DMASequencer.cc (10713:eddb533708cb) DMASequencer.cc (10910:32f3d1c454ec)
1/*
2 * Copyright (c) 2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <memory>
30
31#include "debug/Config.hh"
32#include "debug/Drain.hh"
33#include "debug/RubyDma.hh"
34#include "debug/RubyStats.hh"
35#include "mem/protocol/SequencerMsg.hh"
36#include "mem/ruby/system/DMASequencer.hh"
37#include "mem/ruby/system/System.hh"
38#include "sim/system.hh"
39
40DMASequencer::DMASequencer(const Params *p)
41 : MemObject(p), m_version(p->version), m_controller(NULL),
42 m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
43 slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system,
44 p->ruby_system->getAccessBackingStore()),
45 drainManager(NULL), system(p->system), retry(false)
46{
47 assert(m_version != -1);
48}
49
50void
51DMASequencer::init()
52{
53 MemObject::init();
54 assert(m_controller != NULL);
55 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
56 m_mandatory_q_ptr->setSender(this);
57 m_is_busy = false;
58 m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
59
60 slave_port.sendRangeChange();
61}
62
63BaseSlavePort &
64DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
65{
66 // used by the CPUs to connect the caches to the interconnect, and
67 // for the x86 case also the interrupt master
68 if (if_name != "slave") {
69 // pass it along to our super class
70 return MemObject::getSlavePort(if_name, idx);
71 } else {
72 return slave_port;
73 }
74}
75
76DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
77 DMASequencer *_port, PortID id, RubySystem* _ruby_system,
78 bool _access_backing_store)
79 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
80 ruby_system(_ruby_system), access_backing_store(_access_backing_store)
81{
82 DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
83}
84
85bool
86DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt)
87{
88 DPRINTF(RubyDma, "Timing request for address %#x on port %d\n",
89 pkt->getAddr(), id);
90 DMASequencer *seq = static_cast<DMASequencer *>(&owner);
91
92 if (pkt->memInhibitAsserted())
93 panic("DMASequencer should never see an inhibited request\n");
94
95 assert(isPhysMemAddress(pkt->getAddr()));
96 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
97 RubySystem::getBlockSizeBytes());
98
99 // Submit the ruby request
100 RequestStatus requestStatus = seq->makeRequest(pkt);
101
102 // If the request successfully issued then we should return true.
103 // Otherwise, we need to tell the port to retry at a later point
104 // and return false.
105 if (requestStatus == RequestStatus_Issued) {
106 DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(),
107 pkt->getAddr());
108 return true;
109 }
110
111 // Unless one is using the ruby tester, record the stalled M5 port for
112 // later retry when the sequencer becomes free.
113 if (!seq->m_usingRubyTester) {
114 seq->retry = true;
115 }
116
117 DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n",
118 pkt->getAddr(), RequestStatus_to_string(requestStatus));
119
120 return false;
121}
122
123void
124DMASequencer::ruby_hit_callback(PacketPtr pkt)
125{
126 DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(),
127 pkt->getAddr());
128
129 // The packet was destined for memory and has not yet been turned
130 // into a response
131 assert(system->isMemAddr(pkt->getAddr()));
132 assert(pkt->isRequest());
133 slave_port.hitCallback(pkt);
134
135 // If we had to stall the slave ports, wake it up because
136 // the sequencer likely has free resources now.
137 if (retry) {
138 retry = false;
139 DPRINTF(RubyDma,"Sequencer may now be free. SendRetry to port %s\n",
140 slave_port.name());
141 slave_port.sendRetryReq();
142 }
143
144 testDrainComplete();
145}
146
147void
148DMASequencer::testDrainComplete()
149{
150 //If we weren't able to drain before, we might be able to now.
151 if (drainManager != NULL) {
152 unsigned int drainCount = outstandingCount();
153 DPRINTF(Drain, "Drain count: %u\n", drainCount);
154 if (drainCount == 0) {
155 DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n");
156 drainManager->signalDrainDone();
157 // Clear the drain manager once we're done with it.
158 drainManager = NULL;
159 }
160 }
161}
162
163unsigned int
164DMASequencer::getChildDrainCount(DrainManager *dm)
165{
166 int count = 0;
167 count += slave_port.drain(dm);
168 DPRINTF(Config, "count after slave port check %d\n", count);
169 return count;
170}
171
172unsigned int
173DMASequencer::drain(DrainManager *dm)
174{
175 if (isDeadlockEventScheduled()) {
176 descheduleDeadlockEvent();
177 }
178
179 // If the DMASequencer is not empty, then it needs to clear all outstanding
180 // requests before it should call drainManager->signalDrainDone()
181 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
182 bool need_drain = outstandingCount() > 0;
183
184 //
185 // Also, get the number of child ports that will also need to clear
186 // their buffered requests before they call drainManager->signalDrainDone()
187 //
188 unsigned int child_drain_count = getChildDrainCount(dm);
189
190 // Set status
191 if (need_drain) {
192 drainManager = dm;
193
194 DPRINTF(Drain, "DMASequencer not drained\n");
1/*
2 * Copyright (c) 2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <memory>
30
31#include "debug/Config.hh"
32#include "debug/Drain.hh"
33#include "debug/RubyDma.hh"
34#include "debug/RubyStats.hh"
35#include "mem/protocol/SequencerMsg.hh"
36#include "mem/ruby/system/DMASequencer.hh"
37#include "mem/ruby/system/System.hh"
38#include "sim/system.hh"
39
40DMASequencer::DMASequencer(const Params *p)
41 : MemObject(p), m_version(p->version), m_controller(NULL),
42 m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
43 slave_port(csprintf("%s.slave", name()), this, 0, p->ruby_system,
44 p->ruby_system->getAccessBackingStore()),
45 drainManager(NULL), system(p->system), retry(false)
46{
47 assert(m_version != -1);
48}
49
50void
51DMASequencer::init()
52{
53 MemObject::init();
54 assert(m_controller != NULL);
55 m_mandatory_q_ptr = m_controller->getMandatoryQueue();
56 m_mandatory_q_ptr->setSender(this);
57 m_is_busy = false;
58 m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
59
60 slave_port.sendRangeChange();
61}
62
63BaseSlavePort &
64DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
65{
66 // used by the CPUs to connect the caches to the interconnect, and
67 // for the x86 case also the interrupt master
68 if (if_name != "slave") {
69 // pass it along to our super class
70 return MemObject::getSlavePort(if_name, idx);
71 } else {
72 return slave_port;
73 }
74}
75
76DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
77 DMASequencer *_port, PortID id, RubySystem* _ruby_system,
78 bool _access_backing_store)
79 : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
80 ruby_system(_ruby_system), access_backing_store(_access_backing_store)
81{
82 DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
83}
84
85bool
86DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt)
87{
88 DPRINTF(RubyDma, "Timing request for address %#x on port %d\n",
89 pkt->getAddr(), id);
90 DMASequencer *seq = static_cast<DMASequencer *>(&owner);
91
92 if (pkt->memInhibitAsserted())
93 panic("DMASequencer should never see an inhibited request\n");
94
95 assert(isPhysMemAddress(pkt->getAddr()));
96 assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
97 RubySystem::getBlockSizeBytes());
98
99 // Submit the ruby request
100 RequestStatus requestStatus = seq->makeRequest(pkt);
101
102 // If the request successfully issued then we should return true.
103 // Otherwise, we need to tell the port to retry at a later point
104 // and return false.
105 if (requestStatus == RequestStatus_Issued) {
106 DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(),
107 pkt->getAddr());
108 return true;
109 }
110
111 // Unless one is using the ruby tester, record the stalled M5 port for
112 // later retry when the sequencer becomes free.
113 if (!seq->m_usingRubyTester) {
114 seq->retry = true;
115 }
116
117 DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n",
118 pkt->getAddr(), RequestStatus_to_string(requestStatus));
119
120 return false;
121}
122
123void
124DMASequencer::ruby_hit_callback(PacketPtr pkt)
125{
126 DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(),
127 pkt->getAddr());
128
129 // The packet was destined for memory and has not yet been turned
130 // into a response
131 assert(system->isMemAddr(pkt->getAddr()));
132 assert(pkt->isRequest());
133 slave_port.hitCallback(pkt);
134
135 // If we had to stall the slave ports, wake it up because
136 // the sequencer likely has free resources now.
137 if (retry) {
138 retry = false;
139 DPRINTF(RubyDma,"Sequencer may now be free. SendRetry to port %s\n",
140 slave_port.name());
141 slave_port.sendRetryReq();
142 }
143
144 testDrainComplete();
145}
146
147void
148DMASequencer::testDrainComplete()
149{
150 //If we weren't able to drain before, we might be able to now.
151 if (drainManager != NULL) {
152 unsigned int drainCount = outstandingCount();
153 DPRINTF(Drain, "Drain count: %u\n", drainCount);
154 if (drainCount == 0) {
155 DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n");
156 drainManager->signalDrainDone();
157 // Clear the drain manager once we're done with it.
158 drainManager = NULL;
159 }
160 }
161}
162
163unsigned int
164DMASequencer::getChildDrainCount(DrainManager *dm)
165{
166 int count = 0;
167 count += slave_port.drain(dm);
168 DPRINTF(Config, "count after slave port check %d\n", count);
169 return count;
170}
171
172unsigned int
173DMASequencer::drain(DrainManager *dm)
174{
175 if (isDeadlockEventScheduled()) {
176 descheduleDeadlockEvent();
177 }
178
179 // If the DMASequencer is not empty, then it needs to clear all outstanding
180 // requests before it should call drainManager->signalDrainDone()
181 DPRINTF(Config, "outstanding count %d\n", outstandingCount());
182 bool need_drain = outstandingCount() > 0;
183
184 //
185 // Also, get the number of child ports that will also need to clear
186 // their buffered requests before they call drainManager->signalDrainDone()
187 //
188 unsigned int child_drain_count = getChildDrainCount(dm);
189
190 // Set status
191 if (need_drain) {
192 drainManager = dm;
193
194 DPRINTF(Drain, "DMASequencer not drained\n");
195 setDrainState(Drainable::Draining);
195 setDrainState(DrainState::Draining);
196 return child_drain_count + 1;
197 }
198
199 drainManager = NULL;
196 return child_drain_count + 1;
197 }
198
199 drainManager = NULL;
200 setDrainState(Drainable::Drained);
200 setDrainState(DrainState::Drained);
201 return child_drain_count;
202}
203
204void
205DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
206{
207 bool needsResponse = pkt->needsResponse();
208 assert(!pkt->isLLSC());
209 assert(!pkt->isFlush());
210
211 DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
212
213 // turn packet around to go back to requester if response expected
214
215 if (access_backing_store) {
216 ruby_system->getPhysMem()->access(pkt);
217 } else if (needsResponse) {
218 pkt->makeResponse();
219 }
220
221 if (needsResponse) {
222 DPRINTF(RubyDma, "Sending packet back over port\n");
223 // send next cycle
224 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
225 } else {
226 delete pkt;
227 }
228
229 DPRINTF(RubyDma, "Hit callback done!\n");
230}
231
232bool
233DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const
234{
235 DMASequencer *seq = static_cast<DMASequencer *>(&owner);
236 return seq->system->isMemAddr(addr);
237}
238
239RequestStatus
240DMASequencer::makeRequest(PacketPtr pkt)
241{
242 if (m_is_busy) {
243 return RequestStatus_BufferFull;
244 }
245
246 uint64_t paddr = pkt->getAddr();
247 uint8_t* data = pkt->getPtr<uint8_t>();
248 int len = pkt->getSize();
249 bool write = pkt->isWrite();
250
251 assert(!m_is_busy); // only support one outstanding DMA request
252 m_is_busy = true;
253
254 active_request.start_paddr = paddr;
255 active_request.write = write;
256 active_request.data = data;
257 active_request.len = len;
258 active_request.bytes_completed = 0;
259 active_request.bytes_issued = 0;
260 active_request.pkt = pkt;
261
262 std::shared_ptr<SequencerMsg> msg =
263 std::make_shared<SequencerMsg>(clockEdge());
264 msg->getPhysicalAddress() = Address(paddr);
265 msg->getLineAddress() = line_address(msg->getPhysicalAddress());
266 msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD;
267 int offset = paddr & m_data_block_mask;
268
269 msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
270 len : RubySystem::getBlockSizeBytes() - offset;
271
272 if (write && (data != NULL)) {
273 if (active_request.data != NULL) {
274 msg->getDataBlk().setData(data, offset, msg->getLen());
275 }
276 }
277
278 assert(m_mandatory_q_ptr != NULL);
279 m_mandatory_q_ptr->enqueue(msg);
280 active_request.bytes_issued += msg->getLen();
281
282 return RequestStatus_Issued;
283}
284
285void
286DMASequencer::issueNext()
287{
288 assert(m_is_busy);
289 active_request.bytes_completed = active_request.bytes_issued;
290 if (active_request.len == active_request.bytes_completed) {
291 //
292 // Must unset the busy flag before calling back the dma port because
293 // the callback may cause a previously nacked request to be reissued
294 //
295 DPRINTF(RubyDma, "DMA request completed\n");
296 m_is_busy = false;
297 ruby_hit_callback(active_request.pkt);
298 return;
299 }
300
301 std::shared_ptr<SequencerMsg> msg =
302 std::make_shared<SequencerMsg>(clockEdge());
303 msg->getPhysicalAddress() = Address(active_request.start_paddr +
304 active_request.bytes_completed);
305
306 assert((msg->getPhysicalAddress().getAddress() & m_data_block_mask) == 0);
307 msg->getLineAddress() = line_address(msg->getPhysicalAddress());
308
309 msg->getType() = (active_request.write ? SequencerRequestType_ST :
310 SequencerRequestType_LD);
311
312 msg->getLen() =
313 (active_request.len -
314 active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
315 active_request.len - active_request.bytes_completed :
316 RubySystem::getBlockSizeBytes());
317
318 if (active_request.write) {
319 msg->getDataBlk().
320 setData(&active_request.data[active_request.bytes_completed],
321 0, msg->getLen());
322 msg->getType() = SequencerRequestType_ST;
323 } else {
324 msg->getType() = SequencerRequestType_LD;
325 }
326
327 assert(m_mandatory_q_ptr != NULL);
328 m_mandatory_q_ptr->enqueue(msg);
329 active_request.bytes_issued += msg->getLen();
330 DPRINTF(RubyDma,
331 "DMA request bytes issued %d, bytes completed %d, total len %d\n",
332 active_request.bytes_issued, active_request.bytes_completed,
333 active_request.len);
334}
335
336void
337DMASequencer::dataCallback(const DataBlock & dblk)
338{
339 assert(m_is_busy);
340 int len = active_request.bytes_issued - active_request.bytes_completed;
341 int offset = 0;
342 if (active_request.bytes_completed == 0)
343 offset = active_request.start_paddr & m_data_block_mask;
344 assert(!active_request.write);
345 if (active_request.data != NULL) {
346 memcpy(&active_request.data[active_request.bytes_completed],
347 dblk.getData(offset, len), len);
348 }
349 issueNext();
350}
351
352void
353DMASequencer::ackCallback()
354{
355 issueNext();
356}
357
358void
359DMASequencer::recordRequestType(DMASequencerRequestType requestType)
360{
361 DPRINTF(RubyStats, "Recorded statistic: %s\n",
362 DMASequencerRequestType_to_string(requestType));
363}
364
365DMASequencer *
366DMASequencerParams::create()
367{
368 return new DMASequencer(this);
369}
201 return child_drain_count;
202}
203
204void
205DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
206{
207 bool needsResponse = pkt->needsResponse();
208 assert(!pkt->isLLSC());
209 assert(!pkt->isFlush());
210
211 DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
212
213 // turn packet around to go back to requester if response expected
214
215 if (access_backing_store) {
216 ruby_system->getPhysMem()->access(pkt);
217 } else if (needsResponse) {
218 pkt->makeResponse();
219 }
220
221 if (needsResponse) {
222 DPRINTF(RubyDma, "Sending packet back over port\n");
223 // send next cycle
224 schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
225 } else {
226 delete pkt;
227 }
228
229 DPRINTF(RubyDma, "Hit callback done!\n");
230}
231
232bool
233DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const
234{
235 DMASequencer *seq = static_cast<DMASequencer *>(&owner);
236 return seq->system->isMemAddr(addr);
237}
238
239RequestStatus
240DMASequencer::makeRequest(PacketPtr pkt)
241{
242 if (m_is_busy) {
243 return RequestStatus_BufferFull;
244 }
245
246 uint64_t paddr = pkt->getAddr();
247 uint8_t* data = pkt->getPtr<uint8_t>();
248 int len = pkt->getSize();
249 bool write = pkt->isWrite();
250
251 assert(!m_is_busy); // only support one outstanding DMA request
252 m_is_busy = true;
253
254 active_request.start_paddr = paddr;
255 active_request.write = write;
256 active_request.data = data;
257 active_request.len = len;
258 active_request.bytes_completed = 0;
259 active_request.bytes_issued = 0;
260 active_request.pkt = pkt;
261
262 std::shared_ptr<SequencerMsg> msg =
263 std::make_shared<SequencerMsg>(clockEdge());
264 msg->getPhysicalAddress() = Address(paddr);
265 msg->getLineAddress() = line_address(msg->getPhysicalAddress());
266 msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD;
267 int offset = paddr & m_data_block_mask;
268
269 msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
270 len : RubySystem::getBlockSizeBytes() - offset;
271
272 if (write && (data != NULL)) {
273 if (active_request.data != NULL) {
274 msg->getDataBlk().setData(data, offset, msg->getLen());
275 }
276 }
277
278 assert(m_mandatory_q_ptr != NULL);
279 m_mandatory_q_ptr->enqueue(msg);
280 active_request.bytes_issued += msg->getLen();
281
282 return RequestStatus_Issued;
283}
284
285void
286DMASequencer::issueNext()
287{
288 assert(m_is_busy);
289 active_request.bytes_completed = active_request.bytes_issued;
290 if (active_request.len == active_request.bytes_completed) {
291 //
292 // Must unset the busy flag before calling back the dma port because
293 // the callback may cause a previously nacked request to be reissued
294 //
295 DPRINTF(RubyDma, "DMA request completed\n");
296 m_is_busy = false;
297 ruby_hit_callback(active_request.pkt);
298 return;
299 }
300
301 std::shared_ptr<SequencerMsg> msg =
302 std::make_shared<SequencerMsg>(clockEdge());
303 msg->getPhysicalAddress() = Address(active_request.start_paddr +
304 active_request.bytes_completed);
305
306 assert((msg->getPhysicalAddress().getAddress() & m_data_block_mask) == 0);
307 msg->getLineAddress() = line_address(msg->getPhysicalAddress());
308
309 msg->getType() = (active_request.write ? SequencerRequestType_ST :
310 SequencerRequestType_LD);
311
312 msg->getLen() =
313 (active_request.len -
314 active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
315 active_request.len - active_request.bytes_completed :
316 RubySystem::getBlockSizeBytes());
317
318 if (active_request.write) {
319 msg->getDataBlk().
320 setData(&active_request.data[active_request.bytes_completed],
321 0, msg->getLen());
322 msg->getType() = SequencerRequestType_ST;
323 } else {
324 msg->getType() = SequencerRequestType_LD;
325 }
326
327 assert(m_mandatory_q_ptr != NULL);
328 m_mandatory_q_ptr->enqueue(msg);
329 active_request.bytes_issued += msg->getLen();
330 DPRINTF(RubyDma,
331 "DMA request bytes issued %d, bytes completed %d, total len %d\n",
332 active_request.bytes_issued, active_request.bytes_completed,
333 active_request.len);
334}
335
336void
337DMASequencer::dataCallback(const DataBlock & dblk)
338{
339 assert(m_is_busy);
340 int len = active_request.bytes_issued - active_request.bytes_completed;
341 int offset = 0;
342 if (active_request.bytes_completed == 0)
343 offset = active_request.start_paddr & m_data_block_mask;
344 assert(!active_request.write);
345 if (active_request.data != NULL) {
346 memcpy(&active_request.data[active_request.bytes_completed],
347 dblk.getData(offset, len), len);
348 }
349 issueNext();
350}
351
352void
353DMASequencer::ackCallback()
354{
355 issueNext();
356}
357
358void
359DMASequencer::recordRequestType(DMASequencerRequestType requestType)
360{
361 DPRINTF(RubyStats, "Recorded statistic: %s\n",
362 DMASequencerRequestType_to_string(requestType));
363}
364
365DMASequencer *
366DMASequencerParams::create()
367{
368 return new DMASequencer(this);
369}