Deleted Added
sdiff udiff text old ( 13399:98f54e365584 ) new ( 13974:af47a3ae0f6b )
full compact
1/*
2 * Copyright (c) 2013-2015 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * For use for simulation and test purposes only
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 * this list of conditions and the following disclaimer in the documentation
15 * and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived from this
19 * software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 * Authors: Sooraj Puthoor
34 */
35
36#include "base/logging.hh"
37#include "base/str.hh"
38#include "config/the_isa.hh"
39
40#if THE_ISA == X86_ISA
41#include "arch/x86/insts/microldstop.hh"
42
43#endif // X86_ISA
44#include "mem/ruby/system/GPUCoalescer.hh"
45
46#include "cpu/testers/rubytest/RubyTester.hh"
47#include "debug/GPUCoalescer.hh"
48#include "debug/MemoryAccess.hh"
49#include "debug/ProtocolTrace.hh"
50#include "debug/RubyPort.hh"
51#include "debug/RubyStats.hh"
52#include "gpu-compute/shader.hh"
53#include "mem/packet.hh"
54#include "mem/ruby/common/DataBlock.hh"
55#include "mem/ruby/common/SubBlock.hh"
56#include "mem/ruby/network/MessageBuffer.hh"
57#include "mem/ruby/profiler/Profiler.hh"
58#include "mem/ruby/slicc_interface/AbstractController.hh"
59#include "mem/ruby/slicc_interface/RubyRequest.hh"
60#include "mem/ruby/structures/CacheMemory.hh"
61#include "mem/ruby/system/RubySystem.hh"
62#include "params/RubyGPUCoalescer.hh"
63
64using namespace std;
65
66GPUCoalescer *
67RubyGPUCoalescerParams::create()
68{
69 return new GPUCoalescer(this);
70}
71
72HSAScope
73reqScopeToHSAScope(const RequestPtr &req)
74{
75 HSAScope accessScope = HSAScope_UNSPECIFIED;
76 if (req->isScoped()) {
77 if (req->isWavefrontScope()) {
78 accessScope = HSAScope_WAVEFRONT;
79 } else if (req->isWorkgroupScope()) {
80 accessScope = HSAScope_WORKGROUP;
81 } else if (req->isDeviceScope()) {
82 accessScope = HSAScope_DEVICE;
83 } else if (req->isSystemScope()) {
84 accessScope = HSAScope_SYSTEM;
85 } else {
86 fatal("Bad scope type");
87 }
88 }
89 return accessScope;
90}
91
92HSASegment
93reqSegmentToHSASegment(const RequestPtr &req)
94{
95 HSASegment accessSegment = HSASegment_GLOBAL;
96
97 if (req->isGlobalSegment()) {
98 accessSegment = HSASegment_GLOBAL;
99 } else if (req->isGroupSegment()) {
100 accessSegment = HSASegment_GROUP;
101 } else if (req->isPrivateSegment()) {
102 accessSegment = HSASegment_PRIVATE;
103 } else if (req->isKernargSegment()) {
104 accessSegment = HSASegment_KERNARG;
105 } else if (req->isReadonlySegment()) {
106 accessSegment = HSASegment_READONLY;
107 } else if (req->isSpillSegment()) {
108 accessSegment = HSASegment_SPILL;
109 } else if (req->isArgSegment()) {
110 accessSegment = HSASegment_ARG;
111 } else {
112 fatal("Bad segment type");
113 }
114
115 return accessSegment;
116}
117
118GPUCoalescer::GPUCoalescer(const Params *p)
119 : RubyPort(p),
120 issueEvent([this]{ completeIssue(); }, "Issue coalesced request",
121 false, Event::Progress_Event_Pri),
122 deadlockCheckEvent([this]{ wakeup(); }, "GPUCoalescer deadlock check")
123{
124 m_store_waiting_on_load_cycles = 0;
125 m_store_waiting_on_store_cycles = 0;
126 m_load_waiting_on_store_cycles = 0;
127 m_load_waiting_on_load_cycles = 0;
128
129 m_outstanding_count = 0;
130
131 m_max_outstanding_requests = 0;
132 m_deadlock_threshold = 0;
133 m_instCache_ptr = nullptr;
134 m_dataCache_ptr = nullptr;
135
136 m_instCache_ptr = p->icache;
137 m_dataCache_ptr = p->dcache;
138 m_max_outstanding_requests = p->max_outstanding_requests;
139 m_deadlock_threshold = p->deadlock_threshold;
140
141 assert(m_max_outstanding_requests > 0);
142 assert(m_deadlock_threshold > 0);
143 assert(m_instCache_ptr);
144 assert(m_dataCache_ptr);
145
146 m_runningGarnetStandalone = p->garnet_standalone;
147 assumingRfOCoherence = p->assume_rfo;
148}
149
150GPUCoalescer::~GPUCoalescer()
151{
152}
153
154void
155GPUCoalescer::wakeup()
156{
157 // Check for deadlock of any of the requests
158 Cycles current_time = curCycle();
159
160 // Check across all outstanding requests
161 int total_outstanding = 0;
162
163 RequestTable::iterator read = m_readRequestTable.begin();
164 RequestTable::iterator read_end = m_readRequestTable.end();
165 for (; read != read_end; ++read) {
166 GPUCoalescerRequest* request = read->second;
167 if (current_time - request->issue_time < m_deadlock_threshold)
168 continue;
169
170 panic("Possible Deadlock detected. Aborting!\n"
171 "version: %d request.paddr: 0x%x m_readRequestTable: %d "
172 "current time: %u issue_time: %d difference: %d\n", m_version,
173 request->pkt->getAddr(), m_readRequestTable.size(),
174 current_time * clockPeriod(), request->issue_time * clockPeriod(),
175 (current_time - request->issue_time)*clockPeriod());
176 }
177
178 RequestTable::iterator write = m_writeRequestTable.begin();
179 RequestTable::iterator write_end = m_writeRequestTable.end();
180 for (; write != write_end; ++write) {
181 GPUCoalescerRequest* request = write->second;
182 if (current_time - request->issue_time < m_deadlock_threshold)
183 continue;
184
185 panic("Possible Deadlock detected. Aborting!\n"
186 "version: %d request.paddr: 0x%x m_writeRequestTable: %d "
187 "current time: %u issue_time: %d difference: %d\n", m_version,
188 request->pkt->getAddr(), m_writeRequestTable.size(),
189 current_time * clockPeriod(), request->issue_time * clockPeriod(),
190 (current_time - request->issue_time) * clockPeriod());
191 }
192
193 total_outstanding += m_writeRequestTable.size();
194 total_outstanding += m_readRequestTable.size();
195
196 assert(m_outstanding_count == total_outstanding);
197
198 if (m_outstanding_count > 0) {
199 // If there are still outstanding requests, keep checking
200 schedule(deadlockCheckEvent,
201 m_deadlock_threshold * clockPeriod() +
202 curTick());
203 }
204}
205
206void
207GPUCoalescer::resetStats()
208{
209 m_latencyHist.reset();
210 m_missLatencyHist.reset();
211 for (int i = 0; i < RubyRequestType_NUM; i++) {
212 m_typeLatencyHist[i]->reset();
213 m_missTypeLatencyHist[i]->reset();
214 for (int j = 0; j < MachineType_NUM; j++) {
215 m_missTypeMachLatencyHist[i][j]->reset();
216 }
217 }
218
219 for (int i = 0; i < MachineType_NUM; i++) {
220 m_missMachLatencyHist[i]->reset();
221
222 m_IssueToInitialDelayHist[i]->reset();
223 m_InitialToForwardDelayHist[i]->reset();
224 m_ForwardToFirstResponseDelayHist[i]->reset();
225 m_FirstResponseToCompletionDelayHist[i]->reset();
226 }
227}
228
229void
230GPUCoalescer::printProgress(ostream& out) const
231{
232}
233
234RequestStatus
235GPUCoalescer::getRequestStatus(PacketPtr pkt, RubyRequestType request_type)
236{
237 Addr line_addr = makeLineAddress(pkt->getAddr());
238
239 if (!m_mandatory_q_ptr->areNSlotsAvailable(1, clockEdge())) {
240 return RequestStatus_BufferFull;
241 }
242
243 if (m_controller->isBlocked(line_addr) &&
244 request_type != RubyRequestType_Locked_RMW_Write) {
245 return RequestStatus_Aliased;
246 }
247
248 if ((request_type == RubyRequestType_ST) ||
249 (request_type == RubyRequestType_ATOMIC) ||
250 (request_type == RubyRequestType_ATOMIC_RETURN) ||
251 (request_type == RubyRequestType_ATOMIC_NO_RETURN) ||
252 (request_type == RubyRequestType_RMW_Read) ||
253 (request_type == RubyRequestType_RMW_Write) ||
254 (request_type == RubyRequestType_Load_Linked) ||
255 (request_type == RubyRequestType_Store_Conditional) ||
256 (request_type == RubyRequestType_Locked_RMW_Read) ||
257 (request_type == RubyRequestType_Locked_RMW_Write) ||
258 (request_type == RubyRequestType_FLUSH)) {
259
260 // Check if there is any outstanding read request for the same
261 // cache line.
262 if (m_readRequestTable.count(line_addr) > 0) {
263 m_store_waiting_on_load_cycles++;
264 return RequestStatus_Aliased;
265 }
266
267 if (m_writeRequestTable.count(line_addr) > 0) {
268 // There is an outstanding write request for the cache line
269 m_store_waiting_on_store_cycles++;
270 return RequestStatus_Aliased;
271 }
272 } else {
273 // Check if there is any outstanding write request for the same
274 // cache line.
275 if (m_writeRequestTable.count(line_addr) > 0) {
276 m_load_waiting_on_store_cycles++;
277 return RequestStatus_Aliased;
278 }
279
280 if (m_readRequestTable.count(line_addr) > 0) {
281 // There is an outstanding read request for the cache line
282 m_load_waiting_on_load_cycles++;
283 return RequestStatus_Aliased;
284 }
285 }
286
287 return RequestStatus_Ready;
288
289}
290
291
292
293// sets the kernelEndList
294void
295GPUCoalescer::insertKernel(int wavefront_id, PacketPtr pkt)
296{
297 // Don't know if this will happen or is possible
298 // but I just want to be careful and not have it become
299 // simulator hang in the future
300 DPRINTF(GPUCoalescer, "inserting wf: %d to kernelEndlist\n", wavefront_id);
301 assert(kernelEndList.count(wavefront_id) == 0);
302
303 kernelEndList[wavefront_id] = pkt;
304 DPRINTF(GPUCoalescer, "kernelEndList->size() = %d\n",
305 kernelEndList.size());
306}
307
308
309// Insert the request on the correct request table. Return true if
310// the entry was already present.
311bool
312GPUCoalescer::insertRequest(PacketPtr pkt, RubyRequestType request_type)
313{
314 assert(getRequestStatus(pkt, request_type) == RequestStatus_Ready ||
315 pkt->req->isLockedRMW() ||
316 !m_mandatory_q_ptr->areNSlotsAvailable(1, clockEdge()));
317
318 int total_outstanding M5_VAR_USED =
319 m_writeRequestTable.size() + m_readRequestTable.size();
320
321 assert(m_outstanding_count == total_outstanding);
322
323 // See if we should schedule a deadlock check
324 if (!deadlockCheckEvent.scheduled()) {
325 schedule(deadlockCheckEvent, m_deadlock_threshold + curTick());
326 }
327
328 Addr line_addr = makeLineAddress(pkt->getAddr());
329 if ((request_type == RubyRequestType_ST) ||
330 (request_type == RubyRequestType_ATOMIC) ||
331 (request_type == RubyRequestType_ATOMIC_RETURN) ||
332 (request_type == RubyRequestType_ATOMIC_NO_RETURN) ||
333 (request_type == RubyRequestType_RMW_Read) ||
334 (request_type == RubyRequestType_RMW_Write) ||
335 (request_type == RubyRequestType_Load_Linked) ||
336 (request_type == RubyRequestType_Store_Conditional) ||
337 (request_type == RubyRequestType_Locked_RMW_Read) ||
338 (request_type == RubyRequestType_Locked_RMW_Write) ||
339 (request_type == RubyRequestType_FLUSH)) {
340
341 pair<RequestTable::iterator, bool> r =
342 m_writeRequestTable.insert(RequestTable::value_type(line_addr,
343 (GPUCoalescerRequest*) NULL));
344 if (r.second) {
345 RequestTable::iterator i = r.first;
346 i->second = new GPUCoalescerRequest(pkt, request_type,
347 curCycle());
348 DPRINTF(GPUCoalescer,
349 "Inserting write request for paddr %#x for type %d\n",
350 pkt->req->getPaddr(), i->second->m_type);
351 m_outstanding_count++;
352 } else {
353 return true;
354 }
355 } else {
356 pair<RequestTable::iterator, bool> r =
357 m_readRequestTable.insert(RequestTable::value_type(line_addr,
358 (GPUCoalescerRequest*) NULL));
359
360 if (r.second) {
361 RequestTable::iterator i = r.first;
362 i->second = new GPUCoalescerRequest(pkt, request_type,
363 curCycle());
364 DPRINTF(GPUCoalescer,
365 "Inserting read request for paddr %#x for type %d\n",
366 pkt->req->getPaddr(), i->second->m_type);
367 m_outstanding_count++;
368 } else {
369 return true;
370 }
371 }
372
373 m_outstandReqHist.sample(m_outstanding_count);
374
375 total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size();
376 assert(m_outstanding_count == total_outstanding);
377
378 return false;
379}
380
381void
382GPUCoalescer::markRemoved()
383{
384 m_outstanding_count--;
385 assert(m_outstanding_count ==
386 m_writeRequestTable.size() + m_readRequestTable.size());
387}
388
389void
390GPUCoalescer::removeRequest(GPUCoalescerRequest* srequest)
391{
392 assert(m_outstanding_count ==
393 m_writeRequestTable.size() + m_readRequestTable.size());
394
395 Addr line_addr = makeLineAddress(srequest->pkt->getAddr());
396 if ((srequest->m_type == RubyRequestType_ST) ||
397 (srequest->m_type == RubyRequestType_RMW_Read) ||
398 (srequest->m_type == RubyRequestType_RMW_Write) ||
399 (srequest->m_type == RubyRequestType_Load_Linked) ||
400 (srequest->m_type == RubyRequestType_Store_Conditional) ||
401 (srequest->m_type == RubyRequestType_Locked_RMW_Read) ||
402 (srequest->m_type == RubyRequestType_Locked_RMW_Write)) {
403 m_writeRequestTable.erase(line_addr);
404 } else {
405 m_readRequestTable.erase(line_addr);
406 }
407
408 markRemoved();
409}
410
411bool
412GPUCoalescer::handleLlsc(Addr address, GPUCoalescerRequest* request)
413{
414 //
415 // The success flag indicates whether the LLSC operation was successful.
416 // LL ops will always succeed, but SC may fail if the cache line is no
417 // longer locked.
418 //
419 bool success = true;
420 if (request->m_type == RubyRequestType_Store_Conditional) {
421 if (!m_dataCache_ptr->isLocked(address, m_version)) {
422 //
423 // For failed SC requests, indicate the failure to the cpu by
424 // setting the extra data to zero.
425 //
426 request->pkt->req->setExtraData(0);
427 success = false;
428 } else {
429 //
430 // For successful SC requests, indicate the success to the cpu by
431 // setting the extra data to one.
432 //
433 request->pkt->req->setExtraData(1);
434 }
435 //
436 // Independent of success, all SC operations must clear the lock
437 //
438 m_dataCache_ptr->clearLocked(address);
439 } else if (request->m_type == RubyRequestType_Load_Linked) {
440 //
441 // Note: To fully follow Alpha LLSC semantics, should the LL clear any
442 // previously locked cache lines?
443 //
444 m_dataCache_ptr->setLocked(address, m_version);
445 } else if ((m_dataCache_ptr->isTagPresent(address)) &&
446 (m_dataCache_ptr->isLocked(address, m_version))) {
447 //
448 // Normal writes should clear the locked address
449 //
450 m_dataCache_ptr->clearLocked(address);
451 }
452 return success;
453}
454
455void
456GPUCoalescer::writeCallback(Addr address, DataBlock& data)
457{
458 writeCallback(address, MachineType_NULL, data);
459}
460
461void
462GPUCoalescer::writeCallback(Addr address,
463 MachineType mach,
464 DataBlock& data)
465{
466 writeCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
467}
468
469void
470GPUCoalescer::writeCallback(Addr address,
471 MachineType mach,
472 DataBlock& data,
473 Cycles initialRequestTime,
474 Cycles forwardRequestTime,
475 Cycles firstResponseTime)
476{
477 writeCallback(address, mach, data,
478 initialRequestTime, forwardRequestTime, firstResponseTime,
479 false);
480}
481
482void
483GPUCoalescer::writeCallback(Addr address,
484 MachineType mach,
485 DataBlock& data,
486 Cycles initialRequestTime,
487 Cycles forwardRequestTime,
488 Cycles firstResponseTime,
489 bool isRegion)
490{
491 assert(address == makeLineAddress(address));
492
493 DPRINTF(GPUCoalescer, "write callback for address %#x\n", address);
494 assert(m_writeRequestTable.count(makeLineAddress(address)));
495
496 RequestTable::iterator i = m_writeRequestTable.find(address);
497 assert(i != m_writeRequestTable.end());
498 GPUCoalescerRequest* request = i->second;
499
500 m_writeRequestTable.erase(i);
501 markRemoved();
502
503 assert((request->m_type == RubyRequestType_ST) ||
504 (request->m_type == RubyRequestType_ATOMIC) ||
505 (request->m_type == RubyRequestType_ATOMIC_RETURN) ||
506 (request->m_type == RubyRequestType_ATOMIC_NO_RETURN) ||
507 (request->m_type == RubyRequestType_RMW_Read) ||
508 (request->m_type == RubyRequestType_RMW_Write) ||
509 (request->m_type == RubyRequestType_Load_Linked) ||
510 (request->m_type == RubyRequestType_Store_Conditional) ||
511 (request->m_type == RubyRequestType_Locked_RMW_Read) ||
512 (request->m_type == RubyRequestType_Locked_RMW_Write) ||
513 (request->m_type == RubyRequestType_FLUSH));
514
515
516 //
517 // For Alpha, properly handle LL, SC, and write requests with respect to
518 // locked cache blocks.
519 //
520 // Not valid for Garnet_standalone protocl
521 //
522 bool success = true;
523 if (!m_runningGarnetStandalone)
524 success = handleLlsc(address, request);
525
526 if (request->m_type == RubyRequestType_Locked_RMW_Read) {
527 m_controller->blockOnQueue(address, m_mandatory_q_ptr);
528 } else if (request->m_type == RubyRequestType_Locked_RMW_Write) {
529 m_controller->unblock(address);
530 }
531
532 hitCallback(request, mach, data, success,
533 request->issue_time, forwardRequestTime, firstResponseTime,
534 isRegion);
535}
536
537void
538GPUCoalescer::readCallback(Addr address, DataBlock& data)
539{
540 readCallback(address, MachineType_NULL, data);
541}
542
543void
544GPUCoalescer::readCallback(Addr address,
545 MachineType mach,
546 DataBlock& data)
547{
548 readCallback(address, mach, data, Cycles(0), Cycles(0), Cycles(0));
549}
550
551void
552GPUCoalescer::readCallback(Addr address,
553 MachineType mach,
554 DataBlock& data,
555 Cycles initialRequestTime,
556 Cycles forwardRequestTime,
557 Cycles firstResponseTime)
558{
559
560 readCallback(address, mach, data,
561 initialRequestTime, forwardRequestTime, firstResponseTime,
562 false);
563}
564
565void
566GPUCoalescer::readCallback(Addr address,
567 MachineType mach,
568 DataBlock& data,
569 Cycles initialRequestTime,
570 Cycles forwardRequestTime,
571 Cycles firstResponseTime,
572 bool isRegion)
573{
574 assert(address == makeLineAddress(address));
575 assert(m_readRequestTable.count(makeLineAddress(address)));
576
577 DPRINTF(GPUCoalescer, "read callback for address %#x\n", address);
578 RequestTable::iterator i = m_readRequestTable.find(address);
579 assert(i != m_readRequestTable.end());
580 GPUCoalescerRequest* request = i->second;
581
582 m_readRequestTable.erase(i);
583 markRemoved();
584
585 assert((request->m_type == RubyRequestType_LD) ||
586 (request->m_type == RubyRequestType_IFETCH));
587
588 hitCallback(request, mach, data, true,
589 request->issue_time, forwardRequestTime, firstResponseTime,
590 isRegion);
591}
592
593void
594GPUCoalescer::hitCallback(GPUCoalescerRequest* srequest,
595 MachineType mach,
596 DataBlock& data,
597 bool success,
598 Cycles initialRequestTime,
599 Cycles forwardRequestTime,
600 Cycles firstResponseTime,
601 bool isRegion)
602{
603 PacketPtr pkt = srequest->pkt;
604 Addr request_address = pkt->getAddr();
605 Addr request_line_address = makeLineAddress(request_address);
606
607 RubyRequestType type = srequest->m_type;
608
609 // Set this cache entry to the most recently used
610 if (type == RubyRequestType_IFETCH) {
611 if (m_instCache_ptr->isTagPresent(request_line_address))
612 m_instCache_ptr->setMRU(request_line_address);
613 } else {
614 if (m_dataCache_ptr->isTagPresent(request_line_address))
615 m_dataCache_ptr->setMRU(request_line_address);
616 }
617
618 recordMissLatency(srequest, mach,
619 initialRequestTime,
620 forwardRequestTime,
621 firstResponseTime,
622 success, isRegion);
623 // update the data
624 //
625 // MUST AD DOING THIS FOR EACH REQUEST IN COALESCER
626 int len = reqCoalescer[request_line_address].size();
627 std::vector<PacketPtr> mylist;
628 for (int i = 0; i < len; ++i) {
629 PacketPtr pkt = reqCoalescer[request_line_address][i].pkt;
630 assert(type == reqCoalescer[request_line_address][i].primaryType);
631 request_address = pkt->getAddr();
632 request_line_address = makeLineAddress(pkt->getAddr());
633 if (pkt->getPtr<uint8_t>()) {
634 if ((type == RubyRequestType_LD) ||
635 (type == RubyRequestType_ATOMIC) ||
636 (type == RubyRequestType_ATOMIC_RETURN) ||
637 (type == RubyRequestType_IFETCH) ||
638 (type == RubyRequestType_RMW_Read) ||
639 (type == RubyRequestType_Locked_RMW_Read) ||
640 (type == RubyRequestType_Load_Linked)) {
641 pkt->setData(
642 data.getData(getOffset(request_address), pkt->getSize()));
643 } else {
644 data.setData(pkt->getPtr<uint8_t>(),
645 getOffset(request_address), pkt->getSize());
646 }
647 } else {
648 DPRINTF(MemoryAccess,
649 "WARNING. Data not transfered from Ruby to M5 for type " \
650 "%s\n",
651 RubyRequestType_to_string(type));
652 }
653
654 // If using the RubyTester, update the RubyTester sender state's
655 // subBlock with the recieved data. The tester will later access
656 // this state.
657 // Note: RubyPort will access it's sender state before the
658 // RubyTester.
659 if (m_usingRubyTester) {
660 RubyPort::SenderState *requestSenderState =
661 safe_cast<RubyPort::SenderState*>(pkt->senderState);
662 RubyTester::SenderState* testerSenderState =
663 safe_cast<RubyTester::SenderState*>(requestSenderState->predecessor);
664 testerSenderState->subBlock.mergeFrom(data);
665 }
666
667 mylist.push_back(pkt);
668 }
669 delete srequest;
670 reqCoalescer.erase(request_line_address);
671 assert(!reqCoalescer.count(request_line_address));
672
673
674
675 completeHitCallback(mylist, len);
676}
677
678bool
679GPUCoalescer::empty() const
680{
681 return m_writeRequestTable.empty() && m_readRequestTable.empty();
682}
683
684// Analyzes the packet to see if this request can be coalesced.
685// If request can be coalesced, this request is added to the reqCoalescer table
686// and makeRequest returns RequestStatus_Issued;
687// If this is the first request to a cacheline, request is added to both
688// newRequests queue and to the reqCoalescer table; makeRequest
689// returns RequestStatus_Issued.
690// If there is a pending request to this cacheline and this request
691// can't be coalesced, RequestStatus_Aliased is returned and
692// the packet needs to be reissued.
693RequestStatus
694GPUCoalescer::makeRequest(PacketPtr pkt)
695{
696 // Check for GPU Barrier Kernel End or Kernel Begin
697 // Leave these to be handled by the child class
698 // Kernel End/Barrier = isFlush + isRelease
699 // Kernel Begin = isFlush + isAcquire
700 if (pkt->req->isKernel()) {
701 if (pkt->req->isAcquire()){
702 // This is a Kernel Begin leave handling to
703 // virtual xCoalescer::makeRequest
704 return RequestStatus_Issued;
705 }else if (pkt->req->isRelease()) {
706 // This is a Kernel End leave handling to
707 // virtual xCoalescer::makeRequest
708 // If we are here then we didn't call
709 // a virtual version of this function
710 // so we will also schedule the callback
711 int wf_id = 0;
712 if (pkt->req->hasContextId()) {
713 wf_id = pkt->req->contextId();
714 }
715 insertKernel(wf_id, pkt);
716 newKernelEnds.push_back(wf_id);
717 if (!issueEvent.scheduled()) {
718 schedule(issueEvent, curTick());
719 }
720 return RequestStatus_Issued;
721 }
722 }
723
724 // If number of outstanding requests greater than the max allowed,
725 // return RequestStatus_BufferFull. This logic can be extended to
726 // support proper backpressure.
727 if (m_outstanding_count >= m_max_outstanding_requests) {
728 return RequestStatus_BufferFull;
729 }
730
731 RubyRequestType primary_type = RubyRequestType_NULL;
732 RubyRequestType secondary_type = RubyRequestType_NULL;
733
734 if (pkt->isLLSC()) {
735 //
736 // Alpha LL/SC instructions need to be handled carefully by the cache
737 // coherence protocol to ensure they follow the proper semantics. In
738 // particular, by identifying the operations as atomic, the protocol
739 // should understand that migratory sharing optimizations should not
740 // be performed (i.e. a load between the LL and SC should not steal
741 // away exclusive permission).
742 //
743 if (pkt->isWrite()) {
744 primary_type = RubyRequestType_Store_Conditional;
745 } else {
746 assert(pkt->isRead());
747 primary_type = RubyRequestType_Load_Linked;
748 }
749 secondary_type = RubyRequestType_ATOMIC;
750 } else if (pkt->req->isLockedRMW()) {
751 //
752 // x86 locked instructions are translated to store cache coherence
753 // requests because these requests should always be treated as read
754 // exclusive operations and should leverage any migratory sharing
755 // optimization built into the protocol.
756 //
757 if (pkt->isWrite()) {
758 primary_type = RubyRequestType_Locked_RMW_Write;
759 } else {
760 assert(pkt->isRead());
761 primary_type = RubyRequestType_Locked_RMW_Read;
762 }
763 secondary_type = RubyRequestType_ST;
764 } else if (pkt->isAtomicOp()) {
765 //
766 // GPU Atomic Operation
767 //
768 primary_type = RubyRequestType_ATOMIC;
769 secondary_type = RubyRequestType_ATOMIC;
770 } else {
771 if (pkt->isRead()) {
772 if (pkt->req->isInstFetch()) {
773 primary_type = secondary_type = RubyRequestType_IFETCH;
774 } else {
775#if THE_ISA == X86_ISA
776 uint32_t flags = pkt->req->getFlags();
777 bool storeCheck = flags &
778 (TheISA::StoreCheck << TheISA::FlagShift);
779#else
780 bool storeCheck = false;
781#endif // X86_ISA
782 if (storeCheck) {
783 primary_type = RubyRequestType_RMW_Read;
784 secondary_type = RubyRequestType_ST;
785 } else {
786 primary_type = secondary_type = RubyRequestType_LD;
787 }
788 }
789 } else if (pkt->isWrite()) {
790 //
791 // Note: M5 packets do not differentiate ST from RMW_Write
792 //
793 primary_type = secondary_type = RubyRequestType_ST;
794 } else if (pkt->isFlush()) {
795 primary_type = secondary_type = RubyRequestType_FLUSH;
796 } else if (pkt->req->isRelease() || pkt->req->isAcquire()) {
797 if (assumingRfOCoherence) {
798 // If we reached here, this request must be a memFence
799 // and the protocol implements RfO, the coalescer can
800 // assume sequentially consistency and schedule the callback
801 // immediately.
802 // Currently the code implements fence callbacks
803 // by reusing the mechanism for kernel completions.
804 // This should be fixed.
805 int wf_id = 0;
806 if (pkt->req->hasContextId()) {
807 wf_id = pkt->req->contextId();
808 }
809 insertKernel(wf_id, pkt);
810 newKernelEnds.push_back(wf_id);
811 if (!issueEvent.scheduled()) {
812 schedule(issueEvent, curTick());
813 }
814 return RequestStatus_Issued;
815 } else {
816 // If not RfO, return issued here and let the child coalescer
817 // take care of it.
818 return RequestStatus_Issued;
819 }
820 } else {
821 panic("Unsupported ruby packet type\n");
822 }
823 }
824
825 // Check if there is any pending request to this cache line from
826 // previous cycles.
827 // If there is a pending request, return aliased. Since coalescing
828 // across time is not permitted, aliased requests are not coalesced.
829 // If a request for this address has already been issued, we must block
830 RequestStatus status = getRequestStatus(pkt, primary_type);
831 if (status != RequestStatus_Ready)
832 return status;
833
834 Addr line_addr = makeLineAddress(pkt->getAddr());
835
836 // Check if this request can be coalesced with previous
837 // requests from this cycle.
838 if (!reqCoalescer.count(line_addr)) {
839 // This is the first access to this cache line.
840 // A new request to the memory subsystem has to be
841 // made in the next cycle for this cache line, so
842 // add this line addr to the "newRequests" queue
843 newRequests.push_back(line_addr);
844
845 // There was a request to this cache line in this cycle,
846 // let us see if we can coalesce this request with the previous
847 // requests from this cycle
848 } else if (primary_type !=
849 reqCoalescer[line_addr][0].primaryType) {
850 // can't coalesce loads, stores and atomics!
851 return RequestStatus_Aliased;
852 } else if (pkt->req->isLockedRMW() ||
853 reqCoalescer[line_addr][0].pkt->req->isLockedRMW()) {
854 // can't coalesce locked accesses, but can coalesce atomics!
855 return RequestStatus_Aliased;
856 } else if (pkt->req->hasContextId() && pkt->req->isRelease() &&
857 pkt->req->contextId() !=
858 reqCoalescer[line_addr][0].pkt->req->contextId()) {
859 // can't coalesce releases from different wavefronts
860 return RequestStatus_Aliased;
861 }
862
863 // in addition to the packet, we need to save both request types
864 reqCoalescer[line_addr].emplace_back(pkt, primary_type, secondary_type);
865 if (!issueEvent.scheduled())
866 schedule(issueEvent, curTick());
867 // TODO: issue hardware prefetches here
868 return RequestStatus_Issued;
869}
870
871void
872GPUCoalescer::issueRequest(PacketPtr pkt, RubyRequestType secondary_type)
873{
874
875 int proc_id = -1;
876 if (pkt != NULL && pkt->req->hasContextId()) {
877 proc_id = pkt->req->contextId();
878 }
879
880 // If valid, copy the pc to the ruby request
881 Addr pc = 0;
882 if (pkt->req->hasPC()) {
883 pc = pkt->req->getPC();
884 }
885
886 // At the moment setting scopes only counts
887 // for GPU spill space accesses
888 // which is pkt->req->isStack()
889 // this scope is REPLACE since it
890 // does not need to be flushed at the end
891 // of a kernel Private and local may need
892 // to be visible at the end of the kernel
893 HSASegment accessSegment = reqSegmentToHSASegment(pkt->req);
894 HSAScope accessScope = reqScopeToHSAScope(pkt->req);
895
896 Addr line_addr = makeLineAddress(pkt->getAddr());
897
898 // Creating WriteMask that records written bytes
899 // and atomic operations. This enables partial writes
900 // and partial reads of those writes
901 DataBlock dataBlock;
902 dataBlock.clear();
903 uint32_t blockSize = RubySystem::getBlockSizeBytes();
904 std::vector<bool> accessMask(blockSize,false);
905 std::vector< std::pair<int,AtomicOpFunctor*> > atomicOps;
906 uint32_t tableSize = reqCoalescer[line_addr].size();
907 for (int i = 0; i < tableSize; i++) {
908 PacketPtr tmpPkt = reqCoalescer[line_addr][i].pkt;
909 uint32_t tmpOffset = (tmpPkt->getAddr()) - line_addr;
910 uint32_t tmpSize = tmpPkt->getSize();
911 if (tmpPkt->isAtomicOp()) {
912 std::pair<int,AtomicOpFunctor *> tmpAtomicOp(tmpOffset,
913 tmpPkt->getAtomicOp());
914 atomicOps.push_back(tmpAtomicOp);
915 } else if (tmpPkt->isWrite()) {
916 dataBlock.setData(tmpPkt->getPtr<uint8_t>(),
917 tmpOffset, tmpSize);
918 }
919 for (int j = 0; j < tmpSize; j++) {
920 accessMask[tmpOffset + j] = true;
921 }
922 }
923 std::shared_ptr<RubyRequest> msg;
924 if (pkt->isAtomicOp()) {
925 msg = std::make_shared<RubyRequest>(clockEdge(), pkt->getAddr(),
926 pkt->getPtr<uint8_t>(),
927 pkt->getSize(), pc, secondary_type,
928 RubyAccessMode_Supervisor, pkt,
929 PrefetchBit_No, proc_id, 100,
930 blockSize, accessMask,
931 dataBlock, atomicOps,
932 accessScope, accessSegment);
933 } else {
934 msg = std::make_shared<RubyRequest>(clockEdge(), pkt->getAddr(),
935 pkt->getPtr<uint8_t>(),
936 pkt->getSize(), pc, secondary_type,
937 RubyAccessMode_Supervisor, pkt,
938 PrefetchBit_No, proc_id, 100,
939 blockSize, accessMask,
940 dataBlock,
941 accessScope, accessSegment);
942 }
943 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %s\n",
944 curTick(), m_version, "Coal", "Begin", "", "",
945 printAddress(msg->getPhysicalAddress()),
946 RubyRequestType_to_string(secondary_type));
947
948 fatal_if(secondary_type == RubyRequestType_IFETCH,
949 "there should not be any I-Fetch requests in the GPU Coalescer");
950
951 Tick latency = cyclesToTicks(
952 m_controller->mandatoryQueueLatency(secondary_type));
953 assert(latency > 0);
954
955 assert(m_mandatory_q_ptr);
956 m_mandatory_q_ptr->enqueue(msg, clockEdge(), latency);
957}
958
959template <class KEY, class VALUE>
960std::ostream &
961operator<<(ostream &out, const std::unordered_map<KEY, VALUE> &map)
962{
963 out << "[";
964 for (auto i = map.begin(); i != map.end(); ++i)
965 out << " " << i->first << "=" << i->second;
966 out << " ]";
967
968 return out;
969}
970
971void
972GPUCoalescer::print(ostream& out) const
973{
974 out << "[GPUCoalescer: " << m_version
975 << ", outstanding requests: " << m_outstanding_count
976 << ", read request table: " << m_readRequestTable
977 << ", write request table: " << m_writeRequestTable
978 << "]";
979}
980
981// this can be called from setState whenever coherence permissions are
982// upgraded when invoked, coherence violations will be checked for the
983// given block
984void
985GPUCoalescer::checkCoherence(Addr addr)
986{
987#ifdef CHECK_COHERENCE
988 m_ruby_system->checkGlobalCoherenceInvariant(addr);
989#endif
990}
991
992void
993GPUCoalescer::recordRequestType(SequencerRequestType requestType) {
994 DPRINTF(RubyStats, "Recorded statistic: %s\n",
995 SequencerRequestType_to_string(requestType));
996}
997
998
999void
1000GPUCoalescer::completeIssue()
1001{
1002 // newRequests has the cacheline addresses of all the
1003 // requests which need to be issued to the memory subsystem
1004 // in this cycle
1005 int len = newRequests.size();
1006 DPRINTF(GPUCoalescer, "Completing issue for %d new requests.\n", len);
1007 for (int i = 0; i < len; ++i) {
1008 // Get the requests from reqCoalescer table. Get only the
1009 // first request for each cacheline, the remaining requests
1010 // can be coalesced with the first request. So, only
1011 // one request is issued per cacheline.
1012 RequestDesc info = reqCoalescer[newRequests[i]][0];
1013 PacketPtr pkt = info.pkt;
1014 DPRINTF(GPUCoalescer, "Completing for newReq %d: paddr %#x\n",
1015 i, pkt->req->getPaddr());
1016 // Insert this request to the read/writeRequestTables. These tables
1017 // are used to track aliased requests in makeRequest subroutine
1018 bool found = insertRequest(pkt, info.primaryType);
1019
1020 if (found) {
1021 panic("GPUCoalescer::makeRequest should never be called if the "
1022 "request is already outstanding\n");
1023 }
1024
1025 // Issue request to ruby subsystem
1026 issueRequest(pkt, info.secondaryType);
1027 }
1028 newRequests.clear();
1029
1030 // have Kernel End releases been issued this cycle
1031 len = newKernelEnds.size();
1032 for (int i = 0; i < len; i++) {
1033 kernelCallback(newKernelEnds[i]);
1034 }
1035 newKernelEnds.clear();
1036}
1037
1038void
1039GPUCoalescer::evictionCallback(Addr address)
1040{
1041 ruby_eviction_callback(address);
1042}
1043
1044void
1045GPUCoalescer::kernelCallback(int wavefront_id)
1046{
1047 assert(kernelEndList.count(wavefront_id));
1048
1049 ruby_hit_callback(kernelEndList[wavefront_id]);
1050
1051 kernelEndList.erase(wavefront_id);
1052}
1053
1054void
1055GPUCoalescer::atomicCallback(Addr address,
1056 MachineType mach,
1057 const DataBlock& data)
1058{
1059 assert(address == makeLineAddress(address));
1060
1061 DPRINTF(GPUCoalescer, "atomic callback for address %#x\n", address);
1062 assert(m_writeRequestTable.count(makeLineAddress(address)));
1063
1064 RequestTable::iterator i = m_writeRequestTable.find(address);
1065 assert(i != m_writeRequestTable.end());
1066 GPUCoalescerRequest* srequest = i->second;
1067
1068 m_writeRequestTable.erase(i);
1069 markRemoved();
1070
1071 assert((srequest->m_type == RubyRequestType_ATOMIC) ||
1072 (srequest->m_type == RubyRequestType_ATOMIC_RETURN) ||
1073 (srequest->m_type == RubyRequestType_ATOMIC_NO_RETURN));
1074
1075
1076 // Atomics don't write to cache, so there is no MRU update...
1077
1078 recordMissLatency(srequest, mach,
1079 srequest->issue_time, Cycles(0), Cycles(0), true, false);
1080
1081 PacketPtr pkt = srequest->pkt;
1082 Addr request_address = pkt->getAddr();
1083 Addr request_line_address = makeLineAddress(pkt->getAddr());
1084
1085 int len = reqCoalescer[request_line_address].size();
1086 std::vector<PacketPtr> mylist;
1087 for (int i = 0; i < len; ++i) {
1088 PacketPtr pkt = reqCoalescer[request_line_address][i].pkt;
1089 assert(srequest->m_type ==
1090 reqCoalescer[request_line_address][i].primaryType);
1091 request_address = (pkt->getAddr());
1092 request_line_address = makeLineAddress(request_address);
1093 if (pkt->getPtr<uint8_t>() &&
1094 srequest->m_type != RubyRequestType_ATOMIC_NO_RETURN) {
1095 /* atomics are done in memory, and return the data *before* the atomic op... */
1096 pkt->setData(
1097 data.getData(getOffset(request_address), pkt->getSize()));
1098 } else {
1099 DPRINTF(MemoryAccess,
1100 "WARNING. Data not transfered from Ruby to M5 for type " \
1101 "%s\n",
1102 RubyRequestType_to_string(srequest->m_type));
1103 }
1104
1105 // If using the RubyTester, update the RubyTester sender state's
1106 // subBlock with the recieved data. The tester will later access
1107 // this state.
1108 // Note: RubyPort will access it's sender state before the
1109 // RubyTester.
1110 if (m_usingRubyTester) {
1111 RubyPort::SenderState *requestSenderState =
1112 safe_cast<RubyPort::SenderState*>(pkt->senderState);
1113 RubyTester::SenderState* testerSenderState =
1114 safe_cast<RubyTester::SenderState*>(requestSenderState->predecessor);
1115 testerSenderState->subBlock.mergeFrom(data);
1116 }
1117
1118 mylist.push_back(pkt);
1119 }
1120 delete srequest;
1121 reqCoalescer.erase(request_line_address);
1122 assert(!reqCoalescer.count(request_line_address));
1123
1124 completeHitCallback(mylist, len);
1125}
1126
1127void
1128GPUCoalescer::recordCPReadCallBack(MachineID myMachID, MachineID senderMachID)
1129{
1130 if (myMachID == senderMachID) {
1131 CP_TCPLdHits++;
1132 } else if (machineIDToMachineType(senderMachID) == MachineType_TCP) {
1133 CP_TCPLdTransfers++;
1134 } else if (machineIDToMachineType(senderMachID) == MachineType_TCC) {
1135 CP_TCCLdHits++;
1136 } else {
1137 CP_LdMiss++;
1138 }
1139}
1140
1141void
1142GPUCoalescer::recordCPWriteCallBack(MachineID myMachID, MachineID senderMachID)
1143{
1144 if (myMachID == senderMachID) {
1145 CP_TCPStHits++;
1146 } else if (machineIDToMachineType(senderMachID) == MachineType_TCP) {
1147 CP_TCPStTransfers++;
1148 } else if (machineIDToMachineType(senderMachID) == MachineType_TCC) {
1149 CP_TCCStHits++;
1150 } else {
1151 CP_StMiss++;
1152 }
1153}
1154
1155void
1156GPUCoalescer::completeHitCallback(std::vector<PacketPtr> & mylist, int len)
1157{
1158 for (int i = 0; i < len; ++i) {
1159 RubyPort::SenderState *ss =
1160 safe_cast<RubyPort::SenderState *>(mylist[i]->senderState);
1161 MemSlavePort *port = ss->port;
1162 assert(port != NULL);
1163
1164 mylist[i]->senderState = ss->predecessor;
1165 delete ss;
1166 port->hitCallback(mylist[i]);
1167 trySendRetries();
1168 }
1169
1170 testDrainComplete();
1171}
1172
1173PacketPtr
1174GPUCoalescer::mapAddrToPkt(Addr address)
1175{
1176 RequestTable::iterator i = m_readRequestTable.find(address);
1177 assert(i != m_readRequestTable.end());
1178 GPUCoalescerRequest* request = i->second;
1179 return request->pkt;
1180}
1181
1182void
1183GPUCoalescer::recordMissLatency(GPUCoalescerRequest* srequest,
1184 MachineType mach,
1185 Cycles initialRequestTime,
1186 Cycles forwardRequestTime,
1187 Cycles firstResponseTime,
1188 bool success, bool isRegion)
1189{
1190 RubyRequestType type = srequest->m_type;
1191 Cycles issued_time = srequest->issue_time;
1192 Cycles completion_time = curCycle();
1193 assert(completion_time >= issued_time);
1194 Cycles total_lat = completion_time - issued_time;
1195
1196 // cache stats (valid for RfO protocol only)
1197 if (mach == MachineType_TCP) {
1198 if (type == RubyRequestType_LD) {
1199 GPU_TCPLdHits++;
1200 } else {
1201 GPU_TCPStHits++;
1202 }
1203 } else if (mach == MachineType_L1Cache_wCC) {
1204 if (type == RubyRequestType_LD) {
1205 GPU_TCPLdTransfers++;
1206 } else {
1207 GPU_TCPStTransfers++;
1208 }
1209 } else if (mach == MachineType_TCC) {
1210 if (type == RubyRequestType_LD) {
1211 GPU_TCCLdHits++;
1212 } else {
1213 GPU_TCCStHits++;
1214 }
1215 } else {
1216 if (type == RubyRequestType_LD) {
1217 GPU_LdMiss++;
1218 } else {
1219 GPU_StMiss++;
1220 }
1221 }
1222
1223 // Profile all access latency, even zero latency accesses
1224 m_latencyHist.sample(total_lat);
1225 m_typeLatencyHist[type]->sample(total_lat);
1226
1227 // Profile the miss latency for all non-zero demand misses
1228 if (total_lat != Cycles(0)) {
1229 m_missLatencyHist.sample(total_lat);
1230 m_missTypeLatencyHist[type]->sample(total_lat);
1231
1232 if (mach != MachineType_NUM) {
1233 m_missMachLatencyHist[mach]->sample(total_lat);
1234 m_missTypeMachLatencyHist[type][mach]->sample(total_lat);
1235
1236 if ((issued_time <= initialRequestTime) &&
1237 (initialRequestTime <= forwardRequestTime) &&
1238 (forwardRequestTime <= firstResponseTime) &&
1239 (firstResponseTime <= completion_time)) {
1240
1241 m_IssueToInitialDelayHist[mach]->sample(
1242 initialRequestTime - issued_time);
1243 m_InitialToForwardDelayHist[mach]->sample(
1244 forwardRequestTime - initialRequestTime);
1245 m_ForwardToFirstResponseDelayHist[mach]->sample(
1246 firstResponseTime - forwardRequestTime);
1247 m_FirstResponseToCompletionDelayHist[mach]->sample(
1248 completion_time - firstResponseTime);
1249 }
1250 }
1251
1252 }
1253
1254 DPRINTFR(ProtocolTrace, "%15s %3s %10s%20s %6s>%-6s %s %d cycles\n",
1255 curTick(), m_version, "Coal",
1256 success ? "Done" : "SC_Failed", "", "",
1257 printAddress(srequest->pkt->getAddr()), total_lat);
1258}
1259
1260void
1261GPUCoalescer::regStats()
1262{
1263 RubyPort::regStats();
1264
1265 // These statistical variables are not for display.
1266 // The profiler will collate these across different
1267 // coalescers and display those collated statistics.
1268 m_outstandReqHist.init(10);
1269 m_latencyHist.init(10);
1270 m_missLatencyHist.init(10);
1271
1272 for (int i = 0; i < RubyRequestType_NUM; i++) {
1273 m_typeLatencyHist.push_back(new Stats::Histogram());
1274 m_typeLatencyHist[i]->init(10);
1275
1276 m_missTypeLatencyHist.push_back(new Stats::Histogram());
1277 m_missTypeLatencyHist[i]->init(10);
1278 }
1279
1280 for (int i = 0; i < MachineType_NUM; i++) {
1281 m_missMachLatencyHist.push_back(new Stats::Histogram());
1282 m_missMachLatencyHist[i]->init(10);
1283
1284 m_IssueToInitialDelayHist.push_back(new Stats::Histogram());
1285 m_IssueToInitialDelayHist[i]->init(10);
1286
1287 m_InitialToForwardDelayHist.push_back(new Stats::Histogram());
1288 m_InitialToForwardDelayHist[i]->init(10);
1289
1290 m_ForwardToFirstResponseDelayHist.push_back(new Stats::Histogram());
1291 m_ForwardToFirstResponseDelayHist[i]->init(10);
1292
1293 m_FirstResponseToCompletionDelayHist.push_back(new Stats::Histogram());
1294 m_FirstResponseToCompletionDelayHist[i]->init(10);
1295 }
1296
1297 for (int i = 0; i < RubyRequestType_NUM; i++) {
1298 m_missTypeMachLatencyHist.push_back(std::vector<Stats::Histogram *>());
1299
1300 for (int j = 0; j < MachineType_NUM; j++) {
1301 m_missTypeMachLatencyHist[i].push_back(new Stats::Histogram());
1302 m_missTypeMachLatencyHist[i][j]->init(10);
1303 }
1304 }
1305
1306 // GPU cache stats
1307 GPU_TCPLdHits
1308 .name(name() + ".gpu_tcp_ld_hits")
1309 .desc("loads that hit in the TCP")
1310 ;
1311 GPU_TCPLdTransfers
1312 .name(name() + ".gpu_tcp_ld_transfers")
1313 .desc("TCP to TCP load transfers")
1314 ;
1315 GPU_TCCLdHits
1316 .name(name() + ".gpu_tcc_ld_hits")
1317 .desc("loads that hit in the TCC")
1318 ;
1319 GPU_LdMiss
1320 .name(name() + ".gpu_ld_misses")
1321 .desc("loads that miss in the GPU")
1322 ;
1323
1324 GPU_TCPStHits
1325 .name(name() + ".gpu_tcp_st_hits")
1326 .desc("stores that hit in the TCP")
1327 ;
1328 GPU_TCPStTransfers
1329 .name(name() + ".gpu_tcp_st_transfers")
1330 .desc("TCP to TCP store transfers")
1331 ;
1332 GPU_TCCStHits
1333 .name(name() + ".gpu_tcc_st_hits")
1334 .desc("stores that hit in the TCC")
1335 ;
1336 GPU_StMiss
1337 .name(name() + ".gpu_st_misses")
1338 .desc("stores that miss in the GPU")
1339 ;
1340
1341 // CP cache stats
1342 CP_TCPLdHits
1343 .name(name() + ".cp_tcp_ld_hits")
1344 .desc("loads that hit in the TCP")
1345 ;
1346 CP_TCPLdTransfers
1347 .name(name() + ".cp_tcp_ld_transfers")
1348 .desc("TCP to TCP load transfers")
1349 ;
1350 CP_TCCLdHits
1351 .name(name() + ".cp_tcc_ld_hits")
1352 .desc("loads that hit in the TCC")
1353 ;
1354 CP_LdMiss
1355 .name(name() + ".cp_ld_misses")
1356 .desc("loads that miss in the GPU")
1357 ;
1358
1359 CP_TCPStHits
1360 .name(name() + ".cp_tcp_st_hits")
1361 .desc("stores that hit in the TCP")
1362 ;
1363 CP_TCPStTransfers
1364 .name(name() + ".cp_tcp_st_transfers")
1365 .desc("TCP to TCP store transfers")
1366 ;
1367 CP_TCCStHits
1368 .name(name() + ".cp_tcc_st_hits")
1369 .desc("stores that hit in the TCC")
1370 ;
1371 CP_StMiss
1372 .name(name() + ".cp_st_misses")
1373 .desc("stores that miss in the GPU")
1374 ;
1375}