Deleted Added
sdiff udiff text old ( 9171:ae88ecf37145 ) new ( 9206:f6483789d23a )
full compact
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "base/misc.hh"
30#include "base/str.hh"
31#include "config/the_isa.hh"
32#if THE_ISA == X86_ISA
33#include "arch/x86/insts/microldstop.hh"
34#endif // X86_ISA
35#include "cpu/testers/rubytest/RubyTester.hh"
36#include "debug/MemoryAccess.hh"
37#include "debug/ProtocolTrace.hh"
38#include "debug/RubySequencer.hh"
39#include "debug/RubyStats.hh"
40#include "mem/protocol/PrefetchBit.hh"
41#include "mem/protocol/RubyAccessMode.hh"
42#include "mem/ruby/buffers/MessageBuffer.hh"
43#include "mem/ruby/common/Global.hh"
44#include "mem/ruby/profiler/Profiler.hh"
45#include "mem/ruby/slicc_interface/RubyRequest.hh"
46#include "mem/ruby/system/Sequencer.hh"
47#include "mem/ruby/system/System.hh"
48#include "mem/packet.hh"
49
50using namespace std;
51
52Sequencer *
53RubySequencerParams::create()
54{
55 return new Sequencer(this);
56}
57
58Sequencer::Sequencer(const Params *p)
59 : RubyPort(p), deadlockCheckEvent(this)
60{
61 m_store_waiting_on_load_cycles = 0;
62 m_store_waiting_on_store_cycles = 0;
63 m_load_waiting_on_store_cycles = 0;
64 m_load_waiting_on_load_cycles = 0;
65
66 m_outstanding_count = 0;
67
68 m_instCache_ptr = p->icache;
69 m_dataCache_ptr = p->dcache;
70 m_max_outstanding_requests = p->max_outstanding_requests;
71 m_deadlock_threshold = p->deadlock_threshold;
72
73 assert(m_max_outstanding_requests > 0);
74 assert(m_deadlock_threshold > 0);
75 assert(m_instCache_ptr != NULL);
76 assert(m_dataCache_ptr != NULL);
77
78 m_usingNetworkTester = p->using_network_tester;
79}
80
81Sequencer::~Sequencer()
82{
83}
84
85void
86Sequencer::wakeup()
87{
88 // Check for deadlock of any of the requests
89 Time current_time = g_system_ptr->getTime();
90
91 // Check across all outstanding requests
92 int total_outstanding = 0;
93
94 RequestTable::iterator read = m_readRequestTable.begin();
95 RequestTable::iterator read_end = m_readRequestTable.end();
96 for (; read != read_end; ++read) {
97 SequencerRequest* request = read->second;
98 if (current_time - request->issue_time < m_deadlock_threshold)
99 continue;
100
101 panic("Possible Deadlock detected. Aborting!\n"
102 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
103 "current time: %u issue_time: %d difference: %d\n", m_version,
104 Address(request->pkt->getAddr()), m_readRequestTable.size(),
105 current_time, request->issue_time,
106 current_time - request->issue_time);
107 }
108
109 RequestTable::iterator write = m_writeRequestTable.begin();
110 RequestTable::iterator write_end = m_writeRequestTable.end();
111 for (; write != write_end; ++write) {
112 SequencerRequest* request = write->second;
113 if (current_time - request->issue_time < m_deadlock_threshold)
114 continue;
115
116 panic("Possible Deadlock detected. Aborting!\n"
117 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
118 "current time: %u issue_time: %d difference: %d\n", m_version,
119 Address(request->pkt->getAddr()), m_writeRequestTable.size(),
120 current_time, request->issue_time,
121 current_time - request->issue_time);
122 }
123
124 total_outstanding += m_writeRequestTable.size();
125 total_outstanding += m_readRequestTable.size();
126
127 assert(m_outstanding_count == total_outstanding);
128
129 if (m_outstanding_count > 0) {
130 // If there are still outstanding requests, keep checking
131 schedule(deadlockCheckEvent,
132 g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
133 }
134}
135
136void
137Sequencer::printStats(ostream & out) const
138{
139 out << "Sequencer: " << m_name << endl
140 << " store_waiting_on_load_cycles: "
141 << m_store_waiting_on_load_cycles << endl
142 << " store_waiting_on_store_cycles: "
143 << m_store_waiting_on_store_cycles << endl
144 << " load_waiting_on_load_cycles: "
145 << m_load_waiting_on_load_cycles << endl
146 << " load_waiting_on_store_cycles: "
147 << m_load_waiting_on_store_cycles << endl;
148}
149
150void
151Sequencer::printProgress(ostream& out) const
152{
153#if 0
154 int total_demand = 0;
155 out << "Sequencer Stats Version " << m_version << endl;
156 out << "Current time = " << g_system_ptr->getTime() << endl;
157 out << "---------------" << endl;
158 out << "outstanding requests" << endl;
159
160 out << "proc " << m_Read
161 << " version Requests = " << m_readRequestTable.size() << endl;
162
163 // print the request table
164 RequestTable::iterator read = m_readRequestTable.begin();
165 RequestTable::iterator read_end = m_readRequestTable.end();
166 for (; read != read_end; ++read) {
167 SequencerRequest* request = read->second;
168 out << "\tRequest[ " << i << " ] = " << request->type
169 << " Address " << rkeys[i]
170 << " Posted " << request->issue_time
171 << " PF " << PrefetchBit_No << endl;
172 total_demand++;
173 }
174
175 out << "proc " << m_version
176 << " Write Requests = " << m_writeRequestTable.size << endl;
177
178 // print the request table
179 RequestTable::iterator write = m_writeRequestTable.begin();
180 RequestTable::iterator write_end = m_writeRequestTable.end();
181 for (; write != write_end; ++write) {
182 SequencerRequest* request = write->second;
183 out << "\tRequest[ " << i << " ] = " << request.getType()
184 << " Address " << wkeys[i]
185 << " Posted " << request.getTime()
186 << " PF " << request.getPrefetch() << endl;
187 if (request.getPrefetch() == PrefetchBit_No) {
188 total_demand++;
189 }
190 }
191
192 out << endl;
193
194 out << "Total Number Outstanding: " << m_outstanding_count << endl
195 << "Total Number Demand : " << total_demand << endl
196 << "Total Number Prefetches : " << m_outstanding_count - total_demand
197 << endl << endl << endl;
198#endif
199}
200
201// Insert the request on the correct request table. Return true if
202// the entry was already present.
203RequestStatus
204Sequencer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
205{
206 assert(m_outstanding_count ==
207 (m_writeRequestTable.size() + m_readRequestTable.size()));
208
209 // See if we should schedule a deadlock check
210 if (deadlockCheckEvent.scheduled() == false) {
211 schedule(deadlockCheckEvent,
212 g_system_ptr->clockPeriod() * m_deadlock_threshold + curTick());
213 }
214
215 Address line_addr(pkt->getAddr());
216 line_addr.makeLineAddress();
217 if ((request_type == RubyRequestType_ST) ||
218 (request_type == RubyRequestType_RMW_Read) ||
219 (request_type == RubyRequestType_RMW_Write) ||
220 (request_type == RubyRequestType_Load_Linked) ||
221 (request_type == RubyRequestType_Store_Conditional) ||
222 (request_type == RubyRequestType_Locked_RMW_Read) ||
223 (request_type == RubyRequestType_Locked_RMW_Write) ||
224 (request_type == RubyRequestType_FLUSH)) {
225
226 // Check if there is any outstanding read request for the same
227 // cache line.
228 if (m_readRequestTable.count(line_addr) > 0) {
229 m_store_waiting_on_load_cycles++;
230 return RequestStatus_Aliased;
231 }
232
233 pair<RequestTable::iterator, bool> r =
234 m_writeRequestTable.insert(RequestTable::value_type(line_addr, 0));
235 if (r.second) {
236 RequestTable::iterator i = r.first;
237 i->second = new SequencerRequest(pkt, request_type,
238 g_system_ptr->getTime());
239 m_outstanding_count++;
240 } else {
241 // There is an outstanding write request for the cache line
242 m_store_waiting_on_store_cycles++;
243 return RequestStatus_Aliased;
244 }
245 } else {
246 // Check if there is any outstanding write request for the same
247 // cache line.
248 if (m_writeRequestTable.count(line_addr) > 0) {
249 m_load_waiting_on_store_cycles++;
250 return RequestStatus_Aliased;
251 }
252
253 pair<RequestTable::iterator, bool> r =
254 m_readRequestTable.insert(RequestTable::value_type(line_addr, 0));
255
256 if (r.second) {
257 RequestTable::iterator i = r.first;
258 i->second = new SequencerRequest(pkt, request_type,
259 g_system_ptr->getTime());
260 m_outstanding_count++;
261 } else {
262 // There is an outstanding read request for the cache line
263 m_load_waiting_on_load_cycles++;
264 return RequestStatus_Aliased;
265 }
266 }
267
268 g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
269 assert(m_outstanding_count ==
270 (m_writeRequestTable.size() + m_readRequestTable.size()));
271
272 return RequestStatus_Ready;
273}
274
275void
276Sequencer::markRemoved()
277{
278 m_outstanding_count--;
279 assert(m_outstanding_count ==
280 m_writeRequestTable.size() + m_readRequestTable.size());
281}
282
283void
284Sequencer::removeRequest(SequencerRequest* srequest)
285{
286 assert(m_outstanding_count ==
287 m_writeRequestTable.size() + m_readRequestTable.size());
288
289 Address line_addr(srequest->pkt->getAddr());
290 line_addr.makeLineAddress();
291 if ((srequest->m_type == RubyRequestType_ST) ||
292 (srequest->m_type == RubyRequestType_RMW_Read) ||
293 (srequest->m_type == RubyRequestType_RMW_Write) ||
294 (srequest->m_type == RubyRequestType_Load_Linked) ||
295 (srequest->m_type == RubyRequestType_Store_Conditional) ||
296 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
297 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
298 m_writeRequestTable.erase(line_addr);
299 } else {
300 m_readRequestTable.erase(line_addr);
301 }
302
303 markRemoved();
304}
305
306bool
307Sequencer::handleLlsc(const Address& address, SequencerRequest* request)
308{
309 //
310 // The success flag indicates whether the LLSC operation was successful.
311 // LL ops will always succeed, but SC may fail if the cache line is no
312 // longer locked.
313 //
314 bool success = true;
315 if (request->m_type == RubyRequestType_Store_Conditional) {
316 if (!m_dataCache_ptr->isLocked(address, m_version)) {
317 //
318 // For failed SC requests, indicate the failure to the cpu by
319 // setting the extra data to zero.
320 //
321 request->pkt->req->setExtraData(0);
322 success = false;
323 } else {
324 //
325 // For successful SC requests, indicate the success to the cpu by
326 // setting the extra data to one.
327 //
328 request->pkt->req->setExtraData(1);
329 }
330 //
331 // Independent of success, all SC operations must clear the lock
332 //
333 m_dataCache_ptr->clearLocked(address);
334 } else if (request->m_type == RubyRequestType_Load_Linked) {
335 //
336 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
337 // previously locked cache lines?
338 //
339 m_dataCache_ptr->setLocked(address, m_version);
340 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
341 (m_dataCache_ptr->isLocked(address, m_version))) {
342 //
343 // Normal writes should clear the locked address
344 //
345 m_dataCache_ptr->clearLocked(address);
346 }
347 return success;
348}
349
350void
351Sequencer::writeCallback(const Address& address, DataBlock& data)
352{
353 writeCallback(address, GenericMachineType_NULL, data);
354}
355
356void
357Sequencer::writeCallback(const Address& address,
358 GenericMachineType mach,
359 DataBlock& data)
360{
361 writeCallback(address, mach, data, 0, 0, 0);
362}
363
364void
365Sequencer::writeCallback(const Address& address,
366 GenericMachineType mach,
367 DataBlock& data,
368 Time initialRequestTime,
369 Time forwardRequestTime,
370 Time firstResponseTime)
371{
372 assert(address == line_address(address));
373 assert(m_writeRequestTable.count(line_address(address)));
374
375 RequestTable::iterator i = m_writeRequestTable.find(address);
376 assert(i != m_writeRequestTable.end());
377 SequencerRequest* request = i->second;
378
379 m_writeRequestTable.erase(i);
380 markRemoved();
381
382 assert((request->m_type == RubyRequestType_ST) ||
383 (request->m_type == RubyRequestType_ATOMIC) ||
384 (request->m_type == RubyRequestType_RMW_Read) ||
385 (request->m_type == RubyRequestType_RMW_Write) ||
386 (request->m_type == RubyRequestType_Load_Linked) ||
387 (request->m_type == RubyRequestType_Store_Conditional) ||
388 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
389 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
390 (request->m_type == RubyRequestType_FLUSH));
391
392
393 //
394 // For Alpha, properly handle LL, SC, and write requests with respect to
395 // locked cache blocks.
396 //
397 // Not valid for Network_test protocl
398 //
399 bool success = true;
400 if(!m_usingNetworkTester)
401 success = handleLlsc(address, request);
402
403 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
404 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
405 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
406 m_controller->unblock(address);
407 }
408
409 hitCallback(request, mach, data, success,
410 initialRequestTime, forwardRequestTime, firstResponseTime);
411}
412
413void
414Sequencer::readCallback(const Address& address, DataBlock& data)
415{
416 readCallback(address, GenericMachineType_NULL, data);
417}
418
419void
420Sequencer::readCallback(const Address& address,
421 GenericMachineType mach,
422 DataBlock& data)
423{
424 readCallback(address, mach, data, 0, 0, 0);
425}
426
427void
428Sequencer::readCallback(const Address& address,
429 GenericMachineType mach,
430 DataBlock& data,
431 Time initialRequestTime,
432 Time forwardRequestTime,
433 Time firstResponseTime)
434{
435 assert(address == line_address(address));
436 assert(m_readRequestTable.count(line_address(address)));
437
438 RequestTable::iterator i = m_readRequestTable.find(address);
439 assert(i != m_readRequestTable.end());
440 SequencerRequest* request = i->second;
441
442 m_readRequestTable.erase(i);
443 markRemoved();
444
445 assert((request->m_type == RubyRequestType_LD) ||
446 (request->m_type == RubyRequestType_IFETCH));
447
448 hitCallback(request, mach, data, true,
449 initialRequestTime, forwardRequestTime, firstResponseTime);
450}
451
452void
453Sequencer::hitCallback(SequencerRequest* srequest,
454 GenericMachineType mach,
455 DataBlock& data,
456 bool success,
457 Time initialRequestTime,
458 Time forwardRequestTime,
459 Time firstResponseTime)
460{
461 PacketPtr pkt = srequest->pkt;
462 Address request_address(pkt->getAddr());
463 Address request_line_address(pkt->getAddr());
464 request_line_address.makeLineAddress();
465 RubyRequestType type = srequest->m_type;
466 Time issued_time = srequest->issue_time;
467
468 // Set this cache entry to the most recently used
469 if (type == RubyRequestType_IFETCH) {
470 m_instCache_ptr->setMRU(request_line_address);
471 } else {
472 m_dataCache_ptr->setMRU(request_line_address);
473 }
474
475 assert(g_system_ptr->getTime() >= issued_time);
476 Time miss_latency = g_system_ptr->getTime() - issued_time;
477
478 // Profile the miss latency for all non-zero demand misses
479 if (miss_latency != 0) {
480 g_system_ptr->getProfiler()->missLatency(miss_latency, type, mach);
481
482 if (mach == GenericMachineType_L1Cache_wCC) {
483 g_system_ptr->getProfiler()->missLatencyWcc(issued_time,
484 initialRequestTime,
485 forwardRequestTime,
486 firstResponseTime,
487 g_system_ptr->getTime());
488 }
489
490 if (mach == GenericMachineType_Directory) {
491 g_system_ptr->getProfiler()->missLatencyDir(issued_time,
492 initialRequestTime,
493 forwardRequestTime,
494 firstResponseTime,
495 g_system_ptr->getTime());
496 }
497
498 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
499 curTick(), m_version, "Seq",
500 success ? "Done" : "SC_Failed", "", "",
501 request_address, miss_latency);
502 }
503
504 // update the data
505 if (g_system_ptr->m_warmup_enabled) {
506 assert(pkt->getPtr<uint8_t>(false) != NULL);
507 data.setData(pkt->getPtr<uint8_t>(false),
508 request_address.getOffset(), pkt->getSize());
509 } else if (pkt->getPtr<uint8_t>(true) != NULL) {
510 if ((type == RubyRequestType_LD) ||
511 (type == RubyRequestType_IFETCH) ||
512 (type == RubyRequestType_RMW_Read) ||
513 (type == RubyRequestType_Locked_RMW_Read) ||
514 (type == RubyRequestType_Load_Linked)) {
515 memcpy(pkt->getPtr<uint8_t>(true),
516 data.getData(request_address.getOffset(), pkt->getSize()),
517 pkt->getSize());
518 } else {
519 data.setData(pkt->getPtr<uint8_t>(true),
520 request_address.getOffset(), pkt->getSize());
521 }
522 } else {
523 DPRINTF(MemoryAccess,
524 "WARNING. Data not transfered from Ruby to M5 for type %s\n",
525 RubyRequestType_to_string(type));
526 }
527
528 // If using the RubyTester, update the RubyTester sender state's
529 // subBlock with the recieved data. The tester will later access
530 // this state.
531 // Note: RubyPort will access it's sender state before the
532 // RubyTester.
533 if (m_usingRubyTester) {
534 RubyPort::SenderState *requestSenderState =
535 safe_cast<RubyPort::SenderState*>(pkt->senderState);
536 RubyTester::SenderState* testerSenderState =
537 safe_cast<RubyTester::SenderState*>(requestSenderState->saved);
538 testerSenderState->subBlock->mergeFrom(data);
539 }
540
541 delete srequest;
542
543 if (g_system_ptr->m_warmup_enabled) {
544 delete pkt;
545 g_system_ptr->m_cache_recorder->enqueueNextFetchRequest();
546 } else if (g_system_ptr->m_cooldown_enabled) {
547 delete pkt;
548 g_system_ptr->m_cache_recorder->enqueueNextFlushRequest();
549 } else {
550 ruby_hit_callback(pkt);
551 }
552}
553
554bool
555Sequencer::empty() const
556{
557 return m_writeRequestTable.empty() && m_readRequestTable.empty();
558}
559
560RequestStatus
561Sequencer::makeRequest(PacketPtr pkt)
562{
563 if (m_outstanding_count >= m_max_outstanding_requests) {
564 return RequestStatus_BufferFull;
565 }
566
567 RubyRequestType primary_type = RubyRequestType_NULL;
568 RubyRequestType secondary_type = RubyRequestType_NULL;
569
570 if (pkt->isLLSC()) {
571 //
572 // Alpha LL/SC instructions need to be handled carefully by the cache
573 // coherence protocol to ensure they follow the proper semantics. In
574 // particular, by identifying the operations as atomic, the protocol
575 // should understand that migratory sharing optimizations should not
576 // be performed (i.e. a load between the LL and SC should not steal
577 // away exclusive permission).
578 //
579 if (pkt->isWrite()) {
580 DPRINTF(RubySequencer, "Issuing SC\n");
581 primary_type = RubyRequestType_Store_Conditional;
582 } else {
583 DPRINTF(RubySequencer, "Issuing LL\n");
584 assert(pkt->isRead());
585 primary_type = RubyRequestType_Load_Linked;
586 }
587 secondary_type = RubyRequestType_ATOMIC;
588 } else if (pkt->req->isLocked()) {
589 //
590 // x86 locked instructions are translated to store cache coherence
591 // requests because these requests should always be treated as read
592 // exclusive operations and should leverage any migratory sharing
593 // optimization built into the protocol.
594 //
595 if (pkt->isWrite()) {
596 DPRINTF(RubySequencer, "Issuing Locked RMW Write\n");
597 primary_type = RubyRequestType_Locked_RMW_Write;
598 } else {
599 DPRINTF(RubySequencer, "Issuing Locked RMW Read\n");
600 assert(pkt->isRead());
601 primary_type = RubyRequestType_Locked_RMW_Read;
602 }
603 secondary_type = RubyRequestType_ST;
604 } else {
605 if (pkt->isRead()) {
606 if (pkt->req->isInstFetch()) {
607 primary_type = secondary_type = RubyRequestType_IFETCH;
608 } else {
609#if THE_ISA == X86_ISA
610 uint32_t flags = pkt->req->getFlags();
611 bool storeCheck = flags &
612 (TheISA::StoreCheck << TheISA::FlagShift);
613#else
614 bool storeCheck = false;
615#endif // X86_ISA
616 if (storeCheck) {
617 primary_type = RubyRequestType_RMW_Read;
618 secondary_type = RubyRequestType_ST;
619 } else {
620 primary_type = secondary_type = RubyRequestType_LD;
621 }
622 }
623 } else if (pkt->isWrite()) {
624 //
625 // Note: M5 packets do not differentiate ST from RMW_Write
626 //
627 primary_type = secondary_type = RubyRequestType_ST;
628 } else if (pkt->isFlush()) {
629 primary_type = secondary_type = RubyRequestType_FLUSH;
630 } else {
631 panic("Unsupported ruby packet type\n");
632 }
633 }
634
635 RequestStatus status = insertRequest(pkt, primary_type);
636 if (status != RequestStatus_Ready)
637 return status;
638
639 issueRequest(pkt, secondary_type);
640
641 // TODO: issue hardware prefetches here
642 return RequestStatus_Issued;
643}
644
645void
646Sequencer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
647{
648 int proc_id = -1;
649 if (pkt != NULL && pkt->req->hasContextId()) {
650 proc_id = pkt->req->contextId();
651 }
652
653 // If valid, copy the pc to the ruby request
654 Addr pc = 0;
655 if (pkt->req->hasPC()) {
656 pc = pkt->req->getPC();
657 }
658
659 RubyRequest *msg = new RubyRequest(pkt->getAddr(),
660 pkt->getPtr<uint8_t>(true),
661 pkt->getSize(), pc, secondary_type,
662 RubyAccessMode_Supervisor, pkt,
663 PrefetchBit_No, proc_id);
664
665 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
666 curTick(), m_version, "Seq", "Begin", "", "",
667 msg->getPhysicalAddress(),
668 RubyRequestType_to_string(secondary_type));
669
670 Time latency = 0; // initialzed to an null value
671
672 if (secondary_type == RubyRequestType_IFETCH)
673 latency = m_instCache_ptr->getLatency();
674 else
675 latency = m_dataCache_ptr->getLatency();
676
677 // Send the message to the cache controller
678 assert(latency > 0);
679
680 assert(m_mandatory_q_ptr != NULL);
681 m_mandatory_q_ptr->enqueue(msg, latency);
682}
683
684template <class KEY, class VALUE>
685std::ostream &
686operator<<(ostream &out, const m5::hash_map<KEY, VALUE> &map)
687{
688 typename m5::hash_map<KEY, VALUE>::const_iterator i = map.begin();
689 typename m5::hash_map<KEY, VALUE>::const_iterator end = map.end();
690
691 out << "[";
692 for (; i != end; ++i)
693 out << " " << i->first << "=" << i->second;
694 out << " ]";
695
696 return out;
697}
698
699void
700Sequencer::print(ostream& out) const
701{
702 out << "[Sequencer: " << m_version
703 << ", outstanding requests: " << m_outstanding_count
704 << ", read request table: " << m_readRequestTable
705 << ", write request table: " << m_writeRequestTable
706 << "]";
707}
708
709// this can be called from setState whenever coherence permissions are
710// upgraded when invoked, coherence violations will be checked for the
711// given block
712void
713Sequencer::checkCoherence(const Address& addr)
714{
715#ifdef CHECK_COHERENCE
716 g_system_ptr->checkGlobalCoherenceInvariant(addr);
717#endif
718}
719
720void
721Sequencer::recordRequestType(SequencerRequestType requestType) {
722 DPRINTF(RubyStats, "Recorded statistic: %s\n",
723 SequencerRequestType_to_string(requestType));
724}
725
726
727void
728Sequencer::evictionCallback(const Address& address)
729{
730 ruby_eviction_callback(address);
731}