PerfectSwitch.cc (7780:42da07116e12) PerfectSwitch.cc (7973:e5550966464a)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 40 unchanged lines hidden (view full) ---

49
50PerfectSwitch::PerfectSwitch(SwitchID sid, SimpleNetwork* network_ptr)
51{
52 m_virtual_networks = network_ptr->getNumberOfVirtualNetworks();
53 m_switch_id = sid;
54 m_round_robin_start = 0;
55 m_network_ptr = network_ptr;
56 m_wakeups_wo_switch = 0;
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 40 unchanged lines hidden (view full) ---

49
50PerfectSwitch::PerfectSwitch(SwitchID sid, SimpleNetwork* network_ptr)
51{
52 m_virtual_networks = network_ptr->getNumberOfVirtualNetworks();
53 m_switch_id = sid;
54 m_round_robin_start = 0;
55 m_network_ptr = network_ptr;
56 m_wakeups_wo_switch = 0;
57
58 for(int i = 0;i < m_virtual_networks;++i)
59 {
60 m_pending_message_count.push_back(0);
61 }
57}
58
59void
60PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
61{
62 assert(in.size() == m_virtual_networks);
63 NodeID port = m_in.size();
64 m_in.push_back(in);
62}
63
64void
65PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
66{
67 assert(in.size() == m_virtual_networks);
68 NodeID port = m_in.size();
69 m_in.push_back(in);
70
65 for (int j = 0; j < m_virtual_networks; j++) {
66 m_in[port][j]->setConsumer(this);
67 string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]",
68 NodeIDToString(m_switch_id), NodeIDToString(port),
69 NodeIDToString(j));
70 m_in[port][j]->setDescription(desc);
71 for (int j = 0; j < m_virtual_networks; j++) {
72 m_in[port][j]->setConsumer(this);
73 string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]",
74 NodeIDToString(m_switch_id), NodeIDToString(port),
75 NodeIDToString(j));
76 m_in[port][j]->setDescription(desc);
77 m_in[port][j]->setIncomingLink(port);
78 m_in[port][j]->setVnet(j);
71 }
72}
73
74void
75PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
76 const NetDest& routing_table_entry)
77{
78 assert(out.size() == m_virtual_networks);

--- 70 unchanged lines hidden (view full) ---

149
150 // This is for round-robin scheduling
151 int incoming = m_round_robin_start;
152 m_round_robin_start++;
153 if (m_round_robin_start >= m_in.size()) {
154 m_round_robin_start = 0;
155 }
156
79 }
80}
81
82void
83PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
84 const NetDest& routing_table_entry)
85{
86 assert(out.size() == m_virtual_networks);

--- 70 unchanged lines hidden (view full) ---

157
158 // This is for round-robin scheduling
159 int incoming = m_round_robin_start;
160 m_round_robin_start++;
161 if (m_round_robin_start >= m_in.size()) {
162 m_round_robin_start = 0;
163 }
164
157 // for all input ports, use round robin scheduling
158 for (int counter = 0; counter < m_in.size(); counter++) {
159 // Round robin scheduling
160 incoming++;
161 if (incoming >= m_in.size()) {
162 incoming = 0;
163 }
165 if(m_pending_message_count[vnet] > 0) {
166 // for all input ports, use round robin scheduling
167 for (int counter = 0; counter < m_in.size(); counter++) {
168 // Round robin scheduling
169 incoming++;
170 if (incoming >= m_in.size()) {
171 incoming = 0;
172 }
164
173
165 // temporary vectors to store the routing results
166 vector output_links;
167 vector output_link_destinations;
174 // temporary vectors to store the routing results
175 vector<LinkID> output_links;
176 vector<NetDest> output_link_destinations;
168
177
169 // Is there a message waiting?
170 while (m_in[incoming][vnet]->isReady()) {
171 DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
178 // Is there a message waiting?
179 while (m_in[incoming][vnet]->isReady()) {
180 DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
172
181
173 // Peek at message
174 msg_ptr = m_in[incoming][vnet]->peekMsgPtr();
175 net_msg_ptr = safe_cast(msg_ptr.get());
176 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
182 // Peek at message
183 msg_ptr = m_in[incoming][vnet]->peekMsgPtr();
184 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
185 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
177
186
178 output_links.clear();
179 output_link_destinations.clear();
180 NetDest msg_dsts =
181 net_msg_ptr->getInternalDestination();
187 output_links.clear();
188 output_link_destinations.clear();
189 NetDest msg_dsts =
190 net_msg_ptr->getInternalDestination();
182
191
183 // Unfortunately, the token-protocol sends some
184 // zero-destination messages, so this assert isn't valid
185 // assert(msg_dsts.count() > 0);
192 // Unfortunately, the token-protocol sends some
193 // zero-destination messages, so this assert isn't valid
194 // assert(msg_dsts.count() > 0);
186
195
187 assert(m_link_order.size() == m_routing_table.size());
188 assert(m_link_order.size() == m_out.size());
196 assert(m_link_order.size() == m_routing_table.size());
197 assert(m_link_order.size() == m_out.size());
189
198
190 if (m_network_ptr->getAdaptiveRouting()) {
191 if (m_network_ptr->isVNetOrdered(vnet)) {
192 // Don't adaptively route
193 for (int out = 0; out < m_out.size(); out++) {
194 m_link_order[out].m_link = out;
195 m_link_order[out].m_value = 0;
196 }
197 } else {
198 // Find how clogged each link is
199 for (int out = 0; out < m_out.size(); out++) {
200 int out_queue_length = 0;
201 for (int v = 0; v < m_virtual_networks; v++) {
202 out_queue_length += m_out[out][v]->getSize();
199 if (m_network_ptr->getAdaptiveRouting()) {
200 if (m_network_ptr->isVNetOrdered(vnet)) {
201 // Don't adaptively route
202 for (int out = 0; out < m_out.size(); out++) {
203 m_link_order[out].m_link = out;
204 m_link_order[out].m_value = 0;
203 }
205 }
204 int value =
205 (out_queue_length << 8) | (random() & 0xff);
206 m_link_order[out].m_link = out;
207 m_link_order[out].m_value = value;
208 }
206 } else {
207 // Find how clogged each link is
208 for (int out = 0; out < m_out.size(); out++) {
209 int out_queue_length = 0;
210 for (int v = 0; v < m_virtual_networks; v++) {
211 out_queue_length += m_out[out][v]->getSize();
212 }
213 int value =
214 (out_queue_length << 8) | (random() & 0xff);
215 m_link_order[out].m_link = out;
216 m_link_order[out].m_value = value;
217 }
209
218
210 // Look at the most empty link first
211 sort(m_link_order.begin(), m_link_order.end());
219 // Look at the most empty link first
220 sort(m_link_order.begin(), m_link_order.end());
221 }
212 }
222 }
213 }
214
223
215 for (int i = 0; i < m_routing_table.size(); i++) {
216 // pick the next link to look at
217 int link = m_link_order[i].m_link;
218 NetDest dst = m_routing_table[link];
219 DPRINTF(RubyNetwork, "dst: %s\n", dst);
224 for (int i = 0; i < m_routing_table.size(); i++) {
225 // pick the next link to look at
226 int link = m_link_order[i].m_link;
227 NetDest dst = m_routing_table[link];
228 DPRINTF(RubyNetwork, "dst: %s\n", dst);
220
229
221 if (!msg_dsts.intersectionIsNotEmpty(dst))
222 continue;
230 if (!msg_dsts.intersectionIsNotEmpty(dst))
231 continue;
223
232
224 // Remember what link we're using
225 output_links.push_back(link);
233 // Remember what link we're using
234 output_links.push_back(link);
226
235
227 // Need to remember which destinations need this
228 // message in another vector. This Set is the
229 // intersection of the routing_table entry and the
230 // current destination set. The intersection must
231 // not be empty, since we are inside "if"
232 output_link_destinations.push_back(msg_dsts.AND(dst));
236 // Need to remember which destinations need this
237 // message in another vector. This Set is the
238 // intersection of the routing_table entry and the
239 // current destination set. The intersection must
240 // not be empty, since we are inside "if"
241 output_link_destinations.push_back(msg_dsts.AND(dst));
233
242
234 // Next, we update the msg_destination not to
235 // include those nodes that were already handled
236 // by this link
237 msg_dsts.removeNetDest(dst);
238 }
243 // Next, we update the msg_destination not to
244 // include those nodes that were already handled
245 // by this link
246 msg_dsts.removeNetDest(dst);
247 }
239
248
240 assert(msg_dsts.count() == 0);
241 //assert(output_links.size() > 0);
249 assert(msg_dsts.count() == 0);
250 //assert(output_links.size() > 0);
242
251
243 // Check for resources - for all outgoing queues
244 bool enough = true;
245 for (int i = 0; i < output_links.size(); i++) {
246 int outgoing = output_links[i];
247 if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
248 enough = false;
249 DPRINTF(RubyNetwork, "Checking if node is blocked\n"
250 "outgoing: %d, vnet: %d, enough: %d\n",
251 outgoing, vnet, enough);
252 }
252 // Check for resources - for all outgoing queues
253 bool enough = true;
254 for (int i = 0; i < output_links.size(); i++) {
255 int outgoing = output_links[i];
256 if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
257 enough = false;
258 DPRINTF(RubyNetwork, "Checking if node is blocked\n"
259 "outgoing: %d, vnet: %d, enough: %d\n",
260 outgoing, vnet, enough);
261 }
253
262
254 // There were not enough resources
255 if (!enough) {
256 g_eventQueue_ptr->scheduleEvent(this, 1);
257 DPRINTF(RubyNetwork, "Can't deliver message since a node "
258 "is blocked\n"
259 "Message: %s\n", (*net_msg_ptr));
260 break; // go to next incoming port
261 }
263 // There were not enough resources
264 if (!enough) {
265 g_eventQueue_ptr->scheduleEvent(this, 1);
266 DPRINTF(RubyNetwork, "Can't deliver message since a node "
267 "is blocked\n"
268 "Message: %s\n", (*net_msg_ptr));
269 break; // go to next incoming port
270 }
262
271
263 MsgPtr unmodified_msg_ptr;
272 MsgPtr unmodified_msg_ptr;
264
273
265 if (output_links.size() > 1) {
266 // If we are sending this message down more than
267 // one link (size>1), we need to make a copy of
268 // the message so each branch can have a different
269 // internal destination we need to create an
270 // unmodified MsgPtr because the MessageBuffer
271 // enqueue func will modify the message
274 if (output_links.size() > 1) {
275 // If we are sending this message down more than
276 // one link (size>1), we need to make a copy of
277 // the message so each branch can have a different
278 // internal destination we need to create an
279 // unmodified MsgPtr because the MessageBuffer
280 // enqueue func will modify the message
272
281
273 // This magic line creates a private copy of the
274 // message
275 unmodified_msg_ptr = msg_ptr->clone();
276 }
277
278 // Enqueue it - for all outgoing queues
279 for (int i=0; i<output_links.size(); i++) {
280 int outgoing = output_links[i];
281
282 if (i > 0) {
283 // create a private copy of the unmodified
282 // This magic line creates a private copy of the
284 // message
283 // message
285 msg_ptr = unmodified_msg_ptr->clone();
284 unmodified_msg_ptr = msg_ptr->clone();
286 }
287
285 }
286
288 // Change the internal destination set of the
289 // message so it knows which destinations this
290 // link is responsible for.
291 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
292 net_msg_ptr->getInternalDestination() =
293 output_link_destinations[i];
287 // Enqueue it - for all outgoing queues
288 for (int i=0; i<output_links.size(); i++) {
289 int outgoing = output_links[i];
294
290
295 // Enqeue msg
296 DPRINTF(RubyNetwork, "Switch: %d enqueuing net msg from "
297 "inport[%d][%d] to outport [%d][%d] time: %lld.\n",
298 m_switch_id, incoming, vnet, outgoing, vnet,
299 g_eventQueue_ptr->getTime());
291 if (i > 0) {
292 // create a private copy of the unmodified
293 // message
294 msg_ptr = unmodified_msg_ptr->clone();
295 }
300
296
301 m_out[outgoing][vnet]->enqueue(msg_ptr);
302 }
297 // Change the internal destination set of the
298 // message so it knows which destinations this
299 // link is responsible for.
300 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
301 net_msg_ptr->getInternalDestination() =
302 output_link_destinations[i];
303
303
304 // Dequeue msg
305 m_in[incoming][vnet]->pop();
304 // Enqeue msg
305 DPRINTF(RubyNetwork, "Switch: %d enqueuing net msg from "
306 "inport[%d][%d] to outport [%d][%d] time: %lld.\n",
307 m_switch_id, incoming, vnet, outgoing, vnet,
308 g_eventQueue_ptr->getTime());
309
310 m_out[outgoing][vnet]->enqueue(msg_ptr);
311 }
312
313 // Dequeue msg
314 m_in[incoming][vnet]->pop();
315 m_pending_message_count[vnet]--;
316 }
306 }
307 }
308 }
309}
310
311void
317 }
318 }
319 }
320}
321
322void
323PerfectSwitch::storeEventInfo(int info)
324{
325 m_pending_message_count[info]++;
326}
327
328void
312PerfectSwitch::printStats(std::ostream& out) const
313{
314 out << "PerfectSwitch printStats" << endl;
315}
316
317void
318PerfectSwitch::clearStats()
319{

--- 13 unchanged lines hidden ---
329PerfectSwitch::printStats(std::ostream& out) const
330{
331 out << "PerfectSwitch printStats" << endl;
332}
333
334void
335PerfectSwitch::clearStats()
336{

--- 13 unchanged lines hidden ---