Deleted Added
sdiff udiff text old ( 11448:8d94df4c9da4 ) new ( 11523:81332eb10367 )
full compact
1/*
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/ruby/slicc_interface/AbstractController.hh"
30
31#include "debug/RubyQueue.hh"
32#include "mem/protocol/MemoryMsg.hh"
33#include "mem/ruby/system/RubySystem.hh"
34#include "mem/ruby/system/Sequencer.hh"
35#include "mem/ruby/system/GPUCoalescer.hh"
36#include "sim/system.hh"
37
38AbstractController::AbstractController(const Params *p)
39 : MemObject(p), Consumer(this), m_version(p->version),
40 m_clusterID(p->cluster_id),
41 m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
42 m_number_of_TBEs(p->number_of_TBEs),
43 m_transitions_per_cycle(p->transitions_per_cycle),
44 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
45 memoryPort(csprintf("%s.memory", name()), this, "")
46{
47 if (m_version == 0) {
48 // Combine the statistics from all controllers
49 // of this particular type.
50 Stats::registerDumpCallback(new StatsCallback(this));
51 }
52}
53
54void
55AbstractController::init()
56{
57 params()->ruby_system->registerAbstractController(this);
58 m_delayHistogram.init(10);
59 uint32_t size = Network::getNumberOfVirtualNetworks();
60 for (uint32_t i = 0; i < size; i++) {
61 m_delayVCHistogram.push_back(new Stats::Histogram());
62 m_delayVCHistogram[i]->init(10);
63 }
64}
65
66void
67AbstractController::resetStats()
68{
69 m_delayHistogram.reset();
70 uint32_t size = Network::getNumberOfVirtualNetworks();
71 for (uint32_t i = 0; i < size; i++) {
72 m_delayVCHistogram[i]->reset();
73 }
74}
75
76void
77AbstractController::regStats()
78{
79 m_fully_busy_cycles
80 .name(name() + ".fully_busy_cycles")
81 .desc("cycles for which number of transistions == max transitions")
82 .flags(Stats::nozero);
83}
84
85void
86AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
87{
88 assert(virtualNetwork < m_delayVCHistogram.size());
89 m_delayHistogram.sample(delay);
90 m_delayVCHistogram[virtualNetwork]->sample(delay);
91}
92
93void
94AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
95{
96 if (m_waiting_buffers.count(addr) == 0) {
97 MsgVecType* msgVec = new MsgVecType;
98 msgVec->resize(m_in_ports, NULL);
99 m_waiting_buffers[addr] = msgVec;
100 }
101 DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port,
102 addr);
103 assert(m_in_ports > m_cur_in_port);
104 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
105}
106
107void
108AbstractController::wakeUpBuffers(Addr addr)
109{
110 if (m_waiting_buffers.count(addr) > 0) {
111 //
112 // Wake up all possible lower rank (i.e. lower priority) buffers that could
113 // be waiting on this message.
114 //
115 for (int in_port_rank = m_cur_in_port - 1;
116 in_port_rank >= 0;
117 in_port_rank--) {
118 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
119 (*(m_waiting_buffers[addr]))[in_port_rank]->
120 reanalyzeMessages(addr, clockEdge());
121 }
122 }
123 delete m_waiting_buffers[addr];
124 m_waiting_buffers.erase(addr);
125 }
126}
127
128void
129AbstractController::wakeUpAllBuffers(Addr addr)
130{
131 if (m_waiting_buffers.count(addr) > 0) {
132 //
133 // Wake up all possible lower rank (i.e. lower priority) buffers that could
134 // be waiting on this message.
135 //
136 for (int in_port_rank = m_in_ports - 1;
137 in_port_rank >= 0;
138 in_port_rank--) {
139 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
140 (*(m_waiting_buffers[addr]))[in_port_rank]->
141 reanalyzeMessages(addr, clockEdge());
142 }
143 }
144 delete m_waiting_buffers[addr];
145 m_waiting_buffers.erase(addr);
146 }
147}
148
149void
150AbstractController::wakeUpAllBuffers()
151{
152 //
153 // Wake up all possible buffers that could be waiting on any message.
154 //
155
156 std::vector<MsgVecType*> wokeUpMsgVecs;
157 MsgBufType wokeUpMsgBufs;
158
159 if (m_waiting_buffers.size() > 0) {
160 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
161 buf_iter != m_waiting_buffers.end();
162 ++buf_iter) {
163 for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
164 vec_iter != buf_iter->second->end();
165 ++vec_iter) {
166 //
167 // Make sure the MessageBuffer has not already be reanalyzed
168 //
169 if (*vec_iter != NULL &&
170 (wokeUpMsgBufs.count(*vec_iter) == 0)) {
171 (*vec_iter)->reanalyzeAllMessages(clockEdge());
172 wokeUpMsgBufs.insert(*vec_iter);
173 }
174 }
175 wokeUpMsgVecs.push_back(buf_iter->second);
176 }
177
178 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
179 wb_iter != wokeUpMsgVecs.end();
180 ++wb_iter) {
181 delete (*wb_iter);
182 }
183
184 m_waiting_buffers.clear();
185 }
186}
187
188void
189AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
190{
191 m_is_blocking = true;
192 m_block_map[addr] = port;
193}
194
195bool
196AbstractController::isBlocked(Addr addr) const
197{
198 return m_is_blocking && (m_block_map.find(addr) != m_block_map.end());
199}
200
201void
202AbstractController::unblock(Addr addr)
203{
204 m_block_map.erase(addr);
205 if (m_block_map.size() == 0) {
206 m_is_blocking = false;
207 }
208}
209
210bool
211AbstractController::isBlocked(Addr addr)
212{
213 return (m_block_map.count(addr) > 0);
214}
215
216BaseMasterPort &
217AbstractController::getMasterPort(const std::string &if_name,
218 PortID idx)
219{
220 return memoryPort;
221}
222
223void
224AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
225 Cycles latency)
226{
227 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
228 m_masterId);
229
230 PacketPtr pkt = Packet::createRead(req);
231 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
232 pkt->dataDynamic(newData);
233
234 SenderState *s = new SenderState(id);
235 pkt->pushSenderState(s);
236
237 // Use functional rather than timing accesses during warmup
238 if (RubySystem::getWarmupEnabled()) {
239 memoryPort.sendFunctional(pkt);
240 recvTimingResp(pkt);
241 return;
242 }
243
244 memoryPort.schedTimingReq(pkt, clockEdge(latency));
245}
246
247void
248AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
249 Cycles latency, const DataBlock &block)
250{
251 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
252 m_masterId);
253
254 PacketPtr pkt = Packet::createWrite(req);
255 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
256 pkt->dataDynamic(newData);
257 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
258 RubySystem::getBlockSizeBytes());
259
260 SenderState *s = new SenderState(id);
261 pkt->pushSenderState(s);
262
263 // Use functional rather than timing accesses during warmup
264 if (RubySystem::getWarmupEnabled()) {
265 memoryPort.sendFunctional(pkt);
266 recvTimingResp(pkt);
267 return;
268 }
269
270 // Create a block and copy data from the block.
271 memoryPort.schedTimingReq(pkt, clockEdge(latency));
272}
273
274void
275AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
276 Cycles latency,
277 const DataBlock &block, int size)
278{
279 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
280 m_masterId);
281
282 PacketPtr pkt = Packet::createWrite(req);
283 uint8_t *newData = new uint8_t[size];
284 pkt->dataDynamic(newData);
285 memcpy(newData, block.getData(getOffset(addr), size), size);
286
287 SenderState *s = new SenderState(id);
288 pkt->pushSenderState(s);
289
290 // Create a block and copy data from the block.
291 memoryPort.schedTimingReq(pkt, clockEdge(latency));
292}
293
294void
295AbstractController::functionalMemoryRead(PacketPtr pkt)
296{
297 memoryPort.sendFunctional(pkt);
298}
299
300int
301AbstractController::functionalMemoryWrite(PacketPtr pkt)
302{
303 int num_functional_writes = 0;
304
305 // Check the buffer from the controller to the memory.
306 if (memoryPort.checkFunctional(pkt)) {
307 num_functional_writes++;
308 }
309
310 // Update memory itself.
311 memoryPort.sendFunctional(pkt);
312 return num_functional_writes + 1;
313}
314
315void
316AbstractController::recvTimingResp(PacketPtr pkt)
317{
318 assert(getMemoryQueue());
319 assert(pkt->isResponse());
320
321 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
322 (*msg).m_addr = pkt->getAddr();
323 (*msg).m_Sender = m_machineID;
324
325 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
326 (*msg).m_OriginalRequestorMachId = s->id;
327 delete s;
328
329 if (pkt->isRead()) {
330 (*msg).m_Type = MemoryRequestType_MEMORY_READ;
331 (*msg).m_MessageSize = MessageSizeType_Response_Data;
332
333 // Copy data from the packet
334 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
335 RubySystem::getBlockSizeBytes());
336 } else if (pkt->isWrite()) {
337 (*msg).m_Type = MemoryRequestType_MEMORY_WB;
338 (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
339 } else {
340 panic("Incorrect packet type received from memory controller!");
341 }
342
343 getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
344 delete pkt->req;
345 delete pkt;
346}
347
348bool
349AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
350{
351 controller->recvTimingResp(pkt);
352 return true;
353}
354
355AbstractController::MemoryPort::MemoryPort(const std::string &_name,
356 AbstractController *_controller,
357 const std::string &_label)
358 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
359 reqQueue(*_controller, *this, _label),
360 snoopRespQueue(*_controller, *this, _label),
361 controller(_controller)
362{
363}