AbstractController.cc (10311:ad9c042dce54) AbstractController.cc (10524:fff17530cef6)
1/*
1/*
2 * Copyright (c) 2011 Mark D. Hill and David A. Wood
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/protocol/MemoryMsg.hh"
29#include "mem/ruby/slicc_interface/AbstractController.hh"
30#include "mem/ruby/system/Sequencer.hh"
31#include "mem/ruby/system/System.hh"
30#include "mem/ruby/slicc_interface/AbstractController.hh"
31#include "mem/ruby/system/Sequencer.hh"
32#include "mem/ruby/system/System.hh"
33#include "sim/system.hh"
32
33AbstractController::AbstractController(const Params *p)
34
35AbstractController::AbstractController(const Params *p)
34 : ClockedObject(p), Consumer(this)
36 : MemObject(p), Consumer(this), m_version(p->version),
37 m_clusterID(p->cluster_id),
38 m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
39 m_number_of_TBEs(p->number_of_TBEs),
40 m_transitions_per_cycle(p->transitions_per_cycle),
41 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
42 memoryPort(csprintf("%s.memory", name()), this, ""),
43 m_responseFromMemory_ptr(new MessageBuffer())
35{
44{
36 m_version = p->version;
37 m_clusterID = p->cluster_id;
45 // Set the sender pointer of the response message buffer from the
46 // memory controller.
47 // This pointer is used for querying for the current time.
48 m_responseFromMemory_ptr->setSender(this);
49 m_responseFromMemory_ptr->setReceiver(this);
50 m_responseFromMemory_ptr->setOrdering(false);
38
51
39 m_transitions_per_cycle = p->transitions_per_cycle;
40 m_buffer_size = p->buffer_size;
41 m_recycle_latency = p->recycle_latency;
42 m_number_of_TBEs = p->number_of_TBEs;
43 m_is_blocking = false;
44
45 if (m_version == 0) {
46 // Combine the statistics from all controllers
47 // of this particular type.
48 Stats::registerDumpCallback(new StatsCallback(this));
49 }
50}
51
52void
53AbstractController::init()
54{
55 params()->ruby_system->registerAbstractController(this);
56 m_delayHistogram.init(10);
57 uint32_t size = Network::getNumberOfVirtualNetworks();
58 for (uint32_t i = 0; i < size; i++) {
59 m_delayVCHistogram.push_back(new Stats::Histogram());
60 m_delayVCHistogram[i]->init(10);
61 }
62}
63
64void
65AbstractController::resetStats()
66{
67 m_delayHistogram.reset();
68 uint32_t size = Network::getNumberOfVirtualNetworks();
69 for (uint32_t i = 0; i < size; i++) {
70 m_delayVCHistogram[i]->reset();
71 }
72}
73
74void
75AbstractController::regStats()
76{
77 m_fully_busy_cycles
78 .name(name() + ".fully_busy_cycles")
79 .desc("cycles for which number of transistions == max transitions")
80 .flags(Stats::nozero);
81}
82
83void
84AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
85{
86 assert(virtualNetwork < m_delayVCHistogram.size());
87 m_delayHistogram.sample(delay);
88 m_delayVCHistogram[virtualNetwork]->sample(delay);
89}
90
91void
92AbstractController::stallBuffer(MessageBuffer* buf, Address addr)
93{
94 if (m_waiting_buffers.count(addr) == 0) {
95 MsgVecType* msgVec = new MsgVecType;
96 msgVec->resize(m_in_ports, NULL);
97 m_waiting_buffers[addr] = msgVec;
98 }
99 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
100}
101
102void
103AbstractController::wakeUpBuffers(Address addr)
104{
105 if (m_waiting_buffers.count(addr) > 0) {
106 //
107 // Wake up all possible lower rank (i.e. lower priority) buffers that could
108 // be waiting on this message.
109 //
110 for (int in_port_rank = m_cur_in_port - 1;
111 in_port_rank >= 0;
112 in_port_rank--) {
113 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
114 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
115 }
116 }
117 delete m_waiting_buffers[addr];
118 m_waiting_buffers.erase(addr);
119 }
120}
121
122void
123AbstractController::wakeUpAllBuffers(Address addr)
124{
125 if (m_waiting_buffers.count(addr) > 0) {
126 //
127 // Wake up all possible lower rank (i.e. lower priority) buffers that could
128 // be waiting on this message.
129 //
130 for (int in_port_rank = m_in_ports - 1;
131 in_port_rank >= 0;
132 in_port_rank--) {
133 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
134 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
135 }
136 }
137 delete m_waiting_buffers[addr];
138 m_waiting_buffers.erase(addr);
139 }
140}
141
142void
143AbstractController::wakeUpAllBuffers()
144{
145 //
146 // Wake up all possible buffers that could be waiting on any message.
147 //
148
149 std::vector<MsgVecType*> wokeUpMsgVecs;
150
151 if(m_waiting_buffers.size() > 0) {
152 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
153 buf_iter != m_waiting_buffers.end();
154 ++buf_iter) {
155 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
156 vec_iter != buf_iter->second->end();
157 ++vec_iter) {
158 if (*vec_iter != NULL) {
159 (*vec_iter)->reanalyzeAllMessages();
160 }
161 }
162 wokeUpMsgVecs.push_back(buf_iter->second);
163 }
164
165 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
166 wb_iter != wokeUpMsgVecs.end();
167 ++wb_iter) {
168 delete (*wb_iter);
169 }
170
171 m_waiting_buffers.clear();
172 }
173}
174
175void
176AbstractController::blockOnQueue(Address addr, MessageBuffer* port)
177{
178 m_is_blocking = true;
179 m_block_map[addr] = port;
180}
181
182void
183AbstractController::unblock(Address addr)
184{
185 m_block_map.erase(addr);
186 if (m_block_map.size() == 0) {
187 m_is_blocking = false;
188 }
189}
52 if (m_version == 0) {
53 // Combine the statistics from all controllers
54 // of this particular type.
55 Stats::registerDumpCallback(new StatsCallback(this));
56 }
57}
58
59void
60AbstractController::init()
61{
62 params()->ruby_system->registerAbstractController(this);
63 m_delayHistogram.init(10);
64 uint32_t size = Network::getNumberOfVirtualNetworks();
65 for (uint32_t i = 0; i < size; i++) {
66 m_delayVCHistogram.push_back(new Stats::Histogram());
67 m_delayVCHistogram[i]->init(10);
68 }
69}
70
71void
72AbstractController::resetStats()
73{
74 m_delayHistogram.reset();
75 uint32_t size = Network::getNumberOfVirtualNetworks();
76 for (uint32_t i = 0; i < size; i++) {
77 m_delayVCHistogram[i]->reset();
78 }
79}
80
81void
82AbstractController::regStats()
83{
84 m_fully_busy_cycles
85 .name(name() + ".fully_busy_cycles")
86 .desc("cycles for which number of transistions == max transitions")
87 .flags(Stats::nozero);
88}
89
90void
91AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
92{
93 assert(virtualNetwork < m_delayVCHistogram.size());
94 m_delayHistogram.sample(delay);
95 m_delayVCHistogram[virtualNetwork]->sample(delay);
96}
97
98void
99AbstractController::stallBuffer(MessageBuffer* buf, Address addr)
100{
101 if (m_waiting_buffers.count(addr) == 0) {
102 MsgVecType* msgVec = new MsgVecType;
103 msgVec->resize(m_in_ports, NULL);
104 m_waiting_buffers[addr] = msgVec;
105 }
106 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
107}
108
109void
110AbstractController::wakeUpBuffers(Address addr)
111{
112 if (m_waiting_buffers.count(addr) > 0) {
113 //
114 // Wake up all possible lower rank (i.e. lower priority) buffers that could
115 // be waiting on this message.
116 //
117 for (int in_port_rank = m_cur_in_port - 1;
118 in_port_rank >= 0;
119 in_port_rank--) {
120 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
121 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
122 }
123 }
124 delete m_waiting_buffers[addr];
125 m_waiting_buffers.erase(addr);
126 }
127}
128
129void
130AbstractController::wakeUpAllBuffers(Address addr)
131{
132 if (m_waiting_buffers.count(addr) > 0) {
133 //
134 // Wake up all possible lower rank (i.e. lower priority) buffers that could
135 // be waiting on this message.
136 //
137 for (int in_port_rank = m_in_ports - 1;
138 in_port_rank >= 0;
139 in_port_rank--) {
140 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
141 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
142 }
143 }
144 delete m_waiting_buffers[addr];
145 m_waiting_buffers.erase(addr);
146 }
147}
148
149void
150AbstractController::wakeUpAllBuffers()
151{
152 //
153 // Wake up all possible buffers that could be waiting on any message.
154 //
155
156 std::vector<MsgVecType*> wokeUpMsgVecs;
157
158 if(m_waiting_buffers.size() > 0) {
159 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
160 buf_iter != m_waiting_buffers.end();
161 ++buf_iter) {
162 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
163 vec_iter != buf_iter->second->end();
164 ++vec_iter) {
165 if (*vec_iter != NULL) {
166 (*vec_iter)->reanalyzeAllMessages();
167 }
168 }
169 wokeUpMsgVecs.push_back(buf_iter->second);
170 }
171
172 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
173 wb_iter != wokeUpMsgVecs.end();
174 ++wb_iter) {
175 delete (*wb_iter);
176 }
177
178 m_waiting_buffers.clear();
179 }
180}
181
182void
183AbstractController::blockOnQueue(Address addr, MessageBuffer* port)
184{
185 m_is_blocking = true;
186 m_block_map[addr] = port;
187}
188
189void
190AbstractController::unblock(Address addr)
191{
192 m_block_map.erase(addr);
193 if (m_block_map.size() == 0) {
194 m_is_blocking = false;
195 }
196}
197
198BaseMasterPort &
199AbstractController::getMasterPort(const std::string &if_name,
200 PortID idx)
201{
202 return memoryPort;
203}
204
205void
206AbstractController::queueMemoryRead(const MachineID &id, Address addr,
207 Cycles latency)
208{
209 RequestPtr req = new Request(addr.getAddress(),
210 RubySystem::getBlockSizeBytes(), 0,
211 m_masterId);
212
213 PacketPtr pkt = Packet::createRead(req);
214 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
215 pkt->dataDynamic(newData);
216
217 SenderState *s = new SenderState(id);
218 pkt->pushSenderState(s);
219
220 memoryPort.schedTimingReq(pkt, clockEdge(latency));
221}
222
223void
224AbstractController::queueMemoryWrite(const MachineID &id, Address addr,
225 Cycles latency, const DataBlock &block)
226{
227 RequestPtr req = new Request(addr.getAddress(),
228 RubySystem::getBlockSizeBytes(), 0,
229 m_masterId);
230
231 PacketPtr pkt = Packet::createWrite(req);
232 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
233 pkt->dataDynamic(newData);
234 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
235 RubySystem::getBlockSizeBytes());
236
237 SenderState *s = new SenderState(id);
238 pkt->pushSenderState(s);
239
240 // Create a block and copy data from the block.
241 memoryPort.schedTimingReq(pkt, clockEdge(latency));
242}
243
244void
245AbstractController::queueMemoryWritePartial(const MachineID &id, Address addr,
246 Cycles latency,
247 const DataBlock &block, int size)
248{
249 RequestPtr req = new Request(addr.getAddress(),
250 RubySystem::getBlockSizeBytes(), 0,
251 m_masterId);
252
253 PacketPtr pkt = Packet::createWrite(req);
254 uint8_t *newData = new uint8_t[size];
255 pkt->dataDynamic(newData);
256 memcpy(newData, block.getData(addr.getOffset(), size), size);
257
258 SenderState *s = new SenderState(id);
259 pkt->pushSenderState(s);
260
261 // Create a block and copy data from the block.
262 memoryPort.schedTimingReq(pkt, clockEdge(latency));
263}
264
265void
266AbstractController::functionalMemoryRead(PacketPtr pkt)
267{
268 memoryPort.sendFunctional(pkt);
269}
270
271int
272AbstractController::functionalMemoryWrite(PacketPtr pkt)
273{
274 int num_functional_writes = 0;
275
276 // Check the message buffer that runs from the memory to the controller.
277 num_functional_writes += m_responseFromMemory_ptr->functionalWrite(pkt);
278
279 // Check the buffer from the controller to the memory.
280 if (memoryPort.checkFunctional(pkt)) {
281 num_functional_writes++;
282 }
283
284 // Update memory itself.
285 memoryPort.sendFunctional(pkt);
286 return num_functional_writes + 1;
287}
288
289void
290AbstractController::recvTimingResp(PacketPtr pkt)
291{
292 assert(pkt->isResponse());
293
294 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
295 (*msg).m_Addr.setAddress(pkt->getAddr());
296 (*msg).m_Sender = m_machineID;
297
298 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
299 (*msg).m_OriginalRequestorMachId = s->id;
300 delete s;
301
302 if (pkt->isRead()) {
303 (*msg).m_Type = MemoryRequestType_MEMORY_READ;
304 (*msg).m_MessageSize = MessageSizeType_Response_Data;
305
306 // Copy data from the packet
307 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
308 RubySystem::getBlockSizeBytes());
309 } else if (pkt->isWrite()) {
310 (*msg).m_Type = MemoryRequestType_MEMORY_WB;
311 (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
312 } else {
313 panic("Incorrect packet type received from memory controller!");
314 }
315
316 m_responseFromMemory_ptr->enqueue(msg);
317 delete pkt;
318}
319
320bool
321AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
322{
323 controller->recvTimingResp(pkt);
324 return true;
325}
326
327AbstractController::MemoryPort::MemoryPort(const std::string &_name,
328 AbstractController *_controller,
329 const std::string &_label)
330 : QueuedMasterPort(_name, _controller, _queue),
331 _queue(*_controller, *this, _label), controller(_controller)
332{
333}