PerfectSwitch.cc (10370:4466307b8a2a) PerfectSwitch.cc (10895:287285860dd6)
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "base/random.hh"
33#include "debug/RubyNetwork.hh"
34#include "mem/ruby/network/MessageBuffer.hh"
35#include "mem/ruby/network/simple/PerfectSwitch.hh"
36#include "mem/ruby/network/simple/SimpleNetwork.hh"
37#include "mem/ruby/network/simple/Switch.hh"
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "base/random.hh"
33#include "debug/RubyNetwork.hh"
34#include "mem/ruby/network/MessageBuffer.hh"
35#include "mem/ruby/network/simple/PerfectSwitch.hh"
36#include "mem/ruby/network/simple/SimpleNetwork.hh"
37#include "mem/ruby/network/simple/Switch.hh"
38#include "mem/ruby/slicc_interface/NetworkMessage.hh"
38#include "mem/ruby/slicc_interface/Message.hh"
39
40using namespace std;
41
42const int PRIORITY_SWITCH_LIMIT = 128;
43
44// Operator for helper class
45bool
46operator<(const LinkOrder& l1, const LinkOrder& l2)
47{
48 return (l1.m_value < l2.m_value);
49}
50
51PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
52 : Consumer(sw)
53{
54 m_switch_id = sid;
55 m_round_robin_start = 0;
56 m_wakeups_wo_switch = 0;
57 m_virtual_networks = virt_nets;
58}
59
60void
61PerfectSwitch::init(SimpleNetwork *network_ptr)
62{
63 m_network_ptr = network_ptr;
64
65 for(int i = 0;i < m_virtual_networks;++i) {
66 m_pending_message_count.push_back(0);
67 }
68}
69
70void
71PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
72{
73 NodeID port = m_in.size();
74 m_in.push_back(in);
75
76 for (int i = 0; i < in.size(); ++i) {
77 if (in[i] != nullptr) {
78 in[i]->setConsumer(this);
79
80 string desc =
81 csprintf("[Queue from port %s %s %s to PerfectSwitch]",
82 to_string(m_switch_id), to_string(port),
83 to_string(i));
84
85 in[i]->setDescription(desc);
86 in[i]->setIncomingLink(port);
87 in[i]->setVnet(i);
88 }
89 }
90}
91
92void
93PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
94 const NetDest& routing_table_entry)
95{
96 // Setup link order
97 LinkOrder l;
98 l.m_value = 0;
99 l.m_link = m_out.size();
100 m_link_order.push_back(l);
101
102 // Add to routing table
103 m_out.push_back(out);
104 m_routing_table.push_back(routing_table_entry);
105}
106
107PerfectSwitch::~PerfectSwitch()
108{
109}
110
111void
112PerfectSwitch::operateVnet(int vnet)
113{
114 MsgPtr msg_ptr;
39
40using namespace std;
41
42const int PRIORITY_SWITCH_LIMIT = 128;
43
44// Operator for helper class
45bool
46operator<(const LinkOrder& l1, const LinkOrder& l2)
47{
48 return (l1.m_value < l2.m_value);
49}
50
51PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
52 : Consumer(sw)
53{
54 m_switch_id = sid;
55 m_round_robin_start = 0;
56 m_wakeups_wo_switch = 0;
57 m_virtual_networks = virt_nets;
58}
59
60void
61PerfectSwitch::init(SimpleNetwork *network_ptr)
62{
63 m_network_ptr = network_ptr;
64
65 for(int i = 0;i < m_virtual_networks;++i) {
66 m_pending_message_count.push_back(0);
67 }
68}
69
70void
71PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
72{
73 NodeID port = m_in.size();
74 m_in.push_back(in);
75
76 for (int i = 0; i < in.size(); ++i) {
77 if (in[i] != nullptr) {
78 in[i]->setConsumer(this);
79
80 string desc =
81 csprintf("[Queue from port %s %s %s to PerfectSwitch]",
82 to_string(m_switch_id), to_string(port),
83 to_string(i));
84
85 in[i]->setDescription(desc);
86 in[i]->setIncomingLink(port);
87 in[i]->setVnet(i);
88 }
89 }
90}
91
92void
93PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
94 const NetDest& routing_table_entry)
95{
96 // Setup link order
97 LinkOrder l;
98 l.m_value = 0;
99 l.m_link = m_out.size();
100 m_link_order.push_back(l);
101
102 // Add to routing table
103 m_out.push_back(out);
104 m_routing_table.push_back(routing_table_entry);
105}
106
107PerfectSwitch::~PerfectSwitch()
108{
109}
110
111void
112PerfectSwitch::operateVnet(int vnet)
113{
114 MsgPtr msg_ptr;
115 NetworkMessage* net_msg_ptr = NULL;
115 Message *net_msg_ptr = NULL;
116
117 // This is for round-robin scheduling
118 int incoming = m_round_robin_start;
119 m_round_robin_start++;
120 if (m_round_robin_start >= m_in.size()) {
121 m_round_robin_start = 0;
122 }
123
124 if(m_pending_message_count[vnet] > 0) {
125 // for all input ports, use round robin scheduling
126 for (int counter = 0; counter < m_in.size(); counter++) {
127 // Round robin scheduling
128 incoming++;
129 if (incoming >= m_in.size()) {
130 incoming = 0;
131 }
132
133 // temporary vectors to store the routing results
134 vector<LinkID> output_links;
135 vector<NetDest> output_link_destinations;
136
137 // Is there a message waiting?
138 if (m_in[incoming].size() <= vnet) {
139 continue;
140 }
141
142 MessageBuffer *buffer = m_in[incoming][vnet];
143 if (buffer == nullptr) {
144 continue;
145 }
146
147 while (buffer->isReady()) {
148 DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
149
150 // Peek at message
151 msg_ptr = buffer->peekMsgPtr();
116
117 // This is for round-robin scheduling
118 int incoming = m_round_robin_start;
119 m_round_robin_start++;
120 if (m_round_robin_start >= m_in.size()) {
121 m_round_robin_start = 0;
122 }
123
124 if(m_pending_message_count[vnet] > 0) {
125 // for all input ports, use round robin scheduling
126 for (int counter = 0; counter < m_in.size(); counter++) {
127 // Round robin scheduling
128 incoming++;
129 if (incoming >= m_in.size()) {
130 incoming = 0;
131 }
132
133 // temporary vectors to store the routing results
134 vector<LinkID> output_links;
135 vector<NetDest> output_link_destinations;
136
137 // Is there a message waiting?
138 if (m_in[incoming].size() <= vnet) {
139 continue;
140 }
141
142 MessageBuffer *buffer = m_in[incoming][vnet];
143 if (buffer == nullptr) {
144 continue;
145 }
146
147 while (buffer->isReady()) {
148 DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
149
150 // Peek at message
151 msg_ptr = buffer->peekMsgPtr();
152 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
152 net_msg_ptr = msg_ptr.get();
153 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
154
155 output_links.clear();
156 output_link_destinations.clear();
153 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
154
155 output_links.clear();
156 output_link_destinations.clear();
157 NetDest msg_dsts = net_msg_ptr->getInternalDestination();
157 NetDest msg_dsts = net_msg_ptr->getDestination();
158
159 // Unfortunately, the token-protocol sends some
160 // zero-destination messages, so this assert isn't valid
161 // assert(msg_dsts.count() > 0);
162
163 assert(m_link_order.size() == m_routing_table.size());
164 assert(m_link_order.size() == m_out.size());
165
166 if (m_network_ptr->getAdaptiveRouting()) {
167 if (m_network_ptr->isVNetOrdered(vnet)) {
168 // Don't adaptively route
169 for (int out = 0; out < m_out.size(); out++) {
170 m_link_order[out].m_link = out;
171 m_link_order[out].m_value = 0;
172 }
173 } else {
174 // Find how clogged each link is
175 for (int out = 0; out < m_out.size(); out++) {
176 int out_queue_length = 0;
177 for (int v = 0; v < m_virtual_networks; v++) {
178 out_queue_length += m_out[out][v]->getSize();
179 }
180 int value =
181 (out_queue_length << 8) |
182 random_mt.random(0, 0xff);
183 m_link_order[out].m_link = out;
184 m_link_order[out].m_value = value;
185 }
186
187 // Look at the most empty link first
188 sort(m_link_order.begin(), m_link_order.end());
189 }
190 }
191
192 for (int i = 0; i < m_routing_table.size(); i++) {
193 // pick the next link to look at
194 int link = m_link_order[i].m_link;
195 NetDest dst = m_routing_table[link];
196 DPRINTF(RubyNetwork, "dst: %s\n", dst);
197
198 if (!msg_dsts.intersectionIsNotEmpty(dst))
199 continue;
200
201 // Remember what link we're using
202 output_links.push_back(link);
203
204 // Need to remember which destinations need this message in
205 // another vector. This Set is the intersection of the
206 // routing_table entry and the current destination set. The
207 // intersection must not be empty, since we are inside "if"
208 output_link_destinations.push_back(msg_dsts.AND(dst));
209
210 // Next, we update the msg_destination not to include
211 // those nodes that were already handled by this link
212 msg_dsts.removeNetDest(dst);
213 }
214
215 assert(msg_dsts.count() == 0);
216
217 // Check for resources - for all outgoing queues
218 bool enough = true;
219 for (int i = 0; i < output_links.size(); i++) {
220 int outgoing = output_links[i];
221
222 if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
223 enough = false;
224
225 DPRINTF(RubyNetwork, "Checking if node is blocked ..."
226 "outgoing: %d, vnet: %d, enough: %d\n",
227 outgoing, vnet, enough);
228 }
229
230 // There were not enough resources
231 if (!enough) {
232 scheduleEvent(Cycles(1));
233 DPRINTF(RubyNetwork, "Can't deliver message since a node "
234 "is blocked\n");
235 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
236 break; // go to next incoming port
237 }
238
239 MsgPtr unmodified_msg_ptr;
240
241 if (output_links.size() > 1) {
242 // If we are sending this message down more than one link
243 // (size>1), we need to make a copy of the message so each
244 // branch can have a different internal destination we need
245 // to create an unmodified MsgPtr because the MessageBuffer
246 // enqueue func will modify the message
247
248 // This magic line creates a private copy of the message
249 unmodified_msg_ptr = msg_ptr->clone();
250 }
251
252 // Dequeue msg
253 buffer->dequeue();
254 m_pending_message_count[vnet]--;
255
256 // Enqueue it - for all outgoing queues
257 for (int i=0; i<output_links.size(); i++) {
258 int outgoing = output_links[i];
259
260 if (i > 0) {
261 // create a private copy of the unmodified message
262 msg_ptr = unmodified_msg_ptr->clone();
263 }
264
265 // Change the internal destination set of the message so it
266 // knows which destinations this link is responsible for.
158
159 // Unfortunately, the token-protocol sends some
160 // zero-destination messages, so this assert isn't valid
161 // assert(msg_dsts.count() > 0);
162
163 assert(m_link_order.size() == m_routing_table.size());
164 assert(m_link_order.size() == m_out.size());
165
166 if (m_network_ptr->getAdaptiveRouting()) {
167 if (m_network_ptr->isVNetOrdered(vnet)) {
168 // Don't adaptively route
169 for (int out = 0; out < m_out.size(); out++) {
170 m_link_order[out].m_link = out;
171 m_link_order[out].m_value = 0;
172 }
173 } else {
174 // Find how clogged each link is
175 for (int out = 0; out < m_out.size(); out++) {
176 int out_queue_length = 0;
177 for (int v = 0; v < m_virtual_networks; v++) {
178 out_queue_length += m_out[out][v]->getSize();
179 }
180 int value =
181 (out_queue_length << 8) |
182 random_mt.random(0, 0xff);
183 m_link_order[out].m_link = out;
184 m_link_order[out].m_value = value;
185 }
186
187 // Look at the most empty link first
188 sort(m_link_order.begin(), m_link_order.end());
189 }
190 }
191
192 for (int i = 0; i < m_routing_table.size(); i++) {
193 // pick the next link to look at
194 int link = m_link_order[i].m_link;
195 NetDest dst = m_routing_table[link];
196 DPRINTF(RubyNetwork, "dst: %s\n", dst);
197
198 if (!msg_dsts.intersectionIsNotEmpty(dst))
199 continue;
200
201 // Remember what link we're using
202 output_links.push_back(link);
203
204 // Need to remember which destinations need this message in
205 // another vector. This Set is the intersection of the
206 // routing_table entry and the current destination set. The
207 // intersection must not be empty, since we are inside "if"
208 output_link_destinations.push_back(msg_dsts.AND(dst));
209
210 // Next, we update the msg_destination not to include
211 // those nodes that were already handled by this link
212 msg_dsts.removeNetDest(dst);
213 }
214
215 assert(msg_dsts.count() == 0);
216
217 // Check for resources - for all outgoing queues
218 bool enough = true;
219 for (int i = 0; i < output_links.size(); i++) {
220 int outgoing = output_links[i];
221
222 if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
223 enough = false;
224
225 DPRINTF(RubyNetwork, "Checking if node is blocked ..."
226 "outgoing: %d, vnet: %d, enough: %d\n",
227 outgoing, vnet, enough);
228 }
229
230 // There were not enough resources
231 if (!enough) {
232 scheduleEvent(Cycles(1));
233 DPRINTF(RubyNetwork, "Can't deliver message since a node "
234 "is blocked\n");
235 DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
236 break; // go to next incoming port
237 }
238
239 MsgPtr unmodified_msg_ptr;
240
241 if (output_links.size() > 1) {
242 // If we are sending this message down more than one link
243 // (size>1), we need to make a copy of the message so each
244 // branch can have a different internal destination we need
245 // to create an unmodified MsgPtr because the MessageBuffer
246 // enqueue func will modify the message
247
248 // This magic line creates a private copy of the message
249 unmodified_msg_ptr = msg_ptr->clone();
250 }
251
252 // Dequeue msg
253 buffer->dequeue();
254 m_pending_message_count[vnet]--;
255
256 // Enqueue it - for all outgoing queues
257 for (int i=0; i<output_links.size(); i++) {
258 int outgoing = output_links[i];
259
260 if (i > 0) {
261 // create a private copy of the unmodified message
262 msg_ptr = unmodified_msg_ptr->clone();
263 }
264
265 // Change the internal destination set of the message so it
266 // knows which destinations this link is responsible for.
267 net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
268 net_msg_ptr->getInternalDestination() =
267 net_msg_ptr = msg_ptr.get();
268 net_msg_ptr->getDestination() =
269 output_link_destinations[i];
270
271 // Enqeue msg
272 DPRINTF(RubyNetwork, "Enqueuing net msg from "
273 "inport[%d][%d] to outport [%d][%d].\n",
274 incoming, vnet, outgoing, vnet);
275
276 m_out[outgoing][vnet]->enqueue(msg_ptr);
277 }
278 }
279 }
280 }
281}
282
283void
284PerfectSwitch::wakeup()
285{
286 // Give the highest numbered link priority most of the time
287 m_wakeups_wo_switch++;
288 int highest_prio_vnet = m_virtual_networks-1;
289 int lowest_prio_vnet = 0;
290 int decrementer = 1;
291
292 // invert priorities to avoid starvation seen in the component network
293 if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
294 m_wakeups_wo_switch = 0;
295 highest_prio_vnet = 0;
296 lowest_prio_vnet = m_virtual_networks-1;
297 decrementer = -1;
298 }
299
300 // For all components incoming queues
301 for (int vnet = highest_prio_vnet;
302 (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
303 vnet -= decrementer) {
304 operateVnet(vnet);
305 }
306}
307
308void
309PerfectSwitch::storeEventInfo(int info)
310{
311 m_pending_message_count[info]++;
312}
313
314void
315PerfectSwitch::clearStats()
316{
317}
318void
319PerfectSwitch::collateStats()
320{
321}
322
323
324void
325PerfectSwitch::print(std::ostream& out) const
326{
327 out << "[PerfectSwitch " << m_switch_id << "]";
328}
269 output_link_destinations[i];
270
271 // Enqeue msg
272 DPRINTF(RubyNetwork, "Enqueuing net msg from "
273 "inport[%d][%d] to outport [%d][%d].\n",
274 incoming, vnet, outgoing, vnet);
275
276 m_out[outgoing][vnet]->enqueue(msg_ptr);
277 }
278 }
279 }
280 }
281}
282
283void
284PerfectSwitch::wakeup()
285{
286 // Give the highest numbered link priority most of the time
287 m_wakeups_wo_switch++;
288 int highest_prio_vnet = m_virtual_networks-1;
289 int lowest_prio_vnet = 0;
290 int decrementer = 1;
291
292 // invert priorities to avoid starvation seen in the component network
293 if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
294 m_wakeups_wo_switch = 0;
295 highest_prio_vnet = 0;
296 lowest_prio_vnet = m_virtual_networks-1;
297 decrementer = -1;
298 }
299
300 // For all components incoming queues
301 for (int vnet = highest_prio_vnet;
302 (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
303 vnet -= decrementer) {
304 operateVnet(vnet);
305 }
306}
307
308void
309PerfectSwitch::storeEventInfo(int info)
310{
311 m_pending_message_count[info]++;
312}
313
314void
315PerfectSwitch::clearStats()
316{
317}
318void
319PerfectSwitch::collateStats()
320{
321}
322
323
324void
325PerfectSwitch::print(std::ostream& out) const
326{
327 out << "[PerfectSwitch " << m_switch_id << "]";
328}