PerfectSwitch.cc (10311:ad9c042dce54) PerfectSwitch.cc (10312:08f4deeb5b48)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 90 unchanged lines hidden (view full) ---

99 m_routing_table.push_back(routing_table_entry);
100}
101
102PerfectSwitch::~PerfectSwitch()
103{
104}
105
106void
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 90 unchanged lines hidden (view full) ---

99 m_routing_table.push_back(routing_table_entry);
100}
101
102PerfectSwitch::~PerfectSwitch()
103{
104}
105
106void
107PerfectSwitch::wakeup()
107PerfectSwitch::operateVnet(int vnet)
108{
109 MsgPtr msg_ptr;
108{
109 MsgPtr msg_ptr;
110
111 // Give the highest numbered link priority most of the time
112 m_wakeups_wo_switch++;
113 int highest_prio_vnet = m_virtual_networks-1;
114 int lowest_prio_vnet = 0;
115 int decrementer = 1;
116 NetworkMessage* net_msg_ptr = NULL;
117
110 NetworkMessage* net_msg_ptr = NULL;
111
118 // invert priorities to avoid starvation seen in the component network
119 if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
120 m_wakeups_wo_switch = 0;
121 highest_prio_vnet = 0;
122 lowest_prio_vnet = m_virtual_networks-1;
123 decrementer = -1;
112 // This is for round-robin scheduling
113 int incoming = m_round_robin_start;
114 m_round_robin_start++;
115 if (m_round_robin_start >= m_in.size()) {
116 m_round_robin_start = 0;
124 }
125
117 }
118
126 // For all components incoming queues
127 for (int vnet = highest_prio_vnet;
128 (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
129 vnet -= decrementer) {
119 if(m_pending_message_count[vnet] > 0) {
120 // for all input ports, use round robin scheduling
121 for (int counter = 0; counter < m_in.size(); counter++) {
122 // Round robin scheduling
123 incoming++;
124 if (incoming >= m_in.size()) {
125 incoming = 0;
126 }
130
127
131 // This is for round-robin scheduling
132 int incoming = m_round_robin_start;
133 m_round_robin_start++;
134 if (m_round_robin_start >= m_in.size()) {
135 m_round_robin_start = 0;
136 }
128 // temporary vectors to store the routing results
129 vector<LinkID> output_links;
130 vector<NetDest> output_link_destinations;
137
131
138 if(m_pending_message_count[vnet] > 0) {
139 // for all input ports, use round robin scheduling
140 for (int counter = 0; counter < m_in.size(); counter++) {
141 // Round robin scheduling
142 incoming++;
143 if (incoming >= m_in.size()) {
144 incoming = 0;
145 }
132 // Is there a message waiting?
133 auto it = m_in[incoming].find(vnet);
134 if (it == m_in[incoming].end())
135 continue;
136 MessageBuffer *buffer = (*it).second;
146
137
147 // temporary vectors to store the routing results
148 vector<LinkID> output_links;
149 vector<NetDest> output_link_destinations;
138 while (buffer->isReady()) {
139 DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
150
140
151 // Is there a message waiting?
152 auto it = m_in[incoming].find(vnet);
153 if (it == m_in[incoming].end())
154 continue;
155 MessageBuffer *buffer = (*it).second;
141 // Peek at message
142 msg_ptr = buffer->peekMsgPtr();
143 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
144 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
156
145
157 while (buffer->isReady()) {
158 DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
146 output_links.clear();
147 output_link_destinations.clear();
148 NetDest msg_dsts = net_msg_ptr->getInternalDestination();
159
149
160 // Peek at message
161 msg_ptr = buffer->peekMsgPtr();
162 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
163 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
150 // Unfortunately, the token-protocol sends some
151 // zero-destination messages, so this assert isn't valid
152 // assert(msg_dsts.count() > 0);
164
153
165 output_links.clear();
166 output_link_destinations.clear();
167 NetDest msg_dsts =
168 net_msg_ptr->getInternalDestination();
154 assert(m_link_order.size() == m_routing_table.size());
155 assert(m_link_order.size() == m_out.size());
169
156
170 // Unfortunately, the token-protocol sends some
171 // zero-destination messages, so this assert isn't valid
172 // assert(msg_dsts.count() > 0);
173
174 assert(m_link_order.size() == m_routing_table.size());
175 assert(m_link_order.size() == m_out.size());
176
177 if (m_network_ptr->getAdaptiveRouting()) {
178 if (m_network_ptr->isVNetOrdered(vnet)) {
179 // Don't adaptively route
180 for (int out = 0; out < m_out.size(); out++) {
181 m_link_order[out].m_link = out;
182 m_link_order[out].m_value = 0;
157 if (m_network_ptr->getAdaptiveRouting()) {
158 if (m_network_ptr->isVNetOrdered(vnet)) {
159 // Don't adaptively route
160 for (int out = 0; out < m_out.size(); out++) {
161 m_link_order[out].m_link = out;
162 m_link_order[out].m_value = 0;
163 }
164 } else {
165 // Find how clogged each link is
166 for (int out = 0; out < m_out.size(); out++) {
167 int out_queue_length = 0;
168 for (int v = 0; v < m_virtual_networks; v++) {
169 out_queue_length += m_out[out][v]->getSize();
183 }
170 }
184 } else {
185 // Find how clogged each link is
186 for (int out = 0; out < m_out.size(); out++) {
187 int out_queue_length = 0;
188 for (int v = 0; v < m_virtual_networks; v++) {
189 out_queue_length += m_out[out][v]->getSize();
190 }
191 int value =
192 (out_queue_length << 8) | (random() & 0xff);
193 m_link_order[out].m_link = out;
194 m_link_order[out].m_value = value;
195 }
196
197 // Look at the most empty link first
198 sort(m_link_order.begin(), m_link_order.end());
171 int value =
172 (out_queue_length << 8) | (random() & 0xff);
173 m_link_order[out].m_link = out;
174 m_link_order[out].m_value = value;
199 }
175 }
176
177 // Look at the most empty link first
178 sort(m_link_order.begin(), m_link_order.end());
200 }
179 }
180 }
201
181
202 for (int i = 0; i < m_routing_table.size(); i++) {
203 // pick the next link to look at
204 int link = m_link_order[i].m_link;
205 NetDest dst = m_routing_table[link];
206 DPRINTF(RubyNetwork, "dst: %s\n", dst);
182 for (int i = 0; i < m_routing_table.size(); i++) {
183 // pick the next link to look at
184 int link = m_link_order[i].m_link;
185 NetDest dst = m_routing_table[link];
186 DPRINTF(RubyNetwork, "dst: %s\n", dst);
207
187
208 if (!msg_dsts.intersectionIsNotEmpty(dst))
209 continue;
188 if (!msg_dsts.intersectionIsNotEmpty(dst))
189 continue;
210
190
211 // Remember what link we're using
212 output_links.push_back(link);
191 // Remember what link we're using
192 output_links.push_back(link);
213
193
214 // Need to remember which destinations need this
215 // message in another vector. This Set is the
216 // intersection of the routing_table entry and the
217 // current destination set. The intersection must
218 // not be empty, since we are inside "if"
219 output_link_destinations.push_back(msg_dsts.AND(dst));
194 // Need to remember which destinations need this message in
195 // another vector. This Set is the intersection of the
196 // routing_table entry and the current destination set. The
197 // intersection must not be empty, since we are inside "if"
198 output_link_destinations.push_back(msg_dsts.AND(dst));
220
199
221 // Next, we update the msg_destination not to
222 // include those nodes that were already handled
223 // by this link
224 msg_dsts.removeNetDest(dst);
225 }
200 // Next, we update the msg_destination not to include
201 // those nodes that were already handled by this link
202 msg_dsts.removeNetDest(dst);
203 }
226
204
227 assert(msg_dsts.count() == 0);
228 //assert(output_links.size() > 0);
205 assert(msg_dsts.count() == 0);
229
206
230 // Check for resources - for all outgoing queues
231 bool enough = true;
232 for (int i = 0; i < output_links.size(); i++) {
233 int outgoing = output_links[i];
234 if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
235 enough = false;
236 DPRINTF(RubyNetwork, "Checking if node is blocked ..."
237 "outgoing: %d, vnet: %d, enough: %d\n",
238 outgoing, vnet, enough);
239 }
207 // Check for resources - for all outgoing queues
208 bool enough = true;
209 for (int i = 0; i < output_links.size(); i++) {
210 int outgoing = output_links[i];
240
211
241 // There were not enough resources
242 if (!enough) {
243 scheduleEvent(Cycles(1));
244 DPRINTF(RubyNetwork, "Can't deliver message since a node "
245 "is blocked\n");
246 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
247 break; // go to next incoming port
248 }
212 if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
213 enough = false;
249
214
250 MsgPtr unmodified_msg_ptr;
215 DPRINTF(RubyNetwork, "Checking if node is blocked ..."
216 "outgoing: %d, vnet: %d, enough: %d\n",
217 outgoing, vnet, enough);
218 }
251
219
252 if (output_links.size() > 1) {
253 // If we are sending this message down more than
254 // one link (size>1), we need to make a copy of
255 // the message so each branch can have a different
256 // internal destination we need to create an
257 // unmodified MsgPtr because the MessageBuffer
258 // enqueue func will modify the message
220 // There were not enough resources
221 if (!enough) {
222 scheduleEvent(Cycles(1));
223 DPRINTF(RubyNetwork, "Can't deliver message since a node "
224 "is blocked\n");
225 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
226 break; // go to next incoming port
227 }
259
228
260 // This magic line creates a private copy of the
261 // message
262 unmodified_msg_ptr = msg_ptr->clone();
263 }
229 MsgPtr unmodified_msg_ptr;
264
230
265 // Dequeue msg
266 buffer->dequeue();
267 m_pending_message_count[vnet]--;
231 if (output_links.size() > 1) {
232 // If we are sending this message down more than one link
233 // (size>1), we need to make a copy of the message so each
234 // branch can have a different internal destination we need
235 // to create an unmodified MsgPtr because the MessageBuffer
236 // enqueue func will modify the message
268
237
269 // Enqueue it - for all outgoing queues
270 for (int i=0; i<output_links.size(); i++) {
271 int outgoing = output_links[i];
238 // This magic line creates a private copy of the message
239 unmodified_msg_ptr = msg_ptr->clone();
240 }
272
241
273 if (i > 0) {
274 // create a private copy of the unmodified
275 // message
276 msg_ptr = unmodified_msg_ptr->clone();
277 }
242 // Dequeue msg
243 buffer->dequeue();
244 m_pending_message_count[vnet]--;
278
245
279 // Change the internal destination set of the
280 // message so it knows which destinations this
281 // link is responsible for.
282 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
283 net_msg_ptr->getInternalDestination() =
284 output_link_destinations[i];
246 // Enqueue it - for all outgoing queues
247 for (int i=0; i<output_links.size(); i++) {
248 int outgoing = output_links[i];
285
249
286 // Enqeue msg
287 DPRINTF(RubyNetwork, "Enqueuing net msg from "
288 "inport[%d][%d] to outport [%d][%d].\n",
289 incoming, vnet, outgoing, vnet);
290
291 m_out[outgoing][vnet]->enqueue(msg_ptr);
250 if (i > 0) {
251 // create a private copy of the unmodified message
252 msg_ptr = unmodified_msg_ptr->clone();
292 }
253 }
254
255 // Change the internal destination set of the message so it
256 // knows which destinations this link is responsible for.
257 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
258 net_msg_ptr->getInternalDestination() =
259 output_link_destinations[i];
260
261 // Enqeue msg
262 DPRINTF(RubyNetwork, "Enqueuing net msg from "
263 "inport[%d][%d] to outport [%d][%d].\n",
264 incoming, vnet, outgoing, vnet);
265
266 m_out[outgoing][vnet]->enqueue(msg_ptr);
293 }
294 }
295 }
296 }
297}
298
299void
267 }
268 }
269 }
270 }
271}
272
273void
274PerfectSwitch::wakeup()
275{
276 // Give the highest numbered link priority most of the time
277 m_wakeups_wo_switch++;
278 int highest_prio_vnet = m_virtual_networks-1;
279 int lowest_prio_vnet = 0;
280 int decrementer = 1;
281
282 // invert priorities to avoid starvation seen in the component network
283 if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
284 m_wakeups_wo_switch = 0;
285 highest_prio_vnet = 0;
286 lowest_prio_vnet = m_virtual_networks-1;
287 decrementer = -1;
288 }
289
290 // For all components incoming queues
291 for (int vnet = highest_prio_vnet;
292 (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
293 vnet -= decrementer) {
294 operateVnet(vnet);
295 }
296}
297
298void
300PerfectSwitch::storeEventInfo(int info)
301{
302 m_pending_message_count[info]++;
303}
304
305void
306PerfectSwitch::clearStats()
307{

--- 12 unchanged lines hidden ---
299PerfectSwitch::storeEventInfo(int info)
300{
301 m_pending_message_count[info]++;
302}
303
304void
305PerfectSwitch::clearStats()
306{

--- 12 unchanged lines hidden ---