AbstractController.cc (10837:ecbab2522757) AbstractController.cc (10977:9b3b9be42dd9)
1/*
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/protocol/MemoryMsg.hh"
30#include "mem/ruby/slicc_interface/AbstractController.hh"
31#include "mem/ruby/system/Sequencer.hh"
32#include "mem/ruby/system/System.hh"
33#include "sim/system.hh"
34
35AbstractController::AbstractController(const Params *p)
36 : MemObject(p), Consumer(this), m_version(p->version),
37 m_clusterID(p->cluster_id),
38 m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
39 m_number_of_TBEs(p->number_of_TBEs),
40 m_transitions_per_cycle(p->transitions_per_cycle),
41 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
42 memoryPort(csprintf("%s.memory", name()), this, ""),
43 m_responseFromMemory_ptr(new MessageBuffer())
44{
45 // Set the sender pointer of the response message buffer from the
46 // memory controller.
47 // This pointer is used for querying for the current time.
48 m_responseFromMemory_ptr->setSender(this);
49 m_responseFromMemory_ptr->setReceiver(this);
50 m_responseFromMemory_ptr->setOrdering(false);
51
52 if (m_version == 0) {
53 // Combine the statistics from all controllers
54 // of this particular type.
55 Stats::registerDumpCallback(new StatsCallback(this));
56 }
57}
58
59void
60AbstractController::init()
61{
62 params()->ruby_system->registerAbstractController(this);
63 m_delayHistogram.init(10);
64 uint32_t size = Network::getNumberOfVirtualNetworks();
65 for (uint32_t i = 0; i < size; i++) {
66 m_delayVCHistogram.push_back(new Stats::Histogram());
67 m_delayVCHistogram[i]->init(10);
68 }
69}
70
71void
72AbstractController::resetStats()
73{
74 m_delayHistogram.reset();
75 uint32_t size = Network::getNumberOfVirtualNetworks();
76 for (uint32_t i = 0; i < size; i++) {
77 m_delayVCHistogram[i]->reset();
78 }
79}
80
81void
82AbstractController::regStats()
83{
84 m_fully_busy_cycles
85 .name(name() + ".fully_busy_cycles")
86 .desc("cycles for which number of transistions == max transitions")
87 .flags(Stats::nozero);
88}
89
90void
91AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
92{
93 assert(virtualNetwork < m_delayVCHistogram.size());
94 m_delayHistogram.sample(delay);
95 m_delayVCHistogram[virtualNetwork]->sample(delay);
96}
97
98void
99AbstractController::stallBuffer(MessageBuffer* buf, Address addr)
100{
101 if (m_waiting_buffers.count(addr) == 0) {
102 MsgVecType* msgVec = new MsgVecType;
103 msgVec->resize(m_in_ports, NULL);
104 m_waiting_buffers[addr] = msgVec;
105 }
106 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
107}
108
109void
110AbstractController::wakeUpBuffers(Address addr)
111{
112 if (m_waiting_buffers.count(addr) > 0) {
113 //
114 // Wake up all possible lower rank (i.e. lower priority) buffers that could
115 // be waiting on this message.
116 //
117 for (int in_port_rank = m_cur_in_port - 1;
118 in_port_rank >= 0;
119 in_port_rank--) {
120 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
121 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
122 }
123 }
124 delete m_waiting_buffers[addr];
125 m_waiting_buffers.erase(addr);
126 }
127}
128
129void
130AbstractController::wakeUpAllBuffers(Address addr)
131{
132 if (m_waiting_buffers.count(addr) > 0) {
133 //
134 // Wake up all possible lower rank (i.e. lower priority) buffers that could
135 // be waiting on this message.
136 //
137 for (int in_port_rank = m_in_ports - 1;
138 in_port_rank >= 0;
139 in_port_rank--) {
140 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
141 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
142 }
143 }
144 delete m_waiting_buffers[addr];
145 m_waiting_buffers.erase(addr);
146 }
147}
148
149void
150AbstractController::wakeUpAllBuffers()
151{
152 //
153 // Wake up all possible buffers that could be waiting on any message.
154 //
155
156 std::vector<MsgVecType*> wokeUpMsgVecs;
1/*
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/protocol/MemoryMsg.hh"
30#include "mem/ruby/slicc_interface/AbstractController.hh"
31#include "mem/ruby/system/Sequencer.hh"
32#include "mem/ruby/system/System.hh"
33#include "sim/system.hh"
34
35AbstractController::AbstractController(const Params *p)
36 : MemObject(p), Consumer(this), m_version(p->version),
37 m_clusterID(p->cluster_id),
38 m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
39 m_number_of_TBEs(p->number_of_TBEs),
40 m_transitions_per_cycle(p->transitions_per_cycle),
41 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
42 memoryPort(csprintf("%s.memory", name()), this, ""),
43 m_responseFromMemory_ptr(new MessageBuffer())
44{
45 // Set the sender pointer of the response message buffer from the
46 // memory controller.
47 // This pointer is used for querying for the current time.
48 m_responseFromMemory_ptr->setSender(this);
49 m_responseFromMemory_ptr->setReceiver(this);
50 m_responseFromMemory_ptr->setOrdering(false);
51
52 if (m_version == 0) {
53 // Combine the statistics from all controllers
54 // of this particular type.
55 Stats::registerDumpCallback(new StatsCallback(this));
56 }
57}
58
59void
60AbstractController::init()
61{
62 params()->ruby_system->registerAbstractController(this);
63 m_delayHistogram.init(10);
64 uint32_t size = Network::getNumberOfVirtualNetworks();
65 for (uint32_t i = 0; i < size; i++) {
66 m_delayVCHistogram.push_back(new Stats::Histogram());
67 m_delayVCHistogram[i]->init(10);
68 }
69}
70
71void
72AbstractController::resetStats()
73{
74 m_delayHistogram.reset();
75 uint32_t size = Network::getNumberOfVirtualNetworks();
76 for (uint32_t i = 0; i < size; i++) {
77 m_delayVCHistogram[i]->reset();
78 }
79}
80
81void
82AbstractController::regStats()
83{
84 m_fully_busy_cycles
85 .name(name() + ".fully_busy_cycles")
86 .desc("cycles for which number of transistions == max transitions")
87 .flags(Stats::nozero);
88}
89
90void
91AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
92{
93 assert(virtualNetwork < m_delayVCHistogram.size());
94 m_delayHistogram.sample(delay);
95 m_delayVCHistogram[virtualNetwork]->sample(delay);
96}
97
98void
99AbstractController::stallBuffer(MessageBuffer* buf, Address addr)
100{
101 if (m_waiting_buffers.count(addr) == 0) {
102 MsgVecType* msgVec = new MsgVecType;
103 msgVec->resize(m_in_ports, NULL);
104 m_waiting_buffers[addr] = msgVec;
105 }
106 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
107}
108
109void
110AbstractController::wakeUpBuffers(Address addr)
111{
112 if (m_waiting_buffers.count(addr) > 0) {
113 //
114 // Wake up all possible lower rank (i.e. lower priority) buffers that could
115 // be waiting on this message.
116 //
117 for (int in_port_rank = m_cur_in_port - 1;
118 in_port_rank >= 0;
119 in_port_rank--) {
120 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
121 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
122 }
123 }
124 delete m_waiting_buffers[addr];
125 m_waiting_buffers.erase(addr);
126 }
127}
128
129void
130AbstractController::wakeUpAllBuffers(Address addr)
131{
132 if (m_waiting_buffers.count(addr) > 0) {
133 //
134 // Wake up all possible lower rank (i.e. lower priority) buffers that could
135 // be waiting on this message.
136 //
137 for (int in_port_rank = m_in_ports - 1;
138 in_port_rank >= 0;
139 in_port_rank--) {
140 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
141 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
142 }
143 }
144 delete m_waiting_buffers[addr];
145 m_waiting_buffers.erase(addr);
146 }
147}
148
149void
150AbstractController::wakeUpAllBuffers()
151{
152 //
153 // Wake up all possible buffers that could be waiting on any message.
154 //
155
156 std::vector<MsgVecType*> wokeUpMsgVecs;
157 MsgBufType wokeUpMsgBufs;
157
158 if(m_waiting_buffers.size() > 0) {
159 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
160 buf_iter != m_waiting_buffers.end();
161 ++buf_iter) {
162 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
163 vec_iter != buf_iter->second->end();
164 ++vec_iter) {
158
159 if(m_waiting_buffers.size() > 0) {
160 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
161 buf_iter != m_waiting_buffers.end();
162 ++buf_iter) {
163 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
164 vec_iter != buf_iter->second->end();
165 ++vec_iter) {
165 if (*vec_iter != NULL) {
166 //
167 // Make sure the MessageBuffer has not already be reanalyzed
168 //
169 if (*vec_iter != NULL &&
170 (wokeUpMsgBufs.count(*vec_iter) == 0)) {
166 (*vec_iter)->reanalyzeAllMessages();
171 (*vec_iter)->reanalyzeAllMessages();
172 wokeUpMsgBufs.insert(*vec_iter);
167 }
168 }
169 wokeUpMsgVecs.push_back(buf_iter->second);
170 }
171
172 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
173 wb_iter != wokeUpMsgVecs.end();
174 ++wb_iter) {
175 delete (*wb_iter);
176 }
177
178 m_waiting_buffers.clear();
179 }
180}
181
182void
183AbstractController::blockOnQueue(Address addr, MessageBuffer* port)
184{
185 m_is_blocking = true;
186 m_block_map[addr] = port;
187}
188
189void
190AbstractController::unblock(Address addr)
191{
192 m_block_map.erase(addr);
193 if (m_block_map.size() == 0) {
194 m_is_blocking = false;
195 }
196}
197
198BaseMasterPort &
199AbstractController::getMasterPort(const std::string &if_name,
200 PortID idx)
201{
202 return memoryPort;
203}
204
205void
206AbstractController::queueMemoryRead(const MachineID &id, Address addr,
207 Cycles latency)
208{
209 RequestPtr req = new Request(addr.getAddress(),
210 RubySystem::getBlockSizeBytes(), 0,
211 m_masterId);
212
213 PacketPtr pkt = Packet::createRead(req);
214 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
215 pkt->dataDynamic(newData);
216
217 SenderState *s = new SenderState(id);
218 pkt->pushSenderState(s);
219
220 // Use functional rather than timing accesses during warmup
221 if (RubySystem::getWarmupEnabled()) {
222 memoryPort.sendFunctional(pkt);
223 recvTimingResp(pkt);
224 return;
225 }
226
227 memoryPort.schedTimingReq(pkt, clockEdge(latency));
228}
229
230void
231AbstractController::queueMemoryWrite(const MachineID &id, Address addr,
232 Cycles latency, const DataBlock &block)
233{
234 RequestPtr req = new Request(addr.getAddress(),
235 RubySystem::getBlockSizeBytes(), 0,
236 m_masterId);
237
238 PacketPtr pkt = Packet::createWrite(req);
239 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
240 pkt->dataDynamic(newData);
241 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
242 RubySystem::getBlockSizeBytes());
243
244 SenderState *s = new SenderState(id);
245 pkt->pushSenderState(s);
246
247 // Use functional rather than timing accesses during warmup
248 if (RubySystem::getWarmupEnabled()) {
249 memoryPort.sendFunctional(pkt);
250 recvTimingResp(pkt);
251 return;
252 }
253
254 // Create a block and copy data from the block.
255 memoryPort.schedTimingReq(pkt, clockEdge(latency));
256}
257
258void
259AbstractController::queueMemoryWritePartial(const MachineID &id, Address addr,
260 Cycles latency,
261 const DataBlock &block, int size)
262{
263 RequestPtr req = new Request(addr.getAddress(),
264 RubySystem::getBlockSizeBytes(), 0,
265 m_masterId);
266
267 PacketPtr pkt = Packet::createWrite(req);
268 uint8_t *newData = new uint8_t[size];
269 pkt->dataDynamic(newData);
270 memcpy(newData, block.getData(addr.getOffset(), size), size);
271
272 SenderState *s = new SenderState(id);
273 pkt->pushSenderState(s);
274
275 // Create a block and copy data from the block.
276 memoryPort.schedTimingReq(pkt, clockEdge(latency));
277}
278
279void
280AbstractController::functionalMemoryRead(PacketPtr pkt)
281{
282 memoryPort.sendFunctional(pkt);
283}
284
285int
286AbstractController::functionalMemoryWrite(PacketPtr pkt)
287{
288 int num_functional_writes = 0;
289
290 // Check the message buffer that runs from the memory to the controller.
291 num_functional_writes += m_responseFromMemory_ptr->functionalWrite(pkt);
292
293 // Check the buffer from the controller to the memory.
294 if (memoryPort.checkFunctional(pkt)) {
295 num_functional_writes++;
296 }
297
298 // Update memory itself.
299 memoryPort.sendFunctional(pkt);
300 return num_functional_writes + 1;
301}
302
303void
304AbstractController::recvTimingResp(PacketPtr pkt)
305{
306 assert(pkt->isResponse());
307
308 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
309 (*msg).m_Addr.setAddress(pkt->getAddr());
310 (*msg).m_Sender = m_machineID;
311
312 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
313 (*msg).m_OriginalRequestorMachId = s->id;
314 delete s;
315
316 if (pkt->isRead()) {
317 (*msg).m_Type = MemoryRequestType_MEMORY_READ;
318 (*msg).m_MessageSize = MessageSizeType_Response_Data;
319
320 // Copy data from the packet
321 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
322 RubySystem::getBlockSizeBytes());
323 } else if (pkt->isWrite()) {
324 (*msg).m_Type = MemoryRequestType_MEMORY_WB;
325 (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
326 } else {
327 panic("Incorrect packet type received from memory controller!");
328 }
329
330 m_responseFromMemory_ptr->enqueue(msg);
331 delete pkt;
332}
333
334bool
335AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
336{
337 controller->recvTimingResp(pkt);
338 return true;
339}
340
341AbstractController::MemoryPort::MemoryPort(const std::string &_name,
342 AbstractController *_controller,
343 const std::string &_label)
344 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
345 reqQueue(*_controller, *this, _label),
346 snoopRespQueue(*_controller, *this, _label),
347 controller(_controller)
348{
349}
173 }
174 }
175 wokeUpMsgVecs.push_back(buf_iter->second);
176 }
177
178 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
179 wb_iter != wokeUpMsgVecs.end();
180 ++wb_iter) {
181 delete (*wb_iter);
182 }
183
184 m_waiting_buffers.clear();
185 }
186}
187
188void
189AbstractController::blockOnQueue(Address addr, MessageBuffer* port)
190{
191 m_is_blocking = true;
192 m_block_map[addr] = port;
193}
194
195void
196AbstractController::unblock(Address addr)
197{
198 m_block_map.erase(addr);
199 if (m_block_map.size() == 0) {
200 m_is_blocking = false;
201 }
202}
203
204BaseMasterPort &
205AbstractController::getMasterPort(const std::string &if_name,
206 PortID idx)
207{
208 return memoryPort;
209}
210
211void
212AbstractController::queueMemoryRead(const MachineID &id, Address addr,
213 Cycles latency)
214{
215 RequestPtr req = new Request(addr.getAddress(),
216 RubySystem::getBlockSizeBytes(), 0,
217 m_masterId);
218
219 PacketPtr pkt = Packet::createRead(req);
220 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
221 pkt->dataDynamic(newData);
222
223 SenderState *s = new SenderState(id);
224 pkt->pushSenderState(s);
225
226 // Use functional rather than timing accesses during warmup
227 if (RubySystem::getWarmupEnabled()) {
228 memoryPort.sendFunctional(pkt);
229 recvTimingResp(pkt);
230 return;
231 }
232
233 memoryPort.schedTimingReq(pkt, clockEdge(latency));
234}
235
236void
237AbstractController::queueMemoryWrite(const MachineID &id, Address addr,
238 Cycles latency, const DataBlock &block)
239{
240 RequestPtr req = new Request(addr.getAddress(),
241 RubySystem::getBlockSizeBytes(), 0,
242 m_masterId);
243
244 PacketPtr pkt = Packet::createWrite(req);
245 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
246 pkt->dataDynamic(newData);
247 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
248 RubySystem::getBlockSizeBytes());
249
250 SenderState *s = new SenderState(id);
251 pkt->pushSenderState(s);
252
253 // Use functional rather than timing accesses during warmup
254 if (RubySystem::getWarmupEnabled()) {
255 memoryPort.sendFunctional(pkt);
256 recvTimingResp(pkt);
257 return;
258 }
259
260 // Create a block and copy data from the block.
261 memoryPort.schedTimingReq(pkt, clockEdge(latency));
262}
263
264void
265AbstractController::queueMemoryWritePartial(const MachineID &id, Address addr,
266 Cycles latency,
267 const DataBlock &block, int size)
268{
269 RequestPtr req = new Request(addr.getAddress(),
270 RubySystem::getBlockSizeBytes(), 0,
271 m_masterId);
272
273 PacketPtr pkt = Packet::createWrite(req);
274 uint8_t *newData = new uint8_t[size];
275 pkt->dataDynamic(newData);
276 memcpy(newData, block.getData(addr.getOffset(), size), size);
277
278 SenderState *s = new SenderState(id);
279 pkt->pushSenderState(s);
280
281 // Create a block and copy data from the block.
282 memoryPort.schedTimingReq(pkt, clockEdge(latency));
283}
284
285void
286AbstractController::functionalMemoryRead(PacketPtr pkt)
287{
288 memoryPort.sendFunctional(pkt);
289}
290
291int
292AbstractController::functionalMemoryWrite(PacketPtr pkt)
293{
294 int num_functional_writes = 0;
295
296 // Check the message buffer that runs from the memory to the controller.
297 num_functional_writes += m_responseFromMemory_ptr->functionalWrite(pkt);
298
299 // Check the buffer from the controller to the memory.
300 if (memoryPort.checkFunctional(pkt)) {
301 num_functional_writes++;
302 }
303
304 // Update memory itself.
305 memoryPort.sendFunctional(pkt);
306 return num_functional_writes + 1;
307}
308
309void
310AbstractController::recvTimingResp(PacketPtr pkt)
311{
312 assert(pkt->isResponse());
313
314 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
315 (*msg).m_Addr.setAddress(pkt->getAddr());
316 (*msg).m_Sender = m_machineID;
317
318 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
319 (*msg).m_OriginalRequestorMachId = s->id;
320 delete s;
321
322 if (pkt->isRead()) {
323 (*msg).m_Type = MemoryRequestType_MEMORY_READ;
324 (*msg).m_MessageSize = MessageSizeType_Response_Data;
325
326 // Copy data from the packet
327 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
328 RubySystem::getBlockSizeBytes());
329 } else if (pkt->isWrite()) {
330 (*msg).m_Type = MemoryRequestType_MEMORY_WB;
331 (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
332 } else {
333 panic("Incorrect packet type received from memory controller!");
334 }
335
336 m_responseFromMemory_ptr->enqueue(msg);
337 delete pkt;
338}
339
340bool
341AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
342{
343 controller->recvTimingResp(pkt);
344 return true;
345}
346
347AbstractController::MemoryPort::MemoryPort(const std::string &_name,
348 AbstractController *_controller,
349 const std::string &_label)
350 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
351 reqQueue(*_controller, *this, _label),
352 snoopRespQueue(*_controller, *this, _label),
353 controller(_controller)
354{
355}