bool success = true;
318 if (request->m_type == RubyRequestType_Store_Conditional) {
319 if (!m_dataCache_ptr->isLocked(address, m_version)) {
320 //
321 // For failed SC requests, indicate the failure to the cpu by
322 // setting the extra data to zero.
323 //
324 request->pkt->req->setExtraData(0);
325 success = false;
326 } else {
327 //
328 // For successful SC requests, indicate the success to the cpu by
329 // setting the extra data to one.
330 //
331 request->pkt->req->setExtraData(1);
332 }
333 //
334 // Independent of success, all SC operations must clear the lock
335 //
336 m_dataCache_ptr->clearLocked(address);
337 } else if (request->m_type == RubyRequestType_Load_Linked) {
338 //
339 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
340 // previously locked cache lines?
341 //
342 m_dataCache_ptr->setLocked(address, m_version);
343 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
344 (m_dataCache_ptr->isLocked(address, m_version))) {
345 //
346 // Normal writes should clear the locked address
347 //
348 m_dataCache_ptr->clearLocked(address);
349 }
350 return success;
351}
352
353void
354Sequencer::writeCallback(const Address& address, DataBlock& data)
355{
356 writeCallback(address, GenericMachineType_NULL, data);
357}
358
359void
360Sequencer::writeCallback(const Address& address,
361 GenericMachineType mach,
362 DataBlock& data)
363{
364 writeCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
365}
366
367void
368Sequencer::writeCallback(const Address& address,
369 GenericMachineType mach,
370 DataBlock& data,
371 Cycles initialRequestTime,
372 Cycles forwardRequestTime,
373 Cycles firstResponseTime)
374{
375 assert(address == line_address(address));
376 assert(m_writeRequestTable.count(line_address(address)));
377
378 RequestTable::iterator i = m_writeRequestTable.find(address);
379 assert(i != m_writeRequestTable.end());
380 SequencerRequest* request = i->second;
381
382 m_writeRequestTable.erase(i);
383 markRemoved();
384
385 assert((request->m_type == RubyRequestType_ST) ||
386 (request->m_type == RubyRequestType_ATOMIC) ||
387 (request->m_type == RubyRequestType_RMW_Read) ||
388 (request->m_type == RubyRequestType_RMW_Write) ||
389 (request->m_type == RubyRequestType_Load_Linked) ||
390 (request->m_type == RubyRequestType_Store_Conditional) ||
391 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
392 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
393 (request->m_type == RubyRequestType_FLUSH));
394
395
396 //
397 // For Alpha, properly handle LL, SC, and write requests with respect to
398 // locked cache blocks.
399 //
400 // Not valid for Network_test protocl
401 //
402 bool success = true;
403 if(!m_usingNetworkTester)
404 success = handleLlsc(address, request);
405
406 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
407 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
408 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
409 m_controller->unblock(address);
410 }
411
412 hitCallback(request, mach, data, success,
413 initialRequestTime, forwardRequestTime, firstResponseTime);
414}
415
416void
417Sequencer::readCallback(const Address& address, DataBlock& data)
418{
419 readCallback(address, GenericMachineType_NULL, data);
420}
421
422void
423Sequencer::readCallback(const Address& address,
424 GenericMachineType mach,
425 DataBlock& data)
426{
427 readCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
428}
429
430void
431Sequencer::readCallback(const Address& address,
432 GenericMachineType mach,
433 DataBlock& data,
434 Cycles initialRequestTime,
435 Cycles forwardRequestTime,
436 Cycles firstResponseTime)
437{
438 assert(address == line_address(address));
439 assert(m_readRequestTable.count(line_address(address)));
440
441 RequestTable::iterator i = m_readRequestTable.find(address);
442 assert(i != m_readRequestTable.end());
443 SequencerRequest* request = i->second;
444
445 m_readRequestTable.erase(i);
446 markRemoved();
447
448 assert((request->m_type == RubyRequestType_LD) ||
449 (request->m_type == RubyRequestType_IFETCH));
450
451 hitCallback(request, mach, data, true,
452 initialRequestTime, forwardRequestTime, firstResponseTime);
453}
454
455void
456Sequencer::hitCallback(SequencerRequest* srequest,
457 GenericMachineType mach,
458 DataBlock& data,
459 bool success,
460 Cycles initialRequestTime,
461 Cycles forwardRequestTime,
462 Cycles firstResponseTime)
463{
464 PacketPtr pkt = srequest->pkt;
465 Address request_address(pkt->getAddr());
466 Address request_line_address(pkt->getAddr());
467 request_line_address.makeLineAddress();
468 RubyRequestType type = srequest->m_type;
469 Cycles issued_time = srequest->issue_time;
470
471 // Set this cache entry to the most recently used
472 if (type == RubyRequestType_IFETCH) {
473 m_instCache_ptr->setMRU(request_line_address);
474 } else {
475 m_dataCache_ptr->setMRU(request_line_address);
476 }
477
478 assert(curCycle() >= issued_time);
479 Cycles miss_latency = curCycle() - issued_time;
480
481 // Profile the miss latency for all non-zero demand misses
482 if (miss_latency != 0) {
483 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
484
485 if (mach == GenericMachineType_L1Cache_wCC) {
486 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
487 initialRequestTime, forwardRequestTime,
488 firstResponseTime, curCycle());
489 }
490
491 if (mach == GenericMachineType_Directory) {
492 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
493 initialRequestTime, forwardRequestTime,
494 firstResponseTime, curCycle());
495 }
496
497 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
498 curTick(), m_version, "Seq",
499 success ? "Done" : "SC_Failed", "", "",
500 request_address, miss_latency);
501 }
502
503 // update the data
504 if (g_system_ptr->m_warmup_enabled) {
505 assert(pkt->getPtr<uint8_t>(false) != NULL);
506 data.setData(pkt->getPtr<uint8_t>(false),
507 request_address.getOffset(), pkt->getSize());
508 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
509 if ((type == RubyRequestType_LD) ||
510 (type == RubyRequestType_IFETCH) ||
511 (type == RubyRequestType_RMW_Read) ||
512 (type == RubyRequestType_Locked_RMW_Read) ||
513 (type == RubyRequestType_Load_Linked)) {
514 memcpy(pkt->getPtr<uint8_t>(true),
515 data.getData(request_address.getOffset(), pkt->getSize()),
516 pkt->getSize());
517 } else {
518 data.setData(pkt->getPtr<uint8_t>(true),
519 request_address.getOffset(), pkt->getSize());
520 }
521 } else {
522 DPRINTF(MemoryAccess,
523 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
524 RubyRequestType_to_string(type));
525 }
526
527 // If using the RubyTester, update the RubyTester sender state's
528 // subBlock with the recieved data. The tester will later access
529 // this state.
530 // Note: RubyPort will access it's sender state before the
531 // RubyTester.
532 if (m_usingRubyTester) {
533 RubyPort::SenderState *requestSenderState =
534 safe_cast<RubyPort::SenderState*>(pkt->senderState);
535 RubyTester::SenderState* testerSenderState =
536 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
537 testerSenderState->subBlock->mergeFrom(data);
538 }
539
540 delete srequest;
541
542 if (g_system_ptr->m_warmup_enabled) {
543 delete pkt;
544 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
545 } else if (g_system_ptr->m_cooldown_enabled) {
546 delete pkt;
547 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
548 } else {
549 ruby_hit_callback(pkt);
550 }
551}
552
553bool
554Sequencer::empty() const
555{
556 return m_writeRequestTable.empty() && m_readRequestTable.empty();
557}
558
559RequestStatus
560Sequencer::makeRequest(PacketPtr pkt)
561{
562 if (m_outstanding_count >= m_max_outstanding_requests) {
563 return RequestStatus_BufferFull;
564 }
565
566 RubyRequestType primary_type = RubyRequestType_NULL;
567 RubyRequestType secondary_type = RubyRequestType_NULL;
568
569 if (pkt->isLLSC()) {
570 //
571 // Alpha LL/SC instructions need to be handled carefully by the cache
572 // coherence protocol to ensure they follow the proper semantics. In
573 // particular, by identifying the operations as atomic, the protocol
574 // should understand that migratory sharing optimizations should not
575 // be performed (i.e. a load between the LL and SC should not steal
576 // away exclusive permission).
577 //
578 if (pkt->isWrite()) {
579 DPRINTF(RubySequencer, "Issuing SC\n");
580 primary_type = RubyRequestType_Store_Conditional;
581 } else {
582 DPRINTF(RubySequencer, "Issuing LL\n");
583 assert(pkt->isRead());
584 primary_type = RubyRequestType_Load_Linked;
585 }
586 secondary_type = RubyRequestType_ATOMIC;
587 } else if (pkt->req->isLocked()) {
588 //
589 // x86 locked instructions are translated to store cache coherence
590 // requests because these requests should always be treated as read
591 // exclusive operations and should leverage any migratory sharing
592 // optimization built into the protocol.
593 //
594 if (pkt->isWrite()) {
595 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
596 primary_type = RubyRequestType_Locked_RMW_Write;
597 } else {
598 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
599 assert(pkt->isRead());
600 primary_type = RubyRequestType_Locked_RMW_Read;
601 }
602 secondary_type = RubyRequestType_ST;
603 } else {
604 if (pkt->isRead()) {
605 if (pkt->req->isInstFetch()) {
606 primary_type = secondary_type = RubyRequestType_IFETCH;
607 } else {
608#if THE_ISA == X86_ISA
609 uint32_t flags = pkt->req->getFlags();
610 bool storeCheck = flags &
611 (TheISA::StoreCheck << TheISA::FlagShift);
612#else
613 bool storeCheck = false;
614#endif // X86_ISA
615 if (storeCheck) {
616 primary_type = RubyRequestType_RMW_Read;
617 secondary_type = RubyRequestType_ST;
618 } else {
619 primary_type = secondary_type = RubyRequestType_LD;
620 }
621 }
622 } else if (pkt->isWrite()) {
623 //
624 // Note: M5 packets do not differentiate ST from RMW_Write
625 //
626 primary_type = secondary_type = RubyRequestType_ST;
627 } else if (pkt->isFlush()) {
628 primary_type = secondary_type = RubyRequestType_FLUSH;
629 } else {
630 panic("Unsupported ruby packet type\n");
631 }
632 }
633
634 RequestStatus status = insertRequest(pkt, primary_type);
635 if (status != RequestStatus_Ready)
636 return status;
637
638 issueRequest(pkt, secondary_type);
639
640 // TODO: issue hardware prefetches here
641 return RequestStatus_Issued;
642}
643
644void
645Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
646{
647 assert(pkt != NULL);
648 int proc_id = -1;
649 if (pkt->req->hasContextId()) {
650 proc_id = pkt->req->contextId();
651 }
652
653 // If valid, copy the pc to the ruby request
654 Addr pc = 0;
655 if (pkt->req->hasPC()) {
656 pc = pkt->req->getPC();
657 }
658
659 RubyRequest *msg = new RubyRequest(clockEdge(), pkt->getAddr(),
660 pkt->getPtr<uint8_t>(true),
661 pkt->getSize(), pc, secondary_type,
662 RubyAccessMode_Supervisor, pkt,
663 PrefetchBit_No, proc_id);
664
665 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
666 curTick(), m_version, "Seq", "Begin", "", "",
667 msg->getPhysicalAddress(),
668 RubyRequestType_to_string(secondary_type));
669
670 Cycles latency(0); // initialzed to an null value
671
672 if (secondary_type == RubyRequestType_IFETCH)
673 latency = m_instCache_ptr->getLatency();
674 else
675 latency = m_dataCache_ptr->getLatency();
676
677 // Send the message to the cache controller
678 assert(latency > 0);
679
680 assert(m_mandatory_q_ptr != NULL);
681 m_mandatory_q_ptr->enqueue(msg, latency);
682}
683
684template <class KEY, class VALUE>
685std::ostream &
686operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
687{
688 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
689 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
690
691 out << "[";
692 for (; i != end; ++i)
693 out << " " << i->first << "=" << i->second;
694 out << " ]";
695
696 return out;
697}
698
699void
700Sequencer::print(ostream& out) const
701{
702 out << "[Sequencer: " << m_version
703 << ", outstanding requests: " << m_outstanding_count
704 << ", read request table: " << m_readRequestTable
705 << ", write request table: " << m_writeRequestTable
706 << "]";
707}
708
709// this can be called from setState whenever coherence permissions are
710// upgraded when invoked, coherence violations will be checked for the
711// given block
712void
713Sequencer::checkCoherence(const Address& addr)
714{
715#ifdef CHECK_COHERENCE
716 g_system_ptr->checkGlobalCoherenceInvariant(addr);
717#endif
718}
719
720void
721Sequencer::recordRequestType(SequencerRequestType requestType) {
722 DPRINTF(RubyStats, "Recorded statistic: %s\n",
723 SequencerRequestType_to_string(requestType));
724}
725
726
727void
728Sequencer::evictionCallback(const Address& address)
729{
730 ruby_eviction_callback(address);
731}